Skip to main content
Erschienen in: Annals of Nuclear Medicine 8/2022

13.06.2022 | Original Article

Performance evaluation of dedicated brain PET scanner with motion correction system

verfasst von: Yuya Onishi, Takashi Isobe, Masanori Ito, Fumio Hashimoto, Tomohide Omura, Etsuji Yoshikawa

Erschienen in: Annals of Nuclear Medicine | Ausgabe 8/2022

Einloggen, um Zugang zu erhalten

Abstract

Objective

Various motion correction (MC) algorithms for positron emission tomography (PET) have been proposed to accelerate the diagnostic performance and research in brain activity and neurology. We have incorporated MC system-based optical motion tracking into the brain-dedicated time-of-flight PET scanner. In this study, we evaluate the performance characteristics of the developed PET scanner when performing MC in accordance with the standards and guidelines for the brain PET scanner.

Methods

We evaluate the spatial resolution, scatter fraction, count rate characteristics, sensitivity, and image quality of PET images. The MC evaluation is measured in terms of the spatial resolution and image quality that affect movement.

Results

In the basic performance evaluation, the average spatial resolution by iterative reconstruction was 2.2 mm at 10 mm offset position. The measured peak noise equivalent count rate was 38.0 kcps at 16.7 kBq/mL. The scatter fraction and system sensitivity were 43.9% and 22.4 cps/(Bq/mL), respectively. The image contrast recovery was between 43.2% (10 mm sphere) and 72.0% (37 mm sphere). In the MC performance evaluation, the average spatial resolution was 2.7 mm at 10 mm offset position, when the phantom stage with the point source translates to ± 15 mm along the y-axis. The image contrast recovery was between 34.2 % (10 mm sphere) and 66.8 % (37 mm sphere).

Conclusions

The reconstructed images using MC were restored to their nearly identical state as those at rest. Therefore, it is concluded that this scanner can observe more natural brain activity.
Literatur
1.
Zurück zum Zitat Meikle SR, Sossi V, Roncali E, Cherry SR, Banati R, Mankoff D, et al. Quantitative PET in the 2020s: a roadmap. Phys Med Biol. 2021;66:06RM01.PubMedCrossRef Meikle SR, Sossi V, Roncali E, Cherry SR, Banati R, Mankoff D, et al. Quantitative PET in the 2020s: a roadmap. Phys Med Biol. 2021;66:06RM01.PubMedCrossRef
2.
Zurück zum Zitat Watanabe M, Shimizu K, Omura T, Takahashi M, Kosugi T, Yoshikawa E, et al. A new high-resolution PET scanner dedicated to brain research. IEEE Trans Nucl Sci. 2002;49:634–9.CrossRef Watanabe M, Shimizu K, Omura T, Takahashi M, Kosugi T, Yoshikawa E, et al. A new high-resolution PET scanner dedicated to brain research. IEEE Trans Nucl Sci. 2002;49:634–9.CrossRef
3.
Zurück zum Zitat Yamamoto S, Honda M, Oohashi T, Shimizu K, Senda M. Development of a brain PET system, PET-Hat: a wearable PET system for brain research. IEEE Trans Nucl Sci. 2011;58:668–73.CrossRef Yamamoto S, Honda M, Oohashi T, Shimizu K, Senda M. Development of a brain PET system, PET-Hat: a wearable PET system for brain research. IEEE Trans Nucl Sci. 2011;58:668–73.CrossRef
4.
Zurück zum Zitat Jung J, Choi Y, Jung JH, Kim S, Im KC. Performance evaluation of neuro-PET using silicon photomultipliers. Nucl Instrum Methods A. 2016;819:182–7.CrossRef Jung J, Choi Y, Jung JH, Kim S, Im KC. Performance evaluation of neuro-PET using silicon photomultipliers. Nucl Instrum Methods A. 2016;819:182–7.CrossRef
5.
Zurück zum Zitat Tashima H, Yoshida E, Iwao Y, Wakizaka H, Maeda T, Seki C, et al. First prototyping of a dedicated PET system with the hemisphere detector arrangement. Phys Med Biol. 2019;64: 065004.PubMedCrossRef Tashima H, Yoshida E, Iwao Y, Wakizaka H, Maeda T, Seki C, et al. First prototyping of a dedicated PET system with the hemisphere detector arrangement. Phys Med Biol. 2019;64: 065004.PubMedCrossRef
6.
Zurück zum Zitat Moliner L, Rodríguez-Alvarez MJ, Catret JV, González A, Ilisie V, Benlloch JM. NEMA performance evaluation of CareMiBrain dedicated brain PET and comparison with the whole-body and dedicated brain PET systems. Sci Rep. 2019;9:15484.PubMedPubMedCentralCrossRef Moliner L, Rodríguez-Alvarez MJ, Catret JV, González A, Ilisie V, Benlloch JM. NEMA performance evaluation of CareMiBrain dedicated brain PET and comparison with the whole-body and dedicated brain PET systems. Sci Rep. 2019;9:15484.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Wienhard K, Schmand M, Casey ME, Baker K, Bao J, Eriksson L, et al. The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci. 2002;49:104–10.CrossRef Wienhard K, Schmand M, Casey ME, Baker K, Bao J, Eriksson L, et al. The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci. 2002;49:104–10.CrossRef
8.
Zurück zum Zitat Yoshida E, Kobayashi A, Yamaya T, Watanabe M, Nishikido F, Kitamura K, et al. The jPET-D4: Performance evaluation of four-layer DOI-PET scanner using the NEMA NU2-2001 standard. In: 2006 IEEE nuclear science symposium and medical imaging conference. 2006:2532–6. Yoshida E, Kobayashi A, Yamaya T, Watanabe M, Nishikido F, Kitamura K, et al. The jPET-D4: Performance evaluation of four-layer DOI-PET scanner using the NEMA NU2-2001 standard. In: 2006 IEEE nuclear science symposium and medical imaging conference. 2006:2532–6.
9.
Zurück zum Zitat Gong K, Majewski S, Kinahan PE, Harrison RL, Elston BF, Manjeshwar R, et al. Designing a compact high performance brain PET scanner–simulation study. Phys Med Biol. 2016;61:3681–97.PubMedPubMedCentralCrossRef Gong K, Majewski S, Kinahan PE, Harrison RL, Elston BF, Manjeshwar R, et al. Designing a compact high performance brain PET scanner–simulation study. Phys Med Biol. 2016;61:3681–97.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Watanabe M, Saito A, Isobe T, Ote K, Yamada R, Moriya T, et al. Performance evaluation of a high- resolution brain PET scanner using four-layer MPPC DOI detectors. Phys Med Biol. 2017;62:7148–66.PubMedCrossRef Watanabe M, Saito A, Isobe T, Ote K, Yamada R, Moriya T, et al. Performance evaluation of a high- resolution brain PET scanner using four-layer MPPC DOI detectors. Phys Med Biol. 2017;62:7148–66.PubMedCrossRef
11.
Zurück zum Zitat Akamatsu G, Tashima H, Iwao Y, Wakizaka H, Maeda T, Mohammadi A, et al. T. performance evaluation of a whole-body prototype PET scanner with four-layer DOI detectors. Phys Med Biol. 2019;64:095014.PubMedCrossRef Akamatsu G, Tashima H, Iwao Y, Wakizaka H, Maeda T, Mohammadi A, et al. T. performance evaluation of a whole-body prototype PET scanner with four-layer DOI detectors. Phys Med Biol. 2019;64:095014.PubMedCrossRef
12.
Zurück zum Zitat Sluis J, Jong J, Schaar J, Noordzij W, Snick P, Dierckx R, et al. Performance characteristics of the digital biograph vision PET/CT System. J Nucl Med. 2019;60:1031–6.PubMedCrossRef Sluis J, Jong J, Schaar J, Noordzij W, Snick P, Dierckx R, et al. Performance characteristics of the digital biograph vision PET/CT System. J Nucl Med. 2019;60:1031–6.PubMedCrossRef
13.
Zurück zum Zitat Yoshida E, Tashima H, Akamatsu G, Iwao Y, Takahashi M, Yamashita T, et al. 245 ps-TOF brain-dedicated PET prototype with a hemispherical detector arrangement. Phys Med Biol. 2020;65: 145008.PubMedCrossRef Yoshida E, Tashima H, Akamatsu G, Iwao Y, Takahashi M, Yamashita T, et al. 245 ps-TOF brain-dedicated PET prototype with a hemispherical detector arrangement. Phys Med Biol. 2020;65: 145008.PubMedCrossRef
16.
Zurück zum Zitat Kwon SI, Ota R, Berg E, Hashimoto F, Nakajima K, Ogawa I, et al. Ultrafast timing enables reconstruction-free positron emission imaging. Nat Photon. 2021;15:914–8.CrossRef Kwon SI, Ota R, Berg E, Hashimoto F, Nakajima K, Ogawa I, et al. Ultrafast timing enables reconstruction-free positron emission imaging. Nat Photon. 2021;15:914–8.CrossRef
17.
Zurück zum Zitat Rahmin A, Rousset O, Zaidi H. Strategies for motion tracking and correction in PET. PET Clin. 2007;2:251–66.CrossRef Rahmin A, Rousset O, Zaidi H. Strategies for motion tracking and correction in PET. PET Clin. 2007;2:251–66.CrossRef
18.
Zurück zum Zitat Herzog H, Tellmann L, Fulton R, Stangier I, Kops ER, Bente K, et al. Motion artifact reduction on parametric PET images of neuroreceptor binding. J Nucl Med. 2005;46:1059–65.PubMed Herzog H, Tellmann L, Fulton R, Stangier I, Kops ER, Bente K, et al. Motion artifact reduction on parametric PET images of neuroreceptor binding. J Nucl Med. 2005;46:1059–65.PubMed
19.
Zurück zum Zitat Zaidi H, Montandon M, Meikle S. Strategies for attenuation compensation in neurological PET studies. Neuroimage. 2006;34:518–41.PubMedCrossRef Zaidi H, Montandon M, Meikle S. Strategies for attenuation compensation in neurological PET studies. Neuroimage. 2006;34:518–41.PubMedCrossRef
20.
Zurück zum Zitat Inubushi T, Ito M, Mori Y, Futatsubashi M, Sato K, Ito S, et al. Neural correlates of head restraint: unsolicited neuronal activation and dopamine release. Neuroimage. 2021;224: 117434.PubMedCrossRef Inubushi T, Ito M, Mori Y, Futatsubashi M, Sato K, Ito S, et al. Neural correlates of head restraint: unsolicited neuronal activation and dopamine release. Neuroimage. 2021;224: 117434.PubMedCrossRef
21.
Zurück zum Zitat Kyme AZ, Fulton RR. Motion estimation and correction in SPECT. PET and CT Phys Med Biol. 2021;66:18TR02.CrossRef Kyme AZ, Fulton RR. Motion estimation and correction in SPECT. PET and CT Phys Med Biol. 2021;66:18TR02.CrossRef
22.
Zurück zum Zitat Keller SH, Sibomana M, Olesen OV, Svarer C, Holm S, Andersen FL, et al. Methods for motion correction evaluation using 18F-FDG human brain scans on a high-resolution PET scanner. J Nucl Med. 2012;53:495–504.PubMedCrossRef Keller SH, Sibomana M, Olesen OV, Svarer C, Holm S, Andersen FL, et al. Methods for motion correction evaluation using 18F-FDG human brain scans on a high-resolution PET scanner. J Nucl Med. 2012;53:495–504.PubMedCrossRef
23.
Zurück zum Zitat Noonan PJ, Howard J, Hallett WA, Gunn RN. Repurposing the microsoft kinect for windows v2 for external head motion tracking for brain PET. Phys Med Biol. 2015;60:8753–66.PubMedCrossRef Noonan PJ, Howard J, Hallett WA, Gunn RN. Repurposing the microsoft kinect for windows v2 for external head motion tracking for brain PET. Phys Med Biol. 2015;60:8753–66.PubMedCrossRef
24.
Zurück zum Zitat Iwao Y, Akamatsu G, Tashima H, Takahashi M, Yamaya T. Marker-less and calibration-less motion correction method for brain PET. Radiol Phys Technol. 2022;5:125–34. Iwao Y, Akamatsu G, Tashima H, Takahashi M, Yamaya T. Marker-less and calibration-less motion correction method for brain PET. Radiol Phys Technol. 2022;5:125–34.
25.
Zurück zum Zitat Picard Y, Thompson CJ. Motion correction of PET images using multiple acquisition frames. IEEE Trans Med Imag. 1997;16:137–44.CrossRef Picard Y, Thompson CJ. Motion correction of PET images using multiple acquisition frames. IEEE Trans Med Imag. 1997;16:137–44.CrossRef
26.
Zurück zum Zitat Slipsager JM, Ellegaard AH, Glimberg SL, Paulsen RR, Tisdall MD, Wighton P, et al. Markerless motion tracking and correction for PET, MRI, and simultaneous PET/MRI. PLOS One. 2019;14: 0215524.CrossRef Slipsager JM, Ellegaard AH, Glimberg SL, Paulsen RR, Tisdall MD, Wighton P, et al. Markerless motion tracking and correction for PET, MRI, and simultaneous PET/MRI. PLOS One. 2019;14: 0215524.CrossRef
27.
Zurück zum Zitat Rakvongthai Y, Fakhri GE. Magnetic resonance-based motion correction for quantitative PET in simultaneous PET-MR Imaging. PET Clin. 2017;12:321–7.PubMedPubMedCentralCrossRef Rakvongthai Y, Fakhri GE. Magnetic resonance-based motion correction for quantitative PET in simultaneous PET-MR Imaging. PET Clin. 2017;12:321–7.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Saito A, Yoshikawa E, Omura T, Yamanaka T, Ote K, Isobe T, et al. Development of a brain PET scanner with motion correction using motion capture technology. IEEE Nuclear Science Symposium and Medical Imaging Conference. 2018:M-07-146. Saito A, Yoshikawa E, Omura T, Yamanaka T, Ote K, Isobe T, et al. Development of a brain PET scanner with motion correction using motion capture technology. IEEE Nuclear Science Symposium and Medical Imaging Conference. 2018:M-07-146.
29.
Zurück zum Zitat Akamatsu G, Tashima H, Yoshida E, Wakizaka H, Iwao Y, Maeda T, et al. Modified NEMA NU-2 performance evaluation methods for a brain-dedicated PET system with a hemispherical detector arrangement. Biomed Phys Eng Express. 2019;6: 015012.PubMedCrossRef Akamatsu G, Tashima H, Yoshida E, Wakizaka H, Iwao Y, Maeda T, et al. Modified NEMA NU-2 performance evaluation methods for a brain-dedicated PET system with a hemispherical detector arrangement. Biomed Phys Eng Express. 2019;6: 015012.PubMedCrossRef
30.
Zurück zum Zitat Industries Association of Radiation Apparatus (JESRA): Performance evaluation of positron emission tomographs X-0073*G-2019: 2019 Industries Association of Radiation Apparatus (JESRA): Performance evaluation of positron emission tomographs X-0073*G-2019: 2019
31.
Zurück zum Zitat Ota R. Photon counting detectors and their applications ranging from particle physics experiments to environmental radiation monitoring and medical imaging. Radiol Phys Technol. 2021;14:134–48.PubMedCrossRef Ota R. Photon counting detectors and their applications ranging from particle physics experiments to environmental radiation monitoring and medical imaging. Radiol Phys Technol. 2021;14:134–48.PubMedCrossRef
32.
Zurück zum Zitat Yamaya T, Inaniwa T, Minohara S, Yoshida E, Inadama N, Nishikido F, et al. A proposal of an open PET geometry. Phys Med Biol. 2008;53:757–73.PubMedCrossRef Yamaya T, Inaniwa T, Minohara S, Yoshida E, Inadama N, Nishikido F, et al. A proposal of an open PET geometry. Phys Med Biol. 2008;53:757–73.PubMedCrossRef
33.
Zurück zum Zitat Zhang Z. A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell. 2000;12:1330–4.CrossRef Zhang Z. A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell. 2000;12:1330–4.CrossRef
34.
Zurück zum Zitat Tanaka E, Kudo H. Optimal relaxation parameters of DRAMA (Dynamic RAMLA) aiming at one-pass image reconstruction for 3D-PET. Phys Med Biol. 2010;55:2917–39.PubMedCrossRef Tanaka E, Kudo H. Optimal relaxation parameters of DRAMA (Dynamic RAMLA) aiming at one-pass image reconstruction for 3D-PET. Phys Med Biol. 2010;55:2917–39.PubMedCrossRef
35.
Zurück zum Zitat Badawi RD, Marsden PK. Developments in component-based normalization for 3D PET. Phys Med Biol. 1999;44:571–94.PubMedCrossRef Badawi RD, Marsden PK. Developments in component-based normalization for 3D PET. Phys Med Biol. 1999;44:571–94.PubMedCrossRef
36.
Zurück zum Zitat Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med. 2003;44:291–315.PubMed Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med. 2003;44:291–315.PubMed
37.
Zurück zum Zitat Watson C. New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci. 2000;47:1587–94.CrossRef Watson C. New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci. 2000;47:1587–94.CrossRef
38.
Zurück zum Zitat Rahmim A, Lenox M, Reader AJ, Michel C, Burbar Z, Ruth TJ, et al. Statistical list-mode image reconstruction for the high resolution research tomograph. Phys Med Biol. 2004;49:4239–58.PubMedCrossRef Rahmim A, Lenox M, Reader AJ, Michel C, Burbar Z, Ruth TJ, et al. Statistical list-mode image reconstruction for the high resolution research tomograph. Phys Med Biol. 2004;49:4239–58.PubMedCrossRef
39.
Zurück zum Zitat Jin X, Mulnix T, Gallezot J, Carson RE. Evaluation of motion correction methods in human brain PET imaging–A simulation study based on human motion data. Med Phys. 2013;40: 102503.PubMedPubMedCentralCrossRef Jin X, Mulnix T, Gallezot J, Carson RE. Evaluation of motion correction methods in human brain PET imaging–A simulation study based on human motion data. Med Phys. 2013;40: 102503.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Iwao Y, Tashima H, Yoshida E, Nishikido F, Ida T, Yamaya T. Seated versus supine: consideration of the optimum measurement posture for brain-dedicated PET. Phys Med Biol. 2019;64: 125003.PubMedCrossRef Iwao Y, Tashima H, Yoshida E, Nishikido F, Ida T, Yamaya T. Seated versus supine: consideration of the optimum measurement posture for brain-dedicated PET. Phys Med Biol. 2019;64: 125003.PubMedCrossRef
41.
Zurück zum Zitat Zein SA, Karakatsanis NA, Conti M, Nehmeh SA. Monte Carlo simulation of the siemens biograph vision PET with extended axial field of view using sparse detector module rings configuration. IEEE Trans Radiat Plasma Med Sci. 2021;5:331–42.CrossRef Zein SA, Karakatsanis NA, Conti M, Nehmeh SA. Monte Carlo simulation of the siemens biograph vision PET with extended axial field of view using sparse detector module rings configuration. IEEE Trans Radiat Plasma Med Sci. 2021;5:331–42.CrossRef
42.
Zurück zum Zitat Lehnert W, Riss PJ, Mendoza A, Lopez S, Fernandez G, Ilheu M, et al. Whole-body biodistribution and radiation dosimetry of [18 F] PR04.MZ: a new PET radiotracer for clinical management of patients with movement disorders. EJNMMI Res. 2022;12:1.PubMedPubMedCentralCrossRef Lehnert W, Riss PJ, Mendoza A, Lopez S, Fernandez G, Ilheu M, et al. Whole-body biodistribution and radiation dosimetry of [18 F] PR04.MZ: a new PET radiotracer for clinical management of patients with movement disorders. EJNMMI Res. 2022;12:1.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Hoffman M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Bayer T, et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med. 2011;9:1392–9.CrossRef Hoffman M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Bayer T, et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med. 2011;9:1392–9.CrossRef
44.
Zurück zum Zitat Rezaei A, Defrise M, Bal G, Michel C, Conti M, Watson C, et al. Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans Med Imag. 2012;12:2224–33.CrossRef Rezaei A, Defrise M, Bal G, Michel C, Conti M, Watson C, et al. Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans Med Imag. 2012;12:2224–33.CrossRef
45.
Zurück zum Zitat Hashimoto F, Ito M, Ote K, Isobe T, Okada H, Ouchi Y. Deep learning-based attenuation correction for brain PET with various radiotracers. Ann Nucl Med. 2021;6:691–701.CrossRef Hashimoto F, Ito M, Ote K, Isobe T, Okada H, Ouchi Y. Deep learning-based attenuation correction for brain PET with various radiotracers. Ann Nucl Med. 2021;6:691–701.CrossRef
Metadaten
Titel
Performance evaluation of dedicated brain PET scanner with motion correction system
verfasst von
Yuya Onishi
Takashi Isobe
Masanori Ito
Fumio Hashimoto
Tomohide Omura
Etsuji Yoshikawa
Publikationsdatum
13.06.2022
Verlag
Springer Nature Singapore
Erschienen in
Annals of Nuclear Medicine / Ausgabe 8/2022
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-022-01757-1

Weitere Artikel der Ausgabe 8/2022

Annals of Nuclear Medicine 8/2022 Zur Ausgabe