Skip to main content
main-content

01.12.2018 | Technical advance | Ausgabe 1/2018 Open Access

BMC Medical Imaging 1/2018

Performance of a feature-based algorithm for 3D-3D registration of CT angiography to cone-beam CT for endovascular repair of complex abdominal aortic aneurysms

Zeitschrift:
BMC Medical Imaging > Ausgabe 1/2018
Autoren:
Giasemi Koutouzi, Behrooz Nasihatkton, Monika Danielak-Nowak, Henrik Leonhardt, Mårten Falkenberg, Fredrik Kahl
Wichtige Hinweise
A correction to this article is available online at https://​doi.​org/​10.​1186/​s12880-019-0335-3.

Abstract

Background

A crucial step in image fusion for intraoperative guidance during endovascular procedures is the registration of preoperative computed tomography angiography (CTA) with intraoperative Cone Beam CT (CBCT). Automatic tools for image registration facilitate the 3D image guidance workflow. However their performance is not always satisfactory. The aim of this study is to assess the accuracy of a new fully automatic, feature-based algorithm for 3D3D registration of CTA to CBCT.

Methods

The feature-based algorithm was tested on clinical image datasets from 14 patients undergoing complex endovascular aortic repair. Deviations in Euclidian distances between vascular as well as bony landmarks were measured and compared to an intensity-based, normalized mutual information algorithm.

Results

The results for the feature-based algorithm showed that the median 3D registration error between the anatomical landmarks of CBCT and CT images was less than 3 mm. The feature-based algorithm showed significantly better accuracy compared to the intensity-based algorithm (p < 0.001).

Conclusion

A feature-based algorithm for 3D image registration is presented.
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2018

BMC Medical Imaging 1/2018 Zur Ausgabe

Neu im Fachgebiet Radiologie

Meistgelesene Bücher aus der Radiologie

2016 | Buch

Medizinische Fremdkörper in der Bildgebung

Thorax, Abdomen, Gefäße und Kinder

Dieses einzigartige Buch enthält ca. 1.600 hochwertige radiologische Abbildungen und Fotos iatrogen eingebrachter Fremdmaterialien im Röntgenbild und CT.

Herausgeber:
Dr. med. Daniela Kildal

2011 | Buch

Atlas Klinische Neuroradiologie des Gehirns

Radiologie lebt von Bildern! Der vorliegende Atlas trägt dieser Tatsache Rechnung. Sie finden zu jedem Krankheitsbild des Gehirns Referenzbilder zum Abgleichen mit eigenen Befunden.

Autoren:
Priv.-Doz. Dr. med. Jennifer Linn, Prof. Dr. med. Martin Wiesmann, Prof. Dr. med. Hartmut Brückmann

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise