Skip to main content
Erschienen in: BMC Medical Imaging 1/2020

Open Access 01.12.2020 | Research article

Performance of diffusion and perfusion MRI in evaluating primary central nervous system lymphomas of different locations

verfasst von: Zhen Xing, Nannan Kang, Yu Lin, Xiaofang Zhou, Zebin Xiao, Dairong Cao

Erschienen in: BMC Medical Imaging | Ausgabe 1/2020

Abstract

Background

Diffusion and perfusion MRI can invasively define physical properties and angiogenic features of tumors, and guide the individual treatment. The purpose of this study was to investigate whether the diffusion and perfusion MRI parameters of primary central nervous system lymphomas (PCNSLs) are related to the tumor locations.

Methods

We retrospectively reviewed the diffusion, perfusion, and conventional MRI of 68 patients with PCNSLs at different locations (group 1: cortical gray matter, group 2: white matter, group 3: deep gray matter). Relative maximum cerebral blood volume (rCBVmax) from perfusion MRI, minimum apparent diffusion coefficients (ADCmin) from DWI of each group were calculated and compared by one-way ANOVA test. In addition, we compared the mean apparent diffusion coefficients (ADCmean) in three different regions of control group.

Results

The rCBVmax of PCNSLs yielded the lowest value in the white matter group, and the highest value in the cortical gray matter group (P < 0.001). However, the ADCmin of each subgroup was not statistically different. The ADCmean of each subgroup in control group was not statistically different.

Conclusion

Our study confirms that rCBVmax of PCNSLs are related to the tumor location, and provide simple but effective information for guiding the clinical practice of PCNSLs.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
MRI
Magnetic resonance imaging
PCNSLs
Primary central nervous system lymphomas
rCBVmax
Relative maximum cerebral blood volume
rCBV
Relative cerebral blood volume
CBV
Cerebral blood volume
ADCmin
Minimum apparent diffusion coefficients
DWI
Diffusion weighted imaging
ADCmean
Mean apparent diffusion coefficients
ADC
Apparent diffusion coefficients
DSC-PWI
Dynamic susceptibility contrast perfusion-weighted imaging
cMRI
Conventional magnetic resonance imaging
T1WI
T1 weighted imaging
T2WI
T2 weighted imaging
FLAIR
Fluid attenuated inversion recovery
TR
Repetition time
TE
Echo time
TI
Inversion time
CE-T1WI
Contrast-enhanced T1 weighted imaging
Gd-BOPTA
Gadobente dimeglumine
FOV
Field of view
NEX
Number of excitation
ROI
Region of interest
CGM
Cortical gray matter
WM
White matter
DGM
Deep gray matter
SD
Standard deviation
LSD
Least significant difference
OS
Overall survival
PFS
Progression-free survival

Background

Primary central nervous lymphomas (PCNSLs) are malignant tumors with increased incidence rates [1]. To date, methotrexate-based chemotherapy is the cornerstone for PCNSLs treatment. The response to initial high-dose chemotherapy is a reliable indicator of the patients’ long-term survival [25]. As proposed by a previous study, the chemotherapy response is predominantly determined by the delivery of drugs through the vascular system [6]. Besides, some researchers have documented that PCNSLs with different cellular growth patterns may have different prognoses [7, 8].
Diffusion-weighted imaging (DWI) can assess the Brownian movement of water in the microscopic tissue environment by using apparent diffusion coefficient (ADC) values. Densely packed tumor cells with a high nuclear-to-cytoplasmic ratio could reduce water molecule motion [9, 10]. Few studies have suggested a significant correlation between ADC values and prognosis of patients with PCNSLs treated with methotrexate [1113].
Dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) can provide physiological information about vascular endothelial proliferation and angiogenesis [1417]. Since tumor aggressiveness correlates with neovascularization, DSC-PWI is useful in the preoperative evaluation of brain tumors (including PCNSLs). Regional CBV (rCBV) derived from DSC-PWI can provide important hemodynamic information by intravenous injection of gadolinium-based contrast agent [1820]. The response to chemotherapy is mainly determined by the delivery of drugs to the tumor through the vascular system [6]. Therefore, the rCBV value might be used as a biomarker of treatment responses in PCNSLs.
From the imaging perspective, diffusion and perfusion MRI may be helpful for a comprehensive assessment of the cellularity and vascularity, and a prediction of treatment response of PCNSLs. To our knowledge, there is no study in the literature combining diffusion and perfusion techniques to evaluate the PCNSLs of different locations. Therefore, our research aims to investigate whether DWI and DSC-PWI parameters are correlated with tumor locations, and provide evidence for clinical decision-making and prognostic evaluation.

Methods

Patients

The institutional review board of our hospital approved this study and informed consent was waived due to the retrospective design. Our institution’s database identified 166 patients who underwent MR examination for potential PCNSLs between October 2009 and September 2017. The inclusion criteria were as follow: (a) immunocompetent patients, (b) histopathological diagnosis of PCNSLs, (c) available pretreatment conventional MRI (cMRI), DWI and DSC-PWI. Patients with poor image quality were excluded. Ultimately, 68 patients (31 males and 37 females, age range 29–78 years; mean age 56.80 years) were included.

MR imaging techniques

All MR images were acquired in the routine clinical workup using a 3.0 Tesla MRI system (Magnetom Verio TIM; Siemens Healthcare, Erlangen, Germany) with an eight-channel head coil. The cMRI protocols consisted of axial T1WI (TR/TE, 250 /2.48 ms), axial T2WI (TR/TE, 4000 /96 ms), axial FLAIR (TR, 9000 ms; TE, 94 ms; TI, 2500 ms), and contrast-enhanced T1WI (CE-T1WI; TR/TE, 250 ms/2.48 ms) in 3 orthogonal planes. It was uniform in all series about FOV 220 × 220 mm, section thickness 5 mm, and intersection gap 1.0 mm.
DWI was performed in the axial plane with a spin-echo-planar sequence (TR/TE, 8200/102 ms; NEX, 2.0; b-values, 0 and 1000 s/mm2). Corresponding ADC maps were generated automatically by the MRI system.
DSC-PWI was achieved with a gradient-recalled T2*-weighted echo-planar imaging sequence (TR/TE, 1000–1250/54 ms; NEX, 1.0; flip angle, 35°). In the first three phases, non-enhanced images were scanned to establish a pre-contrast baseline. When the scan was to the fourth phase of DSC-PWI, a standard dose of 0.1 mmol/kg of gadobente dimeglumine (Gd-BOPTA) was injected intravenously with a flow rate of 3 ml/s, followed by a 20 ml continuous saline flush.

Data processing

All imaging assessments were performed on a Siemens workstation with standard software. All cMRI data concerning notch sign and contrast-enhancement pattern were assessed by two neuroradiologists who were blinded to tumor histology. When two observers disagreed, a senior neuroradiologist made the final decision.
To assess DWI data, ADC values were measured by manually placing ROIs on the ADC maps. At least five small round ROIs (25–40 mm2) were selected inside the tumor areas of visually lowest ADC. The ROI placements were made from the enhancing solid portion of the lesion, avoiding necrotic, cystic, hemorrhagic, or visible blood vessel that might affect the ADC values. For each patient, the enhancing solid portion of the tumor was identified on T2WI and CE-T1WI. Finally, the minimum ADC (ADCmin) was calculated from the ROI with the lowest ADC value. The mean ADC (ADCmean) values of normal cortical gray matter (CGM), white matter (WM), and deep gray matter (DGM) were also calculated. ADC values were expressed as × 10− 3 mm2/s.
To evaluate DSC-PWI data, whole-brain CBV maps were generated using a single-compartment model. The relative maximum CBV value (rCBVmax) was calculated by dividing the maximum CBV value of the tumor by the mean CBV value of the contralateral unaffected white matter. Therefore, the rCBV value was used as a quantitative parameter without unit. To minimize variances in rCBVmax values in each patient, measurements of rCBVmax values were performed with the same ROIs as those used for ADC measurement.
All the parameters derived from DWI and DSC-PWI were measured by a neuroradiologist (Z.X. with 9 years of experience in brain imaging) who blinded to the tumor histology.

Statistical analysis

All quantitative parameters are presented as the means ± standard deviation (SD). A one-way ANOVA test was performed for the ADCmin, ADCmean and rCBVmax values with a Least Significant Difference (LSD) among groups. All P-values < 0.05 were considered to represent statistical significance. Statistical analysis was performed using SPSS software (Version 22.0, SPSS Inc., Chicago, USA) and MedCalc (Version 12.1.0, MedCalc Inc., Mariakierke, Belgium).

Results

There was a total of 68 patients with 95 lesions. Totally 73 lesions (single lesion in 36 cases and multiple lesions in 17 cases) underwent DSC-PWI and 82 lesions (single lesion in 37 cases and multiple lesions in 23 cases) underwent DWI. The clinical and cMRI characteristics were summarized in Table 1. Homogenous contrast-enhancement pattern and notch sign were non-specific observed in PCNSLs regardless of location.
Table 1
The main clinical and cMRI features of three groups of PCNSLs
 
CGM
WM
DGM
P
Sex (male/female)
15/17
7/15
9/5
.159
Age (year)
56.09 ± 9.8
57.96 ± 12.53
52.50 ± 13.83
.393
Contrast-enhancement pattern
   
.234
Homogeneous
29
30
19
 
Heterogeneous
10
5
2
 
Notch sign
   
.657
 Yes
33
31
17
 
 No
6
4
4
 
CGM Cortical gray matter; WM White matter; DGM Deep gray matter
Table 2 and Fig. 1 showed the results of rCBVmax, ADCmean and ADCmin for the three groups. A significant difference of rCBVmax was found among the three locations (P < 0.001). As shown in Figs. 1, 2, 3, 4, the rCBVmax values were lowest in WM and highest in CGM. However, ADCmin values of subgroup tumors were not significantly different (Fig. 1). In addition, ADCmean values of subgroup of the normal control were not significantly different (Fig. 1).
Table 2
Comparison of DWI and DSC-PWI variables among the three groups of PCNSLs, and DWI variables among the three groups of control group
 
CGM
WM
DGM
P
ADCmin
(10− 3 mm2/s)
0.61 ± 0.15
0.65 ± 0.15
0.57 ± 0.14
.169
ADCmean
(10− 3 mm2/s)
0.70 ± 0.03
0.69 ± 0.03
0.69 ± 0.02
.202
rCBVmax
2.55 ± 0.64
1.34 ± 0.46
1.87 ± 0.74
<.001
CGM Cortical gray matter; WM White matter; DGM Deep gray matter

Discussion

In our study, we present the evidence that rCBVmax values of PCNSLs are related to their locations. The CGM PCNSLs have the highest rCBVmax, and the WM tumors have the lowest rCBVmax. However, there were no significant differences among ADCmin values of PCNSLs with different locations.
The role of cMRI in the characterization of PCNSLs has been well established [21]. However, the cMRI features of PCNSLs (homogenous contrast-enhancement pattern and notch sign) at various sites are non-specific.
ADCmin values have been extensively used to investigate PCNSL and its prognosis [13, 22, 23]. Previous studies have shown a significant inverse correlation between tumor cell density and ADC value in PCNSLs, suggesting ADC to be a surrogate marker for tumor proliferation and Ki-67 index [2325]. Barajas et al. [11] reported that ADC measurements could predict clinical prognosis in patients with PCNSLs. The study indicated that lower ADC25% and ADCmin values were predictive of shorter progression-free survival (PFS) and overall survival (OS). Similarly, Valles et al. [26] found that both mean and minimum ADC values of PCNSLs have strong correlations with patients’ PFS and OS. However, as shown by Schob et al., proliferative activity revealed by ADC was not related to the location of PCNSLs [23]. In accordance with the previous study, our research demonstrated no correlations between ADCmin and the locations of PCNSLs. Meanwhile, our research also confirmed that there was no differences in ADCmean values between different locations of control group. Therefore, it is conceivable that DWI variables may not be varied among PCNSLs with different locations.
DSC-PWI has the potential to provide hemodynamic information about PCNSLs [2730]. In healthy subjects, the CGM structures have the highest blood volume, followed by DGM and WM [31]. PCNSLs represent unique angiocentric growth patterns, but lack abundant neoangiogenesis [1, 32, 33]. Thus, we can infer that the PCNSLs of CGM have the highest rCBV, followed by DGM and WM tumors. Our findings are in good agreement with such a theoretical hypothesis. PCNSLs are usually treated by high-dose methotrexate or radiation therapy [5, 34]. The response to initial methotrexate therapy is significantly associated with patient’s prognosis [35]. Clinicians could adjust the drug dose and initiate individualized second-line salvage therapies in chemotherapy-resistant patients, which may minimize neurological toxicity and improve prognosis [36]. It is commonly acknowledged that the delivery of the drug through the vascular system determines the response to chemotherapy [6]. Notably, Valles et al. [26] reported that rCBV value could be a valid imaging biomarker of clinical outcome: patients of PCNSLs with lower tumor rCBV values at pre-therapy baseline have significantly shorter PFS and OS compared with the control group. Therefore, we can also postulate that PCNSLs of CGM have the best chemotherapeutic response and clinical prognosis, followed by DWM and WM tumors. Location of PCNSLs could stratifies the patients into different risk groups to guide the methotrexate-based chemotherapy.
There are some potential limitations in our study. First, we did not verify the clinical prognostic factors of PCNSLs, although Valles et al. [26] confirmed that tumor rCBV values might be biomarkers of treatment response. A multicentered prospective investigation with long-term follow-up should be further studied to verify our speculation. Second, this retrospective study may lead to some biases in the case selection. Therefore, more extensive trials are needed to validate and establish expected datasets to refine current scores and establish new risk factors. Third, due to the lack of available tumor-tissue samples, we were unable to establish a point to point rCBVmax measurements associated with histopathological characteristics.

Conclusion

Our study confirms that the cerebral blood supplies of the PCNSLs are related to their locations. We present the first evidence of tumor location as a simple but effective prognostic indicator of PCNSLs. The PCNSLs of CGM may have the best prognosis, whereas tumors of WM may have the worst prognosis.

Acknowledgements

Not applicable.
This work has been carried out with ethics approval from the Fujian Medical University. The need for patient consent was waived.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Koeller KK, Smirniotopoulos JG, Jones RV. Primary central nervous system lymphoma: radiologic-pathologic correlation. Radiographics. 1997;17(6):1497–526.CrossRef Koeller KK, Smirniotopoulos JG, Jones RV. Primary central nervous system lymphoma: radiologic-pathologic correlation. Radiographics. 1997;17(6):1497–526.CrossRef
2.
Zurück zum Zitat McAllister LD, Doolittle ND, Guastadisegni PE, Kraemer DF, Lacy CA, Crossen JR, Neuwelt EA. Cognitive outcomes and long-term follow-up results after enhanced chemotherapy delivery for primary central nervous system lymphoma. Neurosurgery. 2000;46(1):51–60 discussion 60-51.CrossRef McAllister LD, Doolittle ND, Guastadisegni PE, Kraemer DF, Lacy CA, Crossen JR, Neuwelt EA. Cognitive outcomes and long-term follow-up results after enhanced chemotherapy delivery for primary central nervous system lymphoma. Neurosurgery. 2000;46(1):51–60 discussion 60-51.CrossRef
3.
Zurück zum Zitat Momota H, Narita Y, Maeshima AM, Miyakita Y, Shinomiya A, Maruyama T, Muragaki Y, Shibui S. Prognostic value of immunohistochemical profile and response to high-dose methotrexate therapy in primary CNS lymphoma. J Neuro-Oncol. 2010;98(3):341–8.CrossRef Momota H, Narita Y, Maeshima AM, Miyakita Y, Shinomiya A, Maruyama T, Muragaki Y, Shibui S. Prognostic value of immunohistochemical profile and response to high-dose methotrexate therapy in primary CNS lymphoma. J Neuro-Oncol. 2010;98(3):341–8.CrossRef
4.
Zurück zum Zitat Holdhoff M, Ambady P, Abdelaziz A, Sarai G, Bonekamp D, Blakeley J, Grossman SA, Ye X. High-dose methotrexate with or without rituximab in newly diagnosed primary CNS lymphoma. Neurology. 2014;83(3):235–9.CrossRef Holdhoff M, Ambady P, Abdelaziz A, Sarai G, Bonekamp D, Blakeley J, Grossman SA, Ye X. High-dose methotrexate with or without rituximab in newly diagnosed primary CNS lymphoma. Neurology. 2014;83(3):235–9.CrossRef
5.
Zurück zum Zitat Kansara R, Shenkier TN, Connors JM, Sehn LH, Savage KJ, Gerrie AS, Villa D. Rituximab with high-dose methotrexate in primary central nervous system lymphoma. Am J Hematol. 2015;90(12):1149–54.CrossRef Kansara R, Shenkier TN, Connors JM, Sehn LH, Savage KJ, Gerrie AS, Villa D. Rituximab with high-dose methotrexate in primary central nervous system lymphoma. Am J Hematol. 2015;90(12):1149–54.CrossRef
6.
Zurück zum Zitat Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 2011;91(3):1071–121.CrossRef Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 2011;91(3):1071–121.CrossRef
7.
Zurück zum Zitat Rubenstein JL, Fridlyand J, Shen A, Aldape K, Ginzinger D, Batchelor T, Treseler P, Berger M, McDermott M, Prados M, et al. Gene expression and angiotropism in primary CNS lymphoma. Blood. 2006;107(9):3716–23.CrossRef Rubenstein JL, Fridlyand J, Shen A, Aldape K, Ginzinger D, Batchelor T, Treseler P, Berger M, McDermott M, Prados M, et al. Gene expression and angiotropism in primary CNS lymphoma. Blood. 2006;107(9):3716–23.CrossRef
8.
Zurück zum Zitat Rubenstein JL, Shen A, Batchelor TT, Kadoch C, Treseler P, Shuman MA. Differential gene expression in central nervous system lymphoma. Blood. 2009;113(1):266–7 author reply 267-268.CrossRef Rubenstein JL, Shen A, Batchelor TT, Kadoch C, Treseler P, Shuman MA. Differential gene expression in central nervous system lymphoma. Blood. 2009;113(1):266–7 author reply 267-268.CrossRef
9.
Zurück zum Zitat Kang Y, Choi SH, Kim YJ, Kim KG, Sohn CH, Kim JH, Yun TJ, Chang KH. Gliomas: histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging--correlation with tumor grade. Radiology. 2011;261(3):882–90.CrossRef Kang Y, Choi SH, Kim YJ, Kim KG, Sohn CH, Kim JH, Yun TJ, Chang KH. Gliomas: histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging--correlation with tumor grade. Radiology. 2011;261(3):882–90.CrossRef
10.
Zurück zum Zitat Yan R, Haopeng P, Xiaoyuan F, Jinsong W, Jiawen Z, Chengjun Y, Tianming Q, Ji X, Mao S, Yueyue D, et al. Non-Gaussian diffusion MR imaging of glioma: comparisons of multiple diffusion parameters and correlation with histologic grade and MIB-1 (Ki-67 labeling) index. Neuroradiology. 2016;58(2):121–32.CrossRef Yan R, Haopeng P, Xiaoyuan F, Jinsong W, Jiawen Z, Chengjun Y, Tianming Q, Ji X, Mao S, Yueyue D, et al. Non-Gaussian diffusion MR imaging of glioma: comparisons of multiple diffusion parameters and correlation with histologic grade and MIB-1 (Ki-67 labeling) index. Neuroradiology. 2016;58(2):121–32.CrossRef
11.
Zurück zum Zitat Barajas RF Jr, Rubenstein JL, Chang JS, Hwang J, Cha S. Diffusion-weighted MR imaging derived apparent diffusion coefficient is predictive of clinical outcome in primary central nervous system lymphoma. AJNR Am J Neuroradiol. 2010;31(1):60–6.CrossRef Barajas RF Jr, Rubenstein JL, Chang JS, Hwang J, Cha S. Diffusion-weighted MR imaging derived apparent diffusion coefficient is predictive of clinical outcome in primary central nervous system lymphoma. AJNR Am J Neuroradiol. 2010;31(1):60–6.CrossRef
12.
Zurück zum Zitat Zhang Y, Zhang Q, Wang XX, Deng XF, Zhu YZ. Value of pretherapeutic DWI in evaluating prognosis and therapeutic effect in immunocompetent patients with primary central nervous system lymphoma given high-dose methotrexate-based chemotherapy: ADC-based assessment. Clin Radiol. 2016;71(10):1018–29.CrossRef Zhang Y, Zhang Q, Wang XX, Deng XF, Zhu YZ. Value of pretherapeutic DWI in evaluating prognosis and therapeutic effect in immunocompetent patients with primary central nervous system lymphoma given high-dose methotrexate-based chemotherapy: ADC-based assessment. Clin Radiol. 2016;71(10):1018–29.CrossRef
13.
Zurück zum Zitat Huang WY, Wen JB, Wu G, Yin B, Li JJ, Geng DY. Diffusion-weighted imaging for predicting and monitoring primary central nervous system lymphoma treatment response. AJNR Am J Neuroradiol. 2016;37(11):2010–8.CrossRef Huang WY, Wen JB, Wu G, Yin B, Li JJ, Geng DY. Diffusion-weighted imaging for predicting and monitoring primary central nervous system lymphoma treatment response. AJNR Am J Neuroradiol. 2016;37(11):2010–8.CrossRef
14.
Zurück zum Zitat Nagesh V, Chenevert TL, Tsien CI, Ross BD, Lawrence TS, Junck L, Cao Y. Quantitative characterization of hemodynamic properties and vasculature dysfunction of high-grade gliomas. NMR Biomed. 2007;20(6):566–77.CrossRef Nagesh V, Chenevert TL, Tsien CI, Ross BD, Lawrence TS, Junck L, Cao Y. Quantitative characterization of hemodynamic properties and vasculature dysfunction of high-grade gliomas. NMR Biomed. 2007;20(6):566–77.CrossRef
15.
Zurück zum Zitat Seeger A, Braun C, Skardelly M, Paulsen F, Schittenhelm J, Ernemann U, Bisdas S. Comparison of three different MR perfusion techniques and MR spectroscopy for multiparametric assessment in distinguishing recurrent high-grade gliomas from stable disease. Acad Radiol. 2013;20(12):1557–65.CrossRef Seeger A, Braun C, Skardelly M, Paulsen F, Schittenhelm J, Ernemann U, Bisdas S. Comparison of three different MR perfusion techniques and MR spectroscopy for multiparametric assessment in distinguishing recurrent high-grade gliomas from stable disease. Acad Radiol. 2013;20(12):1557–65.CrossRef
16.
Zurück zum Zitat Barajas RF Jr, Phillips JJ, Vandenberg SR, McDermott MW, Berger MS, Dillon WP, Cha S. Pro-angiogenic cellular and genomic expression patterns within glioblastoma influences dynamic susceptibility weighted perfusion MRI. Clin Radiol. 2015;70(10):1087–95.CrossRef Barajas RF Jr, Phillips JJ, Vandenberg SR, McDermott MW, Berger MS, Dillon WP, Cha S. Pro-angiogenic cellular and genomic expression patterns within glioblastoma influences dynamic susceptibility weighted perfusion MRI. Clin Radiol. 2015;70(10):1087–95.CrossRef
17.
Zurück zum Zitat Cha S. Perfusion MR imaging: basic principles and clinical applications. Magn Reson Imaging Clin N Am. 2003;11(3):403–13.CrossRef Cha S. Perfusion MR imaging: basic principles and clinical applications. Magn Reson Imaging Clin N Am. 2003;11(3):403–13.CrossRef
18.
Zurück zum Zitat Bjornerud A, Sorensen AG, Mouridsen K, Emblem KE. T1- and T2*-dominant extravasation correction in DSC-MRI: part I--theoretical considerations and implications for assessment of tumor hemodynamic properties. J Cereb Blood Flow Metab. 2011;31(10):2041–53.CrossRef Bjornerud A, Sorensen AG, Mouridsen K, Emblem KE. T1- and T2*-dominant extravasation correction in DSC-MRI: part I--theoretical considerations and implications for assessment of tumor hemodynamic properties. J Cereb Blood Flow Metab. 2011;31(10):2041–53.CrossRef
19.
Zurück zum Zitat Ginat DT, Mangla R, Yeaney G, Schaefer PW, Wang H. Correlation between dynamic contrast-enhanced perfusion MRI relative cerebral blood volume and vascular endothelial growth factor expression in meningiomas. Acad Radiol. 2012;19(8):986–90.CrossRef Ginat DT, Mangla R, Yeaney G, Schaefer PW, Wang H. Correlation between dynamic contrast-enhanced perfusion MRI relative cerebral blood volume and vascular endothelial growth factor expression in meningiomas. Acad Radiol. 2012;19(8):986–90.CrossRef
20.
Zurück zum Zitat Ho CY, Cardinal JS, Kamer AP, Kralik SF. Relative cerebral blood volume from dynamic susceptibility contrast perfusion in the grading of pediatric primary brain tumors. Neuroradiology. 2015;57(3):299–306.CrossRef Ho CY, Cardinal JS, Kamer AP, Kralik SF. Relative cerebral blood volume from dynamic susceptibility contrast perfusion in the grading of pediatric primary brain tumors. Neuroradiology. 2015;57(3):299–306.CrossRef
21.
Zurück zum Zitat Zhang D, Hu LB, Henning TD, Ravarani EM, Zou LG, Feng XY, Wang WX, Wen L. MRI findings of primary CNS lymphoma in 26 immunocompetent patients. Korean J Radiol. 2010;11(3):269–77.CrossRef Zhang D, Hu LB, Henning TD, Ravarani EM, Zou LG, Feng XY, Wang WX, Wen L. MRI findings of primary CNS lymphoma in 26 immunocompetent patients. Korean J Radiol. 2010;11(3):269–77.CrossRef
22.
Zurück zum Zitat Lu SS, Kim SJ, Kim N, Kim HS, Choi CG, Lim YM. Histogram analysis of apparent diffusion coefficient maps for differentiating primary CNS lymphomas from tumefactive demyelinating lesions. AJR Am J Roentgenol. 2015;204(4):827–34.CrossRef Lu SS, Kim SJ, Kim N, Kim HS, Choi CG, Lim YM. Histogram analysis of apparent diffusion coefficient maps for differentiating primary CNS lymphomas from tumefactive demyelinating lesions. AJR Am J Roentgenol. 2015;204(4):827–34.CrossRef
23.
Zurück zum Zitat Schob S, Meyer J, Gawlitza M, Frydrychowicz C, Müller W, Preuss M, Bure L, Quäschling U, Hoffmann KT, Surov A. Diffusion-weighted MRI reflects proliferative activity in primary CNS lymphoma. PLoS One. 2016;11(8):e0161386.CrossRef Schob S, Meyer J, Gawlitza M, Frydrychowicz C, Müller W, Preuss M, Bure L, Quäschling U, Hoffmann KT, Surov A. Diffusion-weighted MRI reflects proliferative activity in primary CNS lymphoma. PLoS One. 2016;11(8):e0161386.CrossRef
24.
Zurück zum Zitat Surov A, Gottschling S, Mawrin C, Prell J, Spielmann RP, Wienke A, Fiedler E. Diffusion-weighted imaging in meningioma: prediction of tumor grade and association with Histopathological parameters. Transl Oncol. 2015;8(6):517–23.CrossRef Surov A, Gottschling S, Mawrin C, Prell J, Spielmann RP, Wienke A, Fiedler E. Diffusion-weighted imaging in meningioma: prediction of tumor grade and association with Histopathological parameters. Transl Oncol. 2015;8(6):517–23.CrossRef
25.
Zurück zum Zitat Schob S, Meyer HJ, Dieckow J, Pervinder B, Pazaitis N, Höhn AK, Garnov N, Horvath-Rizea D, Hoffmann KT, Surov A. Histogram Analysis of Diffusion Weighted Imaging at 3T is Useful for Prediction of Lymphatic Metastatic Spread, Proliferative Activity, and Cellularity in Thyroid Cancer. Int J Mol Sci. 2017;18(4):821. Schob S, Meyer HJ, Dieckow J, Pervinder B, Pazaitis N, Höhn AK, Garnov N, Horvath-Rizea D, Hoffmann KT, Surov A. Histogram Analysis of Diffusion Weighted Imaging at 3T is Useful for Prediction of Lymphatic Metastatic Spread, Proliferative Activity, and Cellularity in Thyroid Cancer. Int J Mol Sci. 2017;18(4):821.
26.
Zurück zum Zitat Valles FE, Perez-Valles CL, Regalado S, Barajas RF, Rubenstein JL, Cha S. Combined diffusion and perfusion MR imaging as biomarkers of prognosis in immunocompetent patients with primary central nervous system lymphoma. AJNR Am J Neuroradiol. 2013;34(1):35–40.CrossRef Valles FE, Perez-Valles CL, Regalado S, Barajas RF, Rubenstein JL, Cha S. Combined diffusion and perfusion MR imaging as biomarkers of prognosis in immunocompetent patients with primary central nervous system lymphoma. AJNR Am J Neuroradiol. 2013;34(1):35–40.CrossRef
27.
Zurück zum Zitat Goyal P, Kumar Y, Gupta N, Malhotra A, Gupta S, Gupta S, Mangla M, Mangla R. Usefulness of enhancement-perfusion mismatch in differentiation of CNS lymphomas from other enhancing malignant tumors of the brain. Quant Imaging Med Surg. 2017;7(5):511–9.CrossRef Goyal P, Kumar Y, Gupta N, Malhotra A, Gupta S, Gupta S, Mangla M, Mangla R. Usefulness of enhancement-perfusion mismatch in differentiation of CNS lymphomas from other enhancing malignant tumors of the brain. Quant Imaging Med Surg. 2017;7(5):511–9.CrossRef
28.
Zurück zum Zitat Nakajima S, Okada T, Yamamoto A, Kanagaki M, Fushimi Y, Okada T, Arakawa Y, Takagi Y, Miyamoto S, Togashi K. Differentiation between primary central nervous system lymphoma and glioblastoma: a comparative study of parameters derived from dynamic susceptibility contrast-enhanced perfusion-weighted MRI. Clin Radiol. 2015;70(12):1393–9.CrossRef Nakajima S, Okada T, Yamamoto A, Kanagaki M, Fushimi Y, Okada T, Arakawa Y, Takagi Y, Miyamoto S, Togashi K. Differentiation between primary central nervous system lymphoma and glioblastoma: a comparative study of parameters derived from dynamic susceptibility contrast-enhanced perfusion-weighted MRI. Clin Radiol. 2015;70(12):1393–9.CrossRef
29.
Zurück zum Zitat Xing Z, You RX, Li J, Liu Y, Cao DR. Differentiation of primary central nervous system lymphomas from high-grade gliomas by rCBV and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Clin Neuroradiol. 2014;24(4):329–36.CrossRef Xing Z, You RX, Li J, Liu Y, Cao DR. Differentiation of primary central nervous system lymphomas from high-grade gliomas by rCBV and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Clin Neuroradiol. 2014;24(4):329–36.CrossRef
30.
Zurück zum Zitat Toh CH, Wei KC, Chang CN, Ng SH, Wong HF. Differentiation of primary central nervous system lymphomas and glioblastomas: comparisons of diagnostic performance of dynamic susceptibility contrast-enhanced perfusion MR imaging without and with contrast-leakage correction. AJNR Am J Neuroradiol. 2013;34(6):1145–9.CrossRef Toh CH, Wei KC, Chang CN, Ng SH, Wong HF. Differentiation of primary central nervous system lymphomas and glioblastomas: comparisons of diagnostic performance of dynamic susceptibility contrast-enhanced perfusion MR imaging without and with contrast-leakage correction. AJNR Am J Neuroradiol. 2013;34(6):1145–9.CrossRef
31.
Zurück zum Zitat Kuppusamy K, Lin W, Cizek GR, Haacke EM. In vivo regional cerebral blood volume: quantitative assessment with 3D T1-weighted pre- and postcontrast MR imaging. Radiology. 1996;201(1):106–12.CrossRef Kuppusamy K, Lin W, Cizek GR, Haacke EM. In vivo regional cerebral blood volume: quantitative assessment with 3D T1-weighted pre- and postcontrast MR imaging. Radiology. 1996;201(1):106–12.CrossRef
32.
Zurück zum Zitat Ferreri AJ, Marturano E. Primary CNS lymphoma. Best Pract Res Clin Haematol. 2012;25(1):119–30.CrossRef Ferreri AJ, Marturano E. Primary CNS lymphoma. Best Pract Res Clin Haematol. 2012;25(1):119–30.CrossRef
33.
Zurück zum Zitat Kadoch C, Treseler P, Rubenstein JL. Molecular pathogenesis of primary central nervous system lymphoma. Neurosurg Focus. 2006;21(5):E1.CrossRef Kadoch C, Treseler P, Rubenstein JL. Molecular pathogenesis of primary central nervous system lymphoma. Neurosurg Focus. 2006;21(5):E1.CrossRef
34.
Zurück zum Zitat Soussain C, Hoang-Xuan K, Taillandier L, Fourme E, Choquet S, Witz F, Casasnovas O, Dupriez B, Souleau B, Taksin AL, et al. Intensive chemotherapy followed by hematopoietic stem-cell rescue for refractory and recurrent primary CNS and intraocular lymphoma: Societe Francaise de Greffe de Moelle Osseuse-Therapie Cellulaire. J Clin Oncol. 2008;26(15):2512–8.CrossRef Soussain C, Hoang-Xuan K, Taillandier L, Fourme E, Choquet S, Witz F, Casasnovas O, Dupriez B, Souleau B, Taksin AL, et al. Intensive chemotherapy followed by hematopoietic stem-cell rescue for refractory and recurrent primary CNS and intraocular lymphoma: Societe Francaise de Greffe de Moelle Osseuse-Therapie Cellulaire. J Clin Oncol. 2008;26(15):2512–8.CrossRef
35.
Zurück zum Zitat Chung SR, Choi YJ, Kim HS, Park JE, Shim WH, Kim SJ. Tumor vascular permeability pattern is associated with complete response in Immunocompetent patients with newly diagnosed primary central nervous system lymphoma: retrospective cohort study. Medicine. 2016;95(6):e2624.CrossRef Chung SR, Choi YJ, Kim HS, Park JE, Shim WH, Kim SJ. Tumor vascular permeability pattern is associated with complete response in Immunocompetent patients with newly diagnosed primary central nervous system lymphoma: retrospective cohort study. Medicine. 2016;95(6):e2624.CrossRef
36.
Zurück zum Zitat Jahnke K, Doolittle ND, Muldoon LL, Neuwelt EA. Implications of the blood-brain barrier in primary central nervous system lymphoma. Neurosurg Focus. 2006;21(5):E11.CrossRef Jahnke K, Doolittle ND, Muldoon LL, Neuwelt EA. Implications of the blood-brain barrier in primary central nervous system lymphoma. Neurosurg Focus. 2006;21(5):E11.CrossRef
Metadaten
Titel
Performance of diffusion and perfusion MRI in evaluating primary central nervous system lymphomas of different locations
verfasst von
Zhen Xing
Nannan Kang
Yu Lin
Xiaofang Zhou
Zebin Xiao
Dairong Cao
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Medical Imaging / Ausgabe 1/2020
Elektronische ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-020-00462-7

Weitere Artikel der Ausgabe 1/2020

BMC Medical Imaging 1/2020 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.