Skip to main content
Erschienen in: Acta Neurologica Belgica 1/2020

17.07.2018 | Original Article

Personalized image-based tumor growth prediction in a convection–diffusion–reaction model

verfasst von: Nargess Meghdadi, M. Soltani, Hanieh Niroomand-Oscuii, Nooshin Yamani

Erschienen in: Acta Neurologica Belgica | Ausgabe 1/2020

Einloggen, um Zugang zu erhalten

Abstract

Inter-individual heterogeneity of tumors leads to non-effectiveness of unique therapy plans. This issue has caused a growing interest in the field of personalized medicine and its application in tumor growth evaluation. Accordingly, in this paper, a framework of personalized medicine is presented for growth prediction of brain glioma tumors. A convection–diffusion–reaction model is used as the patient-specific tumor growth model which is associated with multimodal magnetic resonance images (MRIs). Two parameters of intracellular area fraction (ICAF) and metabolic rate have been used to incorporate the physiological data obtained from medical images into the model. The framework is tested on the data of two cases of glioma tumors to document the approach; parameter estimation is made using particle swarm optimization (PSO) and genetic algorithm (GA) and the model is evaluated by comparing the predicted tumors with the observed tumors in terms of root mean square error of the ICAF maps (IRMSE), relative area difference (RAD) and Dice’s coefficient (DC). Results show the differences of IRMSE, RAD and DC in 4.1 ∓ 1.15%, 0.099 ∓ 0.041 and 85.5 ∓ 7.5%, respectively. Survival times are estimated by assuming the tumor radius of 35 mm as the fatal burden. Results confirm that less-diffusive tumors lead to higher survival times. The represented framework makes it possible to personally predict the growth behavior of glioma tumors only based on patients’ routine MRIs and provides a basis for modeling the personalized therapy and walking in the path of personalized medicine.
Literatur
1.
Zurück zum Zitat Meghdadi N, Niroomand-Oscuii H, Soltani M, Ghalichi F, Pourgolmohammad M (2017) Brain tumor growth simulation: model validation through uncertainty quantification. Int J Syst Assur Eng Manag 8:655–662CrossRef Meghdadi N, Niroomand-Oscuii H, Soltani M, Ghalichi F, Pourgolmohammad M (2017) Brain tumor growth simulation: model validation through uncertainty quantification. Int J Syst Assur Eng Manag 8:655–662CrossRef
2.
Zurück zum Zitat Wong KCL, Summers RM, Kebebew E, Yao J (2015) Tumor growth prediction with reaction-diffusion and hyperelastic biomechanical model by physiological data fusion. Med Image Anal 25:1–14CrossRef Wong KCL, Summers RM, Kebebew E, Yao J (2015) Tumor growth prediction with reaction-diffusion and hyperelastic biomechanical model by physiological data fusion. Med Image Anal 25:1–14CrossRef
4.
Zurück zum Zitat Deisboeck TS, Wang Z, Macklin P, Cristini V (2011) Multiscale cancer modeling. Anl Rev Biomed Eng 13:10–29 Deisboeck TS, Wang Z, Macklin P, Cristini V (2011) Multiscale cancer modeling. Anl Rev Biomed Eng 13:10–29
5.
Zurück zum Zitat Sefidgar M, Bazmara H, Bazargan M, Mousavi Naeenian M, Soltani M (2014) A simultaneously solution of interstitial fluid flow in tumor tissue and blood flow in remodeled microvascular network induced by tumor. Modares Mech Eng 14:1–9 Sefidgar M, Bazmara H, Bazargan M, Mousavi Naeenian M, Soltani M (2014) A simultaneously solution of interstitial fluid flow in tumor tissue and blood flow in remodeled microvascular network induced by tumor. Modares Mech Eng 14:1–9
6.
Zurück zum Zitat Sefidgar M, Soltani M, Raahemifar K, Sadeghi M, Bazmara H, Bazargan M, Mousavi Naeenian M (2015) Numerical modeling of drug delivery in a dynamic solid tumor microvasculature. Microvasc Res 99:43–56PubMedCrossRef Sefidgar M, Soltani M, Raahemifar K, Sadeghi M, Bazmara H, Bazargan M, Mousavi Naeenian M (2015) Numerical modeling of drug delivery in a dynamic solid tumor microvasculature. Microvasc Res 99:43–56PubMedCrossRef
8.
Zurück zum Zitat Soltani M, Chen P (2012) Effect of tumor shape and size on drug delivery to solid tumors. J Biol Eng 6:1–15CrossRef Soltani M, Chen P (2012) Effect of tumor shape and size on drug delivery to solid tumors. J Biol Eng 6:1–15CrossRef
9.
Zurück zum Zitat Soltani M, Chen P (2013) Numerical modeling of interstitial fluid flow coupled with blood flow through a remodeled solid tumor microvascular network. PLoS One 8:e67025PubMedPubMedCentralCrossRef Soltani M, Chen P (2013) Numerical modeling of interstitial fluid flow coupled with blood flow through a remodeled solid tumor microvascular network. PLoS One 8:e67025PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Sefidgar M, Soltani M, Raahemifar K, Bazmara H, Mousavi Naeenian M, Bazargan M (2014) Effect of tumor shape, size, and tissue transport properties on drug delivery to solid tumors. J Biol Eng 8:12PubMedPubMedCentralCrossRef Sefidgar M, Soltani M, Raahemifar K, Bazmara H, Mousavi Naeenian M, Bazargan M (2014) Effect of tumor shape, size, and tissue transport properties on drug delivery to solid tumors. J Biol Eng 8:12PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Zhang Z, Xu J, Hong B, Chen X (2014) The effects of 3D channel geometry on CTC passing pressure-towards deformability-based cancer cell separation. Lab Chip 14:2576–2584PubMedCrossRef Zhang Z, Xu J, Hong B, Chen X (2014) The effects of 3D channel geometry on CTC passing pressure-towards deformability-based cancer cell separation. Lab Chip 14:2576–2584PubMedCrossRef
12.
Zurück zum Zitat Zhang Z, Chen X, Xu J (2015) Entry effects of droplet in a micro confinement: Implications for deformation-based circulating tumor cell microfiltration. Biomicrofluidics 9:15–18 Zhang Z, Chen X, Xu J (2015) Entry effects of droplet in a micro confinement: Implications for deformation-based circulating tumor cell microfiltration. Biomicrofluidics 9:15–18
13.
Zurück zum Zitat Zacharaki EI, Hogea CS, Biros G, Davatzikos C (2008) A comparative study of biomechanical simulators in deformable registration of brain tumor images. IEEE Trans Biomed Eng 55:1233–1236PubMedPubMedCentralCrossRef Zacharaki EI, Hogea CS, Biros G, Davatzikos C (2008) A comparative study of biomechanical simulators in deformable registration of brain tumor images. IEEE Trans Biomed Eng 55:1233–1236PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Mohamed A, Davatzikos C (2005) Finite element modeling of brain tumor mass-effect from 3D medical images. Med Image Comput Comput Assist Interv 8:400–408PubMed Mohamed A, Davatzikos C (2005) Finite element modeling of brain tumor mass-effect from 3D medical images. Med Image Comput Comput Assist Interv 8:400–408PubMed
15.
Zurück zum Zitat Hogea C, Davatzikos C, Biros G (2008) An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J Math Biol 56:793–825PubMedCrossRef Hogea C, Davatzikos C, Biros G (2008) An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J Math Biol 56:793–825PubMedCrossRef
16.
Zurück zum Zitat Liu Y, Sadowski SM, Weisbrod AB, Kebebew E, Summers RM, Yao J (2014) Patient specific tumor growth prediction using multimodal images. Med Image Anal 18:555–566PubMedPubMedCentralCrossRef Liu Y, Sadowski SM, Weisbrod AB, Kebebew E, Summers RM, Yao J (2014) Patient specific tumor growth prediction using multimodal images. Med Image Anal 18:555–566PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Chen X, Summers RM, Yao J (2013) Kidney tumor growth prediction by coupling reaction—diffusion and biomechanical model. IEEE Trans Med Imaging 60:169–173 Chen X, Summers RM, Yao J (2013) Kidney tumor growth prediction by coupling reaction—diffusion and biomechanical model. IEEE Trans Med Imaging 60:169–173
18.
Zurück zum Zitat Liu Y, Sadowski SM, Weisbrod AB, Kebebew E, Summers RM, Yao J (2013) Tumor growth modeling based on Dual Phase CT and FDG-PET. IEEE 10th Int Symp Biomed Imaging 1:394–397 Liu Y, Sadowski SM, Weisbrod AB, Kebebew E, Summers RM, Yao J (2013) Tumor growth modeling based on Dual Phase CT and FDG-PET. IEEE 10th Int Symp Biomed Imaging 1:394–397
19.
Zurück zum Zitat Swanson KR (2008) Quantifying glioma cell growth and invasion in vitro. Math Comput Model 47:638–648CrossRef Swanson KR (2008) Quantifying glioma cell growth and invasion in vitro. Math Comput Model 47:638–648CrossRef
20.
Zurück zum Zitat Konukoglu E, Clatz O, Menze BH, Stieltjes B, Weber M, Mandonnet E, Delingette H, Ayache N (2010) Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans Med Imaging 29:77–95PubMedCrossRef Konukoglu E, Clatz O, Menze BH, Stieltjes B, Weber M, Mandonnet E, Delingette H, Ayache N (2010) Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans Med Imaging 29:77–95PubMedCrossRef
21.
Zurück zum Zitat Soltani M (2013) Numerical modeling of drug delivery to solid tumor microvasculature. PhD Thesis, University of Waterloo Soltani M (2013) Numerical modeling of drug delivery to solid tumor microvasculature. PhD Thesis, University of Waterloo
22.
Zurück zum Zitat Baldock A, Ahn S, Rockne R, Neal M, Corwin D, Clark-Swanson K, Sterin G, Trister AD, Malone H, Ebiana V, Sonabend AM, Mrugala M, Rockhill JK, Silbergeld DL, Lai A, Cloughesy T, McKhann GM, Bruce JN, Rostomily R, Canoll P, Swanson KR (2014) Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas. PLoS One 9:e99057PubMedPubMedCentralCrossRef Baldock A, Ahn S, Rockne R, Neal M, Corwin D, Clark-Swanson K, Sterin G, Trister AD, Malone H, Ebiana V, Sonabend AM, Mrugala M, Rockhill JK, Silbergeld DL, Lai A, Cloughesy T, McKhann GM, Bruce JN, Rostomily R, Canoll P, Swanson KR (2014) Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas. PLoS One 9:e99057PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Rockne R, Rockhill JK, Mrugala M, Spence AM, Kalet I, Hendrickson K, Lai A, Cloughesy T, Alvord EC, Swanson KR (2010) Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys Med Biol 55:3271–3285PubMedPubMedCentralCrossRef Rockne R, Rockhill JK, Mrugala M, Spence AM, Kalet I, Hendrickson K, Lai A, Cloughesy T, Alvord EC, Swanson KR (2010) Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys Med Biol 55:3271–3285PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Swanson KR, Alvord EC, Murray JD (2002) Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br J Cancer 86:14–18PubMedPubMedCentralCrossRef Swanson KR, Alvord EC, Murray JD (2002) Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br J Cancer 86:14–18PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Swanson KR, Rostomily RC, Alvord EC (2008) A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br J Cancer 98:113–119PubMedCrossRef Swanson KR, Rostomily RC, Alvord EC (2008) A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br J Cancer 98:113–119PubMedCrossRef
26.
Zurück zum Zitat Rockne RC, Trister AD, Jacobs J, Neal ML, Hendrickson K, Mrugala MM, Rockhill JK, Kinahan P, Krohn AK, Swanson KR (2015) A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using 18 F-FMISO-PET. J R Soc Interface 12:20141174PubMedPubMedCentralCrossRef Rockne RC, Trister AD, Jacobs J, Neal ML, Hendrickson K, Mrugala MM, Rockhill JK, Kinahan P, Krohn AK, Swanson KR (2015) A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using 18 F-FMISO-PET. J R Soc Interface 12:20141174PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat West GB, Brown JH, Enquist BJ (2001) A general model for ontogenetic growth. Nature 413:628–631PubMedCrossRef West GB, Brown JH, Enquist BJ (2001) A general model for ontogenetic growth. Nature 413:628–631PubMedCrossRef
28.
Zurück zum Zitat Meghdadi N, Soltani M, Niroomand-Oscuii H, Ghalichi F (2016) Image based modeling of tumor growth. Australas Phys Eng Sci Med 39:601–613PubMedCrossRef Meghdadi N, Soltani M, Niroomand-Oscuii H, Ghalichi F (2016) Image based modeling of tumor growth. Australas Phys Eng Sci Med 39:601–613PubMedCrossRef
29.
30.
Zurück zum Zitat D’Souza MM, Sharma R, Tripathi M, Panwar P, Jaimini A, Mondal A (2011) Novel positron emission tomography radiotracers in brain tumor imaging. Indian J Radiol Imaging 21:202–208PubMedPubMedCentralCrossRef D’Souza MM, Sharma R, Tripathi M, Panwar P, Jaimini A, Mondal A (2011) Novel positron emission tomography radiotracers in brain tumor imaging. Indian J Radiol Imaging 21:202–208PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Gatenby RA, Gawlinski ET (1996) A reaction-diffusion model of cancer invasion. Cancer Res 56:5745–5753PubMed Gatenby RA, Gawlinski ET (1996) A reaction-diffusion model of cancer invasion. Cancer Res 56:5745–5753PubMed
33.
Zurück zum Zitat Swanson KR, Bridge C, Murray JD, Alvord EC (2003) Virtual and real brain tumors: Using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci 216:1–10PubMedCrossRef Swanson KR, Bridge C, Murray JD, Alvord EC (2003) Virtual and real brain tumors: Using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci 216:1–10PubMedCrossRef
34.
Zurück zum Zitat Chakrabarty SP, Hanson FB (2005) Optimal control of drug delivery to brain tumors for a test of PDE driven models using the Galerkin finite element method. Proc 44th IEEE Conf Decis Control 1:1613–1618 Chakrabarty SP, Hanson FB (2005) Optimal control of drug delivery to brain tumors for a test of PDE driven models using the Galerkin finite element method. Proc 44th IEEE Conf Decis Control 1:1613–1618
35.
Zurück zum Zitat Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16:641–647CrossRef Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16:641–647CrossRef
36.
Zurück zum Zitat Rueckert D, Sonoda LI, Denton ERE, Rankin S, Hayes C, Leach MO, Hill DL, Hawkes DJ (1999) Comparison and evaluation of rigid, affine and nonrigid registration of breast MR images. J Comput Assist Tomogr 23:800–805PubMedCrossRef Rueckert D, Sonoda LI, Denton ERE, Rankin S, Hayes C, Leach MO, Hill DL, Hawkes DJ (1999) Comparison and evaluation of rigid, affine and nonrigid registration of breast MR images. J Comput Assist Tomogr 23:800–805PubMedCrossRef
37.
Zurück zum Zitat Madelin G, Kline R, Walvick R, Regatte RR (2015) A method for estimating intracellular sodium concentration and extracellular volume fraction in brain in vivo using sodium magnetic resonance imaging. Sci Rep 4:p4763CrossRef Madelin G, Kline R, Walvick R, Regatte RR (2015) A method for estimating intracellular sodium concentration and extracellular volume fraction in brain in vivo using sodium magnetic resonance imaging. Sci Rep 4:p4763CrossRef
38.
Zurück zum Zitat Kellman P, Wilson JR, Xue H, Ugander M, Arai AE (2012) Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 14:63–74PubMedPubMedCentralCrossRef Kellman P, Wilson JR, Xue H, Ugander M, Arai AE (2012) Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 14:63–74PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Fanea L, Sfrangeu SA (2011) Relaxation times mapping using magnetic resonance imaging. Rom Rep Phys 63:456–464 Fanea L, Sfrangeu SA (2011) Relaxation times mapping using magnetic resonance imaging. Rom Rep Phys 63:456–464
40.
Zurück zum Zitat Epstein T, Gatenby RA, Brown JS (2017) The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand. PLoS One 12:e0185085, 2017PubMedPubMedCentralCrossRef Epstein T, Gatenby RA, Brown JS (2017) The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand. PLoS One 12:e0185085, 2017PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Guzman G, Rodriguez D, Miller MT (2017) Comparison of FDG-18 uptake and ADC values in thyroid cancer. Clin Radiol Imaging J 1:102–107CrossRef Guzman G, Rodriguez D, Miller MT (2017) Comparison of FDG-18 uptake and ADC values in thyroid cancer. Clin Radiol Imaging J 1:102–107CrossRef
42.
Zurück zum Zitat Yu X, Lee EYP, Lai V, Chan Q (2014) Correlation between tissue metabolism and cellularity assessed by standardized uptake value and apparent diffusion coefficient in peritoneal metastasis. J Magn Reson Imaging 40:99–105PubMedCrossRef Yu X, Lee EYP, Lai V, Chan Q (2014) Correlation between tissue metabolism and cellularity assessed by standardized uptake value and apparent diffusion coefficient in peritoneal metastasis. J Magn Reson Imaging 40:99–105PubMedCrossRef
43.
Zurück zum Zitat Holodny AI, Makeyev S, Beattie BJ, Riad S, Blasberg RG (2010) Apparent diffusion coefficient of glial neoplasms: correlation with fluorodeoxyglucose—Positron-emission tomography and gadolinium-enhanced MR imaging. Am J Neuroradiol 31:1042–1048PubMedCrossRefPubMedCentral Holodny AI, Makeyev S, Beattie BJ, Riad S, Blasberg RG (2010) Apparent diffusion coefficient of glial neoplasms: correlation with fluorodeoxyglucose—Positron-emission tomography and gadolinium-enhanced MR imaging. Am J Neuroradiol 31:1042–1048PubMedCrossRefPubMedCentral
44.
Zurück zum Zitat Surov A, Meyer HJ, Schob S, Höhn AK, Bremicker K, Exner M, Stumpp P, Purz S (2017) Parameters of simultaneous F-FDG-PET/MRI predict tumor stage and several histopathological features in uterine cervical cancer. Oncotarget 8:28285PubMedPubMedCentral Surov A, Meyer HJ, Schob S, Höhn AK, Bremicker K, Exner M, Stumpp P, Purz S (2017) Parameters of simultaneous F-FDG-PET/MRI predict tumor stage and several histopathological features in uterine cervical cancer. Oncotarget 8:28285PubMedPubMedCentral
45.
Zurück zum Zitat Joice R, Nilsson SK, Montgomery J, Dankwa S, Morahan B, Seydel KB, Bertuccini L, Alano P, Kim C, Duraisingh MT, Taylor TE, Milner DA (2012) Brain tumors. Semin Nucl Med 6:1–16 Joice R, Nilsson SK, Montgomery J, Dankwa S, Morahan B, Seydel KB, Bertuccini L, Alano P, Kim C, Duraisingh MT, Taylor TE, Milner DA (2012) Brain tumors. Semin Nucl Med 6:1–16
46.
Zurück zum Zitat Kosaka N, Tsuchida T, Uematsu H, Kimura H, Okazawa H, Itoh H (2008) 18F-FDG PET of common enhancing malignant brain tumors. Am J Roentgenol 190:365–369CrossRef Kosaka N, Tsuchida T, Uematsu H, Kimura H, Okazawa H, Itoh H (2008) 18F-FDG PET of common enhancing malignant brain tumors. Am J Roentgenol 190:365–369CrossRef
47.
Zurück zum Zitat Mitchell M (1998) An Introduction to genetic algorithms. MIT press, Cambridge Mitchell M (1998) An Introduction to genetic algorithms. MIT press, Cambridge
48.
Zurück zum Zitat Soltani M, Chen P (2009) Shape design of internal flow with minimum pressure loss. Adv Sci Lett 2:347–355CrossRef Soltani M, Chen P (2009) Shape design of internal flow with minimum pressure loss. Adv Sci Lett 2:347–355CrossRef
49.
Zurück zum Zitat Prevost TP, Balakrishnan A, Suresh S, Socrate S (2011) Biomechanics of brain tissue. Acta Biomater 7:83–95PubMedCrossRef Prevost TP, Balakrishnan A, Suresh S, Socrate S (2011) Biomechanics of brain tissue. Acta Biomater 7:83–95PubMedCrossRef
50.
Zurück zum Zitat Wang CH, Rockhill JK, Mrugala M, Peacock DL, Lai A, Jusenius K, Wardlaw JM, Cloughesy T, Spence AM, Rockne R, Alvord EC, Swanson KR (2009) Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. Cancer Res 69:9133–9140PubMedPubMedCentralCrossRef Wang CH, Rockhill JK, Mrugala M, Peacock DL, Lai A, Jusenius K, Wardlaw JM, Cloughesy T, Spence AM, Rockne R, Alvord EC, Swanson KR (2009) Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. Cancer Res 69:9133–9140PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29:193–207PubMedCrossRef Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29:193–207PubMedCrossRef
52.
Zurück zum Zitat Ono K, Ochiai R, Yoshida T, Kitagawa M, Omagari J, Kobayashi H, Yamashita Y (2009) Comparison of diffusion-weighted MRI and 2-[fluorine-18]-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) for detecting primary colorectal cancer and regional lymph node metastases. J Magn Reson Imaging 29:336–340PubMedCrossRef Ono K, Ochiai R, Yoshida T, Kitagawa M, Omagari J, Kobayashi H, Yamashita Y (2009) Comparison of diffusion-weighted MRI and 2-[fluorine-18]-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) for detecting primary colorectal cancer and regional lymph node metastases. J Magn Reson Imaging 29:336–340PubMedCrossRef
Metadaten
Titel
Personalized image-based tumor growth prediction in a convection–diffusion–reaction model
verfasst von
Nargess Meghdadi
M. Soltani
Hanieh Niroomand-Oscuii
Nooshin Yamani
Publikationsdatum
17.07.2018
Verlag
Springer International Publishing
Erschienen in
Acta Neurologica Belgica / Ausgabe 1/2020
Print ISSN: 0300-9009
Elektronische ISSN: 2240-2993
DOI
https://doi.org/10.1007/s13760-018-0973-1

Weitere Artikel der Ausgabe 1/2020

Acta Neurologica Belgica 1/2020 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.