Skip to main content
Erschienen in: Japanese Journal of Radiology 4/2020

10.02.2020 | Invited Review

PET and SPECT imaging of the brain: a review on the current status of nuclear medicine in Japan

verfasst von: Tomohiro Kaneta

Erschienen in: Japanese Journal of Radiology | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Abstract

Radiolabeled tracers allow visualization of not only perfusion, but receptors, function, and metabolism as well. Although spatial resolution is lower than that of computed tomography and magnetic resonance imaging, positron emission tomography (PET) and single photon emission computed tomography (SPECT) have great potential for target-specific imaging. In this review, we discuss several SPECT and PET tracers used in brain imaging, specifically focusing on tracers currently available, or developed, in Japan. Several important and sophisticated methods exist for analysis of brain PET and SPECT images. Two of them, quantitative cerebral blood flow measurement and voxel-based statistical analysis are discussed in this review. The former method, which employs acetazolamide loading, is useful for evaluation of the brain perfusion reserve for ischemic brain diseases. The latter is useful in diagnosing dementing diseases. Additionally, great strides have been made in the development of the technology used in the scanners. New SPECT systems based on cadmium–zinc–telluride, PET/MRI, and semiconductor PET/CT may provide higher spatial resolution with an acquisition time shorter than ever before. Such developments of both tracers and scanners can be integrated for unprecedented imagery of the brain, providing valuable insight into underlying causes of some fatal brain disorders.
Literatur
1.
Zurück zum Zitat Tikofsky RS, Trembath LA, Voslar AM. Radiopharmaceuticals for brain imaging: the technologist’s perspective. J Nucl Med Technol. 1993;21(2):57–60. Tikofsky RS, Trembath LA, Voslar AM. Radiopharmaceuticals for brain imaging: the technologist’s perspective. J Nucl Med Technol. 1993;21(2):57–60.
2.
Zurück zum Zitat Menzel C, Steidele S, Grünwald F, Hufnagel A, Pavics L, Elger CE, et al. Evaluation of technetium-99m-ECD in childhood epilepsy. J Nucl Med. 1996;37(7):1106–12.PubMed Menzel C, Steidele S, Grünwald F, Hufnagel A, Pavics L, Elger CE, et al. Evaluation of technetium-99m-ECD in childhood epilepsy. J Nucl Med. 1996;37(7):1106–12.PubMed
3.
Zurück zum Zitat Iida H, Akutsu T, Endo K, Fukuda H, Inoue T, Ito H, et al. A multicenter validation of regional cerebral blood flow quantitation using [123I]iodoamphetamine and single photon emission computed tomography. J Cereb Blood Flow Metab. 1996;16(5):781–93.PubMedCrossRef Iida H, Akutsu T, Endo K, Fukuda H, Inoue T, Ito H, et al. A multicenter validation of regional cerebral blood flow quantitation using [123I]iodoamphetamine and single photon emission computed tomography. J Cereb Blood Flow Metab. 1996;16(5):781–93.PubMedCrossRef
4.
Zurück zum Zitat Greenberg JH, Kushner M, Rango M, Alavi A, Reivich M. Validation studies of iodine-123-iodoamphetamine as a cerebral blood flow tracer using emission tomography. J Nucl Med. 1990;31(8):1364–9.PubMed Greenberg JH, Kushner M, Rango M, Alavi A, Reivich M. Validation studies of iodine-123-iodoamphetamine as a cerebral blood flow tracer using emission tomography. J Nucl Med. 1990;31(8):1364–9.PubMed
5.
Zurück zum Zitat Kuhl DE, Barrio JR, Huang SC, Selin C, Ackermann RF, Lear JL, et al. Quantifying local cerebral blood flow by N-isopropyl-p[I-123]iodo amphetamine (IMP) tomography. J Nucl Med. 1982;23:196–203.PubMed Kuhl DE, Barrio JR, Huang SC, Selin C, Ackermann RF, Lear JL, et al. Quantifying local cerebral blood flow by N-isopropyl-p[I-123]iodo amphetamine (IMP) tomography. J Nucl Med. 1982;23:196–203.PubMed
6.
Zurück zum Zitat Hatazawa J, Iida H, Shimosegawa E, Sato T, Murakami M, Miura Y. Regional cerebral blood flow measurement with iodine-123-IMP autoradiography: normal values, reproducibility and sensitivity to hypoperfusion. J Nucl Med. 1997;38(7):1102–8.PubMed Hatazawa J, Iida H, Shimosegawa E, Sato T, Murakami M, Miura Y. Regional cerebral blood flow measurement with iodine-123-IMP autoradiography: normal values, reproducibility and sensitivity to hypoperfusion. J Nucl Med. 1997;38(7):1102–8.PubMed
7.
Zurück zum Zitat Matsuda H, Yagishita A, Tsuji S, Hisada K. A quantitative approach to technetium-99m ethyl cysteinate dimer: a comparison with technetium-99m hexamethylpropylene amine oxime. Eur J Nucl Med. 1995;22(7):633–7.PubMedCrossRef Matsuda H, Yagishita A, Tsuji S, Hisada K. A quantitative approach to technetium-99m ethyl cysteinate dimer: a comparison with technetium-99m hexamethylpropylene amine oxime. Eur J Nucl Med. 1995;22(7):633–7.PubMedCrossRef
8.
Zurück zum Zitat Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3(1):1–7.PubMedCrossRef Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3(1):1–7.PubMedCrossRef
9.
Zurück zum Zitat Piao R, Oku N, Kitagawa K, Imaizumi M, Matsushita K, Yoshikawa T, et al. Cerebral hemodynamics and metabolism in adult moyamoya disease: comparison of angiographic collateral circulation. Ann Nucl Med. 2004;18(2):115–21.PubMedCrossRef Piao R, Oku N, Kitagawa K, Imaizumi M, Matsushita K, Yoshikawa T, et al. Cerebral hemodynamics and metabolism in adult moyamoya disease: comparison of angiographic collateral circulation. Ann Nucl Med. 2004;18(2):115–21.PubMedCrossRef
10.
Zurück zum Zitat Kim JS, Moon DH, Kim GE, Cho YP, Kim JS, Ryu JS, et al. Acetazolamide stress brain-perfusion SPECT predicts the need for carotid shunting during carotid endarterectomy. J Nucl Med. 2000;41(11):1836–41.PubMed Kim JS, Moon DH, Kim GE, Cho YP, Kim JS, Ryu JS, et al. Acetazolamide stress brain-perfusion SPECT predicts the need for carotid shunting during carotid endarterectomy. J Nucl Med. 2000;41(11):1836–41.PubMed
11.
Zurück zum Zitat Hirai Y, Fujimoto S, Toyoda K, Inoue T, Uwatoko T, Makihara N, et al. Superficial temporal artery duplex ultrasonography for improved cerebral hemodynamics after extracranial-intracranial bypass surgery. Cerebrovasc Dis. 2005;20(6):463–9.PubMedCrossRef Hirai Y, Fujimoto S, Toyoda K, Inoue T, Uwatoko T, Makihara N, et al. Superficial temporal artery duplex ultrasonography for improved cerebral hemodynamics after extracranial-intracranial bypass surgery. Cerebrovasc Dis. 2005;20(6):463–9.PubMedCrossRef
12.
Zurück zum Zitat Jinnouchi J, Toyoda K, Inoue T, Fujimoto S, Gotoh S, Yasumori K, et al. Changes in brain volume 2 years after extracranial-intracranial bypass surgery: a preliminary subanalysis of the Japanese EC-IC trial. Cerebrovasc Dis. 2006;22(2–3):177–82.PubMedCrossRef Jinnouchi J, Toyoda K, Inoue T, Fujimoto S, Gotoh S, Yasumori K, et al. Changes in brain volume 2 years after extracranial-intracranial bypass surgery: a preliminary subanalysis of the Japanese EC-IC trial. Cerebrovasc Dis. 2006;22(2–3):177–82.PubMedCrossRef
13.
Zurück zum Zitat Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med. 1995;36(7):1238–48.PubMed Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med. 1995;36(7):1238–48.PubMed
14.
Zurück zum Zitat Friston KJ, Frith CD, Fletcher P, Liddle PF, Frackowiak RS. Functional topography: multidimensional scaling and functional connectivity in the brain. Cereb Cortex. 1996;6(2):156–64.PubMedCrossRef Friston KJ, Frith CD, Fletcher P, Liddle PF, Frackowiak RS. Functional topography: multidimensional scaling and functional connectivity in the brain. Cereb Cortex. 1996;6(2):156–64.PubMedCrossRef
15.
Zurück zum Zitat Matsuda H, Mizumura S, Nagao T, Ota T, Iizuka T, Nemoto K, et al. Automated discrimination between very early Alzheimer disease and controls using an easy Z score imaging system for multicenter brain perfusion single-photon emission tomography. Am J Neuroradiol. 2007;28(4):731–6.PubMedPubMedCentral Matsuda H, Mizumura S, Nagao T, Ota T, Iizuka T, Nemoto K, et al. Automated discrimination between very early Alzheimer disease and controls using an easy Z score imaging system for multicenter brain perfusion single-photon emission tomography. Am J Neuroradiol. 2007;28(4):731–6.PubMedPubMedCentral
16.
Zurück zum Zitat Minoshima S, Foster NL, Kuhl DE. Posterior cingulate cortex in Alzheimer's disease. Lancet. 1994;344(8926):895.PubMedCrossRef Minoshima S, Foster NL, Kuhl DE. Posterior cingulate cortex in Alzheimer's disease. Lancet. 1994;344(8926):895.PubMedCrossRef
17.
Zurück zum Zitat Ishii K, Ito K, Nakanishi A, Kitamura S, Terashima A. Computer-assisted system for diagnosing degenerative dementia using cerebral blood flow SPECT and 3D-SSP: a multicenter study. Jpn J Radiol. 2014;32(7):383–90.PubMedCrossRef Ishii K, Ito K, Nakanishi A, Kitamura S, Terashima A. Computer-assisted system for diagnosing degenerative dementia using cerebral blood flow SPECT and 3D-SSP: a multicenter study. Jpn J Radiol. 2014;32(7):383–90.PubMedCrossRef
18.
Zurück zum Zitat Kaneta T, Nakatsuka M, Nakamura K, Seki T, Yamaguchi S, Tsuboi M, et al. Improved diagnostic accuracy of SPECT through statistical analysis and the detection of hot spots at the primary sensorimotor area for the diagnosis of Alzheimer disease in a community-based study: "The Osaki-Tajiri Project". Clin Nucl Med. 2016;41(1):e1–6.PubMedCrossRef Kaneta T, Nakatsuka M, Nakamura K, Seki T, Yamaguchi S, Tsuboi M, et al. Improved diagnostic accuracy of SPECT through statistical analysis and the detection of hot spots at the primary sensorimotor area for the diagnosis of Alzheimer disease in a community-based study: "The Osaki-Tajiri Project". Clin Nucl Med. 2016;41(1):e1–6.PubMedCrossRef
19.
Zurück zum Zitat Beer HF, Bläuenstein PA, Hasler PH, Delaloye B, Riccabona G, Bangerl I, et al. In vitro and in vivo evaluation of iodine-123-Ro 16-0154: a new imaging agent for SPECT investigations of benzodiazepine receptors. J Nucl Med. 1990;31(6):1007–144.PubMed Beer HF, Bläuenstein PA, Hasler PH, Delaloye B, Riccabona G, Bangerl I, et al. In vitro and in vivo evaluation of iodine-123-Ro 16-0154: a new imaging agent for SPECT investigations of benzodiazepine receptors. J Nucl Med. 1990;31(6):1007–144.PubMed
20.
21.
Zurück zum Zitat Chuang SH, Reddy DS. Genetic and molecular regulation of extrasynaptic GABA-A receptors in the brain: therapeutic insights for epilepsy. J Pharmacol Exp Ther. 2018;364(2):180–97.PubMedPubMedCentralCrossRef Chuang SH, Reddy DS. Genetic and molecular regulation of extrasynaptic GABA-A receptors in the brain: therapeutic insights for epilepsy. J Pharmacol Exp Ther. 2018;364(2):180–97.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Lamusuo S, Ruottinen HM, Knuuti J, Härkönen R, Ruotsalainen U, Bergman J, et al. Comparison of [18F]FDG-PET, [99mTc]-HMPAO-SPECT, and [123I]-iomazenil-SPECT in localising the epileptogenic cortex. J Neurol Neurosurg Psychiatry. 1997;63(6):743–8.PubMedPubMedCentralCrossRef Lamusuo S, Ruottinen HM, Knuuti J, Härkönen R, Ruotsalainen U, Bergman J, et al. Comparison of [18F]FDG-PET, [99mTc]-HMPAO-SPECT, and [123I]-iomazenil-SPECT in localising the epileptogenic cortex. J Neurol Neurosurg Psychiatry. 1997;63(6):743–8.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Abiko K, Ikoma K, Shiga T, Katoh C, Hirata K, Kuge Y, et al. I-123 iomazenil single photon emission computed tomography for detecting loss of neuronal integrity in patients with traumatic brain injury. EJNMMI Res. 2017;7(1):28.PubMedPubMedCentralCrossRef Abiko K, Ikoma K, Shiga T, Katoh C, Hirata K, Kuge Y, et al. I-123 iomazenil single photon emission computed tomography for detecting loss of neuronal integrity in patients with traumatic brain injury. EJNMMI Res. 2017;7(1):28.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182–21717.PubMedCrossRef Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182–21717.PubMedCrossRef
25.
Zurück zum Zitat Booij J, Hemelaar TG, Speelman JD, de Bruin K, Janssen AG, van Royen EA. One-day protocol for imaging of the nigrostriatal dopaminergic pathway in Parkinson's disease by [123I]FPCIT SPECT. J Nucl Med. 1999;40(5):753–61.PubMed Booij J, Hemelaar TG, Speelman JD, de Bruin K, Janssen AG, van Royen EA. One-day protocol for imaging of the nigrostriatal dopaminergic pathway in Parkinson's disease by [123I]FPCIT SPECT. J Nucl Med. 1999;40(5):753–61.PubMed
26.
Zurück zum Zitat Grosset DG, Tatsch K, Oertel WH, Tolosa E, Bajaj N, Kupsch A, et al. Safety analysis of 10 clinical trials and for 13 years after first approval of ioflupane 123I injection (DaTscan). J Nucl Med. 2014;55(8):1281–7.PubMedCrossRef Grosset DG, Tatsch K, Oertel WH, Tolosa E, Bajaj N, Kupsch A, et al. Safety analysis of 10 clinical trials and for 13 years after first approval of ioflupane 123I injection (DaTscan). J Nucl Med. 2014;55(8):1281–7.PubMedCrossRef
27.
Zurück zum Zitat Benamer TS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord. 2000;15(3):503–10.PubMedCrossRef Benamer TS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord. 2000;15(3):503–10.PubMedCrossRef
28.
Zurück zum Zitat Jennings DL, Seibyl JP, Oakes D, Eberly S, Murphy J, Marek K. (123I) beta-CIT and single-photon emission computed tomographic imaging vs clinical evaluation in Parkinsonian syndrome: unmasking an early diagnosis. Arch Neurol. 2004;61(8):1224–9.PubMedCrossRef Jennings DL, Seibyl JP, Oakes D, Eberly S, Murphy J, Marek K. (123I) beta-CIT and single-photon emission computed tomographic imaging vs clinical evaluation in Parkinsonian syndrome: unmasking an early diagnosis. Arch Neurol. 2004;61(8):1224–9.PubMedCrossRef
29.
Zurück zum Zitat Maekawa T, Sato N, Ota M, Sugiyama A, Sone D, Enokizono M, et al. Correlations between dopamine transporter density measured by 123I-FP-CIT SPECT and regional gray matter volume in Parkinson's disease. Jpn J Radiol. 2017;35(12):755–9.PubMedCrossRef Maekawa T, Sato N, Ota M, Sugiyama A, Sone D, Enokizono M, et al. Correlations between dopamine transporter density measured by 123I-FP-CIT SPECT and regional gray matter volume in Parkinson's disease. Jpn J Radiol. 2017;35(12):755–9.PubMedCrossRef
30.
Zurück zum Zitat Chung M, Park YS, Kim JS, Kim YJ, Ma HI, Jang SJ, et al. Correlating Parkinson's disease motor symptoms with three-dimensional [(18)F]FP-CIT PET. Jpn J Radiol. 2015;33(10):609–18.PubMedCrossRef Chung M, Park YS, Kim JS, Kim YJ, Ma HI, Jang SJ, et al. Correlating Parkinson's disease motor symptoms with three-dimensional [(18)F]FP-CIT PET. Jpn J Radiol. 2015;33(10):609–18.PubMedCrossRef
31.
Zurück zum Zitat McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88–100.PubMedPubMedCentralCrossRef McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88–100.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Tossici-Bolt L, Hoffmann SM, Kemp PM, Mehta RL, Fleming JS. Quantification of [123I]FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging. 2006;33(12):1491–9.PubMedCrossRef Tossici-Bolt L, Hoffmann SM, Kemp PM, Mehta RL, Fleming JS. Quantification of [123I]FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging. 2006;33(12):1491–9.PubMedCrossRef
33.
Zurück zum Zitat Djang DS, Janssen MJ, Bohnen N, Booij J, Henderson TA, Herholz K, et al. SNM practice guideline for dopamine transporter imaging with 123I-ioflupane SPECT 1.0. J Nucl Med. 2012;53(1):154–63.PubMedCrossRef Djang DS, Janssen MJ, Bohnen N, Booij J, Henderson TA, Herholz K, et al. SNM practice guideline for dopamine transporter imaging with 123I-ioflupane SPECT 1.0. J Nucl Med. 2012;53(1):154–63.PubMedCrossRef
34.
Zurück zum Zitat Benamer HT, Patterson J, Wyper DJ, Hadley DM, Macphee GJ, Grosset DG. Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Mov Disord. 2000;15(4):692–8.PubMedCrossRef Benamer HT, Patterson J, Wyper DJ, Hadley DM, Macphee GJ, Grosset DG. Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Mov Disord. 2000;15(4):692–8.PubMedCrossRef
35.
Zurück zum Zitat Ziebell M, Andersen BB, Pinborg LH, Knudsen GM, Stokholm J, Thomsen G, et al. Striatal dopamine transporter binding does not correlate with clinical severity in dementia with Lewy bodies. J Nucl Med. 2013;54(7):1072–6.PubMedCrossRef Ziebell M, Andersen BB, Pinborg LH, Knudsen GM, Stokholm J, Thomsen G, et al. Striatal dopamine transporter binding does not correlate with clinical severity in dementia with Lewy bodies. J Nucl Med. 2013;54(7):1072–6.PubMedCrossRef
36.
Zurück zum Zitat Shimizu S, Hirao K, Kanetaka H, Namioka N, Hatanaka H, Hirose D, et al. Utility of the combination of DAT SPECT and MIBG myocardial scintigraphy in differentiating dementia with Lewy bodies from Alzheimer's disease. Eur J Nucl Med Mol Imaging. 2016;43(1):184–92.PubMedCrossRef Shimizu S, Hirao K, Kanetaka H, Namioka N, Hatanaka H, Hirose D, et al. Utility of the combination of DAT SPECT and MIBG myocardial scintigraphy in differentiating dementia with Lewy bodies from Alzheimer's disease. Eur J Nucl Med Mol Imaging. 2016;43(1):184–92.PubMedCrossRef
37.
Zurück zum Zitat Kobayashi S, Makino K, Hatakeyama S, Ishii T, Tateno M, Iwamoto T, et al. The usefulness of combined brain perfusion single-photon emission computed tomography, Dopamine-transporter single-photon emission computed tomography, and 123 I-metaiodobenzylguanidine myocardial scintigraphy for the diagnosis of dementia with Lewy bodies. Psychogeriatrics. 2017;17(4):247–55.PubMedCrossRef Kobayashi S, Makino K, Hatakeyama S, Ishii T, Tateno M, Iwamoto T, et al. The usefulness of combined brain perfusion single-photon emission computed tomography, Dopamine-transporter single-photon emission computed tomography, and 123 I-metaiodobenzylguanidine myocardial scintigraphy for the diagnosis of dementia with Lewy bodies. Psychogeriatrics. 2017;17(4):247–55.PubMedCrossRef
38.
Zurück zum Zitat Kuwert T, Bartenstein P, Grünwald F, Herholz K, Larisch R, Sabri O, et al. Clinical value of positron emission tomography in neuromedicine. Position paper on results of an interdisciplinary consensus conference. Nervenarzt. 1989;69:1045–160.CrossRef Kuwert T, Bartenstein P, Grünwald F, Herholz K, Larisch R, Sabri O, et al. Clinical value of positron emission tomography in neuromedicine. Position paper on results of an interdisciplinary consensus conference. Nervenarzt. 1989;69:1045–160.CrossRef
39.
Zurück zum Zitat Schelbert HR, Hoh CK, Royal HD, Brown M, Dahlbom MN, Dehdashti F, et al. Procedure guideline for tumor imaging using fluorine-18-FDG. Society of Nuclear Medicine. J Nucl Med. 1998;39(7):1302–5.PubMed Schelbert HR, Hoh CK, Royal HD, Brown M, Dahlbom MN, Dehdashti F, et al. Procedure guideline for tumor imaging using fluorine-18-FDG. Society of Nuclear Medicine. J Nucl Med. 1998;39(7):1302–5.PubMed
40.
Zurück zum Zitat Messa C, Fazio F, Costa DC, Ell PJ. Clinical brain radionuclide imaging studies. Semin Nucl Med. 1995;25(2):111–43.PubMedCrossRef Messa C, Fazio F, Costa DC, Ell PJ. Clinical brain radionuclide imaging studies. Semin Nucl Med. 1995;25(2):111–43.PubMedCrossRef
41.
Zurück zum Zitat Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frölich L, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage. 2002;17(1):302–16.PubMedCrossRef Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frölich L, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage. 2002;17(1):302–16.PubMedCrossRef
42.
Zurück zum Zitat Herholz K, Carter SF, Jones M. Positron emission tomography imaging in dementia. Br J Radiol. 2007;80(Spec No 2):S160–S167167.PubMedCrossRef Herholz K, Carter SF, Jones M. Positron emission tomography imaging in dementia. Br J Radiol. 2007;80(Spec No 2):S160–S167167.PubMedCrossRef
43.
Zurück zum Zitat Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias. J Nucl Med. 2008;49(3):390–8.PubMedCrossRef Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias. J Nucl Med. 2008;49(3):390–8.PubMedCrossRef
46.
Zurück zum Zitat Iwasa H, Murata Y, Nishimori M, Miyatake K, Tadokoro M, Kohsaki S, et al. Remote effects in the ipsilateral thalamus and/or contralateral cerebellar hemisphere using FDG PET in patients with brain tumors. Jpn J Radiol. 2018;36(4):303–11.PubMedCrossRef Iwasa H, Murata Y, Nishimori M, Miyatake K, Tadokoro M, Kohsaki S, et al. Remote effects in the ipsilateral thalamus and/or contralateral cerebellar hemisphere using FDG PET in patients with brain tumors. Jpn J Radiol. 2018;36(4):303–11.PubMedCrossRef
47.
Zurück zum Zitat Van Paesschen W, Dupont P, Sunaert S, Goffin K, Van Laere K. The use of SPECT and PET in routine clinical practice in epilepsy. Curr Opin Neurol. 2007;20(2):194–202.PubMedCrossRef Van Paesschen W, Dupont P, Sunaert S, Goffin K, Van Laere K. The use of SPECT and PET in routine clinical practice in epilepsy. Curr Opin Neurol. 2007;20(2):194–202.PubMedCrossRef
48.
Zurück zum Zitat la Fougère C, Rominger A, Förster S, Geisler J, Bartenstein P. PET and SPECT in epilepsy: a critical review. Epilepsy Behav. 2009;15(1):50–5.PubMedCrossRef la Fougère C, Rominger A, Förster S, Geisler J, Bartenstein P. PET and SPECT in epilepsy: a critical review. Epilepsy Behav. 2009;15(1):50–5.PubMedCrossRef
49.
Zurück zum Zitat Goffin K, Dedeurwaerdere S, Van Laere K, Van Paesschen W. Neuronuclear assessment of patients with epilepsy. Semin Nucl Med. 2008;38(4):227–39.PubMedCrossRef Goffin K, Dedeurwaerdere S, Van Laere K, Van Paesschen W. Neuronuclear assessment of patients with epilepsy. Semin Nucl Med. 2008;38(4):227–39.PubMedCrossRef
50.
Zurück zum Zitat Perissinotti A, Niñerola-Baizán A, Rubí S, Carreño M, Marti-Fuster B, Aparicio J, et al. PISCOM: a new procedure for epilepsy combining ictal SPECT and interictal PET. Eur J Nucl Med Mol Imaging. 2018;45(13):2358–67.PubMedPubMedCentralCrossRef Perissinotti A, Niñerola-Baizán A, Rubí S, Carreño M, Marti-Fuster B, Aparicio J, et al. PISCOM: a new procedure for epilepsy combining ictal SPECT and interictal PET. Eur J Nucl Med Mol Imaging. 2018;45(13):2358–67.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Nakajima R, Kimura K, Abe K, Sakai S. 11C-methionine PET/CT findings in benign brain disease. Jpn J Radiol. 2017;35(6):279–88.PubMedCrossRef Nakajima R, Kimura K, Abe K, Sakai S. 11C-methionine PET/CT findings in benign brain disease. Jpn J Radiol. 2017;35(6):279–88.PubMedCrossRef
52.
Zurück zum Zitat Herholz K, Hölzer T, Bauer B, Schröder R, Voges J, Ernestus RI, et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology. 1998;50(5):1316–22.PubMedCrossRef Herholz K, Hölzer T, Bauer B, Schröder R, Voges J, Ernestus RI, et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology. 1998;50(5):1316–22.PubMedCrossRef
53.
Zurück zum Zitat Wu R, Watanabe Y, Arisawa A, Takahashi H, Tanaka H, Fujimoto Y, et al. Whole-tumor histogram analysis of the cerebral blood volume map: tumor volume defined by 11C-methionine positron emission tomography image improves the diagnostic accuracy of cerebral glioma grading. Jpn J Radiol. 2017;35(10):613–21.PubMedCrossRef Wu R, Watanabe Y, Arisawa A, Takahashi H, Tanaka H, Fujimoto Y, et al. Whole-tumor histogram analysis of the cerebral blood volume map: tumor volume defined by 11C-methionine positron emission tomography image improves the diagnostic accuracy of cerebral glioma grading. Jpn J Radiol. 2017;35(10):613–21.PubMedCrossRef
54.
Zurück zum Zitat Sawataishi J, Mineura K, Sasajima T, Kowada M, Sugawara A, Shishido F. Effects of radiotherapy determined by 11C-methyl-L-methionine positron emission tomography in patients with primary cerebral malignant lymphoma. Neuroradiology. 1992;34(6):517–9.PubMedCrossRef Sawataishi J, Mineura K, Sasajima T, Kowada M, Sugawara A, Shishido F. Effects of radiotherapy determined by 11C-methyl-L-methionine positron emission tomography in patients with primary cerebral malignant lymphoma. Neuroradiology. 1992;34(6):517–9.PubMedCrossRef
55.
Zurück zum Zitat Glaudemans AW, Enting RH, Heesters MA, Dierckx RA, van Rheenen RW, Walenkamp AM, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40(4):615–35.PubMedCrossRef Glaudemans AW, Enting RH, Heesters MA, Dierckx RA, van Rheenen RW, Walenkamp AM, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40(4):615–35.PubMedCrossRef
56.
Zurück zum Zitat Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019;46(3):540–57.PubMedCrossRef Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019;46(3):540–57.PubMedCrossRef
57.
Zurück zum Zitat Wakabayashi T, Iuchi T, Tsuyuguchi N, Nishikawa R, Arakawa Y, Sasayama T, et al. Diagnostic performance and safety of positron emission tomography using 18F-fluciclovine in patients with clinically suspected high- or low-grade gliomas: a multicenter phase IIb trial. Asia Ocean J Nucl Med Biol. 2017;5(1):10–211.PubMedPubMedCentral Wakabayashi T, Iuchi T, Tsuyuguchi N, Nishikawa R, Arakawa Y, Sasayama T, et al. Diagnostic performance and safety of positron emission tomography using 18F-fluciclovine in patients with clinically suspected high- or low-grade gliomas: a multicenter phase IIb trial. Asia Ocean J Nucl Med Biol. 2017;5(1):10–211.PubMedPubMedCentral
58.
Zurück zum Zitat Tsuyuguchi N, Terakawa Y, Uda T, Nakajo K, Kanemura Y. Diagnosis of brain tumors using amino acid transport PET imaging with 18F-fluciclovine: a comparative study with l-methyl-11C-methionine PET imaging. Asia Ocean J Nucl Med Biol. 2017;5(2):85–94.PubMedPubMedCentral Tsuyuguchi N, Terakawa Y, Uda T, Nakajo K, Kanemura Y. Diagnosis of brain tumors using amino acid transport PET imaging with 18F-fluciclovine: a comparative study with l-methyl-11C-methionine PET imaging. Asia Ocean J Nucl Med Biol. 2017;5(2):85–94.PubMedPubMedCentral
59.
Zurück zum Zitat Kondo A, Ishii H, Aoki S, Suzuki M, Nagasawa H, Kubota K, et al. Phase IIa clinical study of [18F]fluciclovine: efficacy and safety of a new PET tracer for brain tumors. Ann Nucl Med. 2016;30(9):608–18.PubMedCrossRef Kondo A, Ishii H, Aoki S, Suzuki M, Nagasawa H, Kubota K, et al. Phase IIa clinical study of [18F]fluciclovine: efficacy and safety of a new PET tracer for brain tumors. Ann Nucl Med. 2016;30(9):608–18.PubMedCrossRef
60.
Zurück zum Zitat Jellinger K. Morphology of Alzheimer disease and related disorders. In: Maurer K, Riederer P, Beckmann H, editors. Alzheimer disease: epidemiology, neuropathology, neurochemistry, and clinics. Berlin: Springer; 1990. p. 61–77.CrossRef Jellinger K. Morphology of Alzheimer disease and related disorders. In: Maurer K, Riederer P, Beckmann H, editors. Alzheimer disease: epidemiology, neuropathology, neurochemistry, and clinics. Berlin: Springer; 1990. p. 61–77.CrossRef
61.
Zurück zum Zitat Masters CL. Neuropathology of Alzheimer’s disease. In: Burns A, O’Brien J, Ames D, editors. Dementia. 3rd ed. London: Hodder Arnold; 2005. p. 393–407. Masters CL. Neuropathology of Alzheimer’s disease. In: Burns A, O’Brien J, Ames D, editors. Dementia. 3rd ed. London: Hodder Arnold; 2005. p. 393–407.
62.
Zurück zum Zitat Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19.PubMedCrossRef Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19.PubMedCrossRef
63.
Zurück zum Zitat Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305(3):275–83.PubMedPubMedCentralCrossRef Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305(3):275–83.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Barthel H, Gertz HJ, Dresel S, Peters O, Bartenstein P, Buerger K, et al. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011;10(5):424–35.PubMedCrossRef Barthel H, Gertz HJ, Dresel S, Peters O, Bartenstein P, Buerger K, et al. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011;10(5):424–35.PubMedCrossRef
65.
Zurück zum Zitat Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68(3):319–29.PubMedCrossRef Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68(3):319–29.PubMedCrossRef
66.
Zurück zum Zitat Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.PubMedCrossRef Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.PubMedCrossRef
67.
Zurück zum Zitat Johnson KA, Minoshima S, Bohnen NI, Donohoe KJ, Foster NL, Herscovitch P, et al. Update on appropriate use criteria for amyloid PET imaging: dementia experts, mild cognitive impairment, and education. J Nucl Med. 2013;54(7):1011–3.PubMedCrossRef Johnson KA, Minoshima S, Bohnen NI, Donohoe KJ, Foster NL, Herscovitch P, et al. Update on appropriate use criteria for amyloid PET imaging: dementia experts, mild cognitive impairment, and education. J Nucl Med. 2013;54(7):1011–3.PubMedCrossRef
68.
Zurück zum Zitat Barthel H, Sabri O. Clinical use and utility of amyloid imaging. J Nucl Med. 2017;58(11):1711–7.PubMedCrossRef Barthel H, Sabri O. Clinical use and utility of amyloid imaging. J Nucl Med. 2017;58(11):1711–7.PubMedCrossRef
69.
Zurück zum Zitat Chiotis K, Saint-Aubert L, Boccardi M, Gietl A, Picco A, Varrone A, et al. Clinical validity of increased cortical uptake of amyloid ligands on PET as a biomarker for Alzheimer's disease in the context of a structured 5-phase development framework. Neurobiol Aging. 2017;52:214–27.PubMedCrossRef Chiotis K, Saint-Aubert L, Boccardi M, Gietl A, Picco A, Varrone A, et al. Clinical validity of increased cortical uptake of amyloid ligands on PET as a biomarker for Alzheimer's disease in the context of a structured 5-phase development framework. Neurobiol Aging. 2017;52:214–27.PubMedCrossRef
70.
Zurück zum Zitat Rabinovici GD, Gatsonis C, Apgar C, Chaudhary K, Gareen I, Hanna L, et al. Association of amyloid positron emission tomography with subsequent change in clinical management among medicare beneficiaries with mild cognitive impairment or dementia. JAMA. 2019;321(13):1286–94.PubMedPubMedCentralCrossRef Rabinovici GD, Gatsonis C, Apgar C, Chaudhary K, Gareen I, Hanna L, et al. Association of amyloid positron emission tomography with subsequent change in clinical management among medicare beneficiaries with mild cognitive impairment or dementia. JAMA. 2019;321(13):1286–94.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Jellinger KA, Bancher C. Neuropathology of Alzheimer's disease: a critical update. J Neural Transm Suppl. 1998;54:77–95.PubMedCrossRef Jellinger KA, Bancher C. Neuropathology of Alzheimer's disease: a critical update. J Neural Transm Suppl. 1998;54:77–95.PubMedCrossRef
72.
Zurück zum Zitat Michaelis ML, Dobrowsky RT, Li G. Tau neurofibrillary pathology and microtubule stability. J Mol Neurosci. 2002;19(3):289–93.PubMedCrossRef Michaelis ML, Dobrowsky RT, Li G. Tau neurofibrillary pathology and microtubule stability. J Mol Neurosci. 2002;19(3):289–93.PubMedCrossRef
73.
Zurück zum Zitat Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su MY, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013;34(2):457–68.PubMedCrossRef Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su MY, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013;34(2):457–68.PubMedCrossRef
74.
Zurück zum Zitat Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79(6):1094–108.PubMedCrossRef Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79(6):1094–108.PubMedCrossRef
75.
Zurück zum Zitat Walji AM, Hostetler ED, Selnick H, Zeng Z, Miller P, Bennacef I, et al. Discovery of 6-(fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([(18)F]-MK-6240): a positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs). J Med Chem. 2016;59(10):4778–899.PubMedCrossRef Walji AM, Hostetler ED, Selnick H, Zeng Z, Miller P, Bennacef I, et al. Discovery of 6-(fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([(18)F]-MK-6240): a positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs). J Med Chem. 2016;59(10):4778–899.PubMedCrossRef
76.
Zurück zum Zitat Chiotis K, Saint-Aubert L, Savitcheva I, Jelic V, Andersen P, Jonasson M, et al. Imaging in-vivo tau pathology in Alzheimer's disease with THK5317 PET in a multimodal paradigm. Eur J Nucl Med Mol Imaging. 2016;43(9):1686–99.PubMedPubMedCentralCrossRef Chiotis K, Saint-Aubert L, Savitcheva I, Jelic V, Andersen P, Jonasson M, et al. Imaging in-vivo tau pathology in Alzheimer's disease with THK5317 PET in a multimodal paradigm. Eur J Nucl Med Mol Imaging. 2016;43(9):1686–99.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Harada R, Okamura N, Furumoto S, Furukawa K, Ishiki A, Tomita N, et al. 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med. 2016;57(2):208–14.PubMedCrossRef Harada R, Okamura N, Furumoto S, Furukawa K, Ishiki A, Tomita N, et al. 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med. 2016;57(2):208–14.PubMedCrossRef
78.
Zurück zum Zitat Schöll M, Lockhart SN, Schonhaut DR, O'Neil JP, Janabi M, Ossenkoppele R, et al. PET imaging of Tau deposition in the aging human brain. Neuron. 2016;89(5):971–82.PubMedPubMedCentralCrossRef Schöll M, Lockhart SN, Schonhaut DR, O'Neil JP, Janabi M, Ossenkoppele R, et al. PET imaging of Tau deposition in the aging human brain. Neuron. 2016;89(5):971–82.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol. 2016;79(1):110–9.PubMedCrossRef Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol. 2016;79(1):110–9.PubMedCrossRef
80.
Zurück zum Zitat Passamonti L, Vazquez Rodriguez P, Hong YT, Allinson KS, Williamson D, Borchert RJ, et al. 18F-AV-1451 positron emission tomography in Alzheimer’s disease and progressive supranuclear palsy. Brain. 2017;140(3):781–91.PubMedPubMedCentral Passamonti L, Vazquez Rodriguez P, Hong YT, Allinson KS, Williamson D, Borchert RJ, et al. 18F-AV-1451 positron emission tomography in Alzheimer’s disease and progressive supranuclear palsy. Brain. 2017;140(3):781–91.PubMedPubMedCentral
81.
Zurück zum Zitat Ng KP, Pascoal TA, Mathotaarachchi S, Therriault J, Kang MS, Shin M, et al. Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain. Alzheimers Res Ther. 2017;9(1):25.PubMedPubMedCentralCrossRef Ng KP, Pascoal TA, Mathotaarachchi S, Therriault J, Kang MS, Shin M, et al. Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain. Alzheimers Res Ther. 2017;9(1):25.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Harada R, Ishiki A, Kai H, Sato N, Furukawa K, Furumoto S, et al. Correlations of 18F-THK5351 PET with postmortem burden of tau and astrogliosis in Alzheimer disease. J Nucl Med. 2018;59(4):671–4.PubMedCrossRef Harada R, Ishiki A, Kai H, Sato N, Furukawa K, Furumoto S, et al. Correlations of 18F-THK5351 PET with postmortem burden of tau and astrogliosis in Alzheimer disease. J Nucl Med. 2018;59(4):671–4.PubMedCrossRef
83.
Zurück zum Zitat Vermeiren C, Motte P, Viot D, Mairet-Coello G, Courade JP, Citron M, et al. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases. Mov Disord. 2018;33(2):273–81.PubMedCrossRef Vermeiren C, Motte P, Viot D, Mairet-Coello G, Courade JP, Citron M, et al. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases. Mov Disord. 2018;33(2):273–81.PubMedCrossRef
84.
Zurück zum Zitat Gobbi LC, Knust H, Körner M, Honer M, Czech C, Belli S, et al. Identification of three novel radiotracers for imaging aggregated tau in Alzheimer's disease with positron emission tomography. J Med Chem. 2017;60(17):7350–70.PubMedCrossRef Gobbi LC, Knust H, Körner M, Honer M, Czech C, Belli S, et al. Identification of three novel radiotracers for imaging aggregated tau in Alzheimer's disease with positron emission tomography. J Med Chem. 2017;60(17):7350–70.PubMedCrossRef
85.
Zurück zum Zitat Kroth H, Oden F, Molette J, Schieferstein H, Capotosti F, Mueller A, et al. Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer's disease and other tauopathies. Eur J Nucl Med Mol Imaging. 2019;46(10):2178–89.PubMedPubMedCentralCrossRef Kroth H, Oden F, Molette J, Schieferstein H, Capotosti F, Mueller A, et al. Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer's disease and other tauopathies. Eur J Nucl Med Mol Imaging. 2019;46(10):2178–89.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Furumoto S, Harada R, Rowe C, Villemagne V, Okamura N. Current status and future prospects of new radiotracers for molecular imaging of neuropathological changes in Alzheimer’s disease. Rinshogazo. 2019;35(8):933–42 (in Japanese). Furumoto S, Harada R, Rowe C, Villemagne V, Okamura N. Current status and future prospects of new radiotracers for molecular imaging of neuropathological changes in Alzheimer’s disease. Rinshogazo. 2019;35(8):933–42 (in Japanese).
87.
Zurück zum Zitat Albrecht DS, Granziera C, Hooker JM, Loggia ML. In Vivo imaging of human neuroinflammation. ACS Chem Neurosci. 2016;7(4):470–83.PubMedCrossRef Albrecht DS, Granziera C, Hooker JM, Loggia ML. In Vivo imaging of human neuroinflammation. ACS Chem Neurosci. 2016;7(4):470–83.PubMedCrossRef
88.
Zurück zum Zitat Janssen B, Mach RH. Development of brain PET imaging agents: Strategies for imaging neuroinflammation in Alzheimer's disease. Prog Mol Biol Transl Sci. 2019;165:371–99.PubMedCrossRef Janssen B, Mach RH. Development of brain PET imaging agents: Strategies for imaging neuroinflammation in Alzheimer's disease. Prog Mol Biol Transl Sci. 2019;165:371–99.PubMedCrossRef
89.
Zurück zum Zitat Ezura M, Kikuchi A, Ishiki A, Okamura N, Hasegawa T, Harada R, et al. Longitudinal changes in 18F-THK5351 positron emission tomography in corticobasal syndrome. Eur J Neurol. 2019;26(9):1205–11.PubMedCrossRef Ezura M, Kikuchi A, Ishiki A, Okamura N, Hasegawa T, Harada R, et al. Longitudinal changes in 18F-THK5351 positron emission tomography in corticobasal syndrome. Eur J Neurol. 2019;26(9):1205–11.PubMedCrossRef
91.
Zurück zum Zitat Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS. Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med. 2008;38(3):199–208.PubMedPubMedCentralCrossRef Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS. Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med. 2008;38(3):199–208.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Maramraju SH, Smith SD, Junnarkar SS, Schulz D, Stoll S, Ravindranath B, et al. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI. Phys Med Biol. 2011;56(8):2459–80.PubMedCrossRef Maramraju SH, Smith SD, Junnarkar SS, Schulz D, Stoll S, Ravindranath B, et al. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI. Phys Med Biol. 2011;56(8):2459–80.PubMedCrossRef
93.
Zurück zum Zitat Catana C, Procissi D, Wu Y, Judenhofer MS, Qi J, Pichler BJ, et al. Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci USA. 2008;105(10):3705–10.PubMedPubMedCentralCrossRef Catana C, Procissi D, Wu Y, Judenhofer MS, Qi J, Pichler BJ, et al. Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci USA. 2008;105(10):3705–10.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Schlemmer HP, Pichler BJ, Schmand M, Burbar Z, Michel C, Ladebeck R, et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology. 2008;248(3):1028–35.PubMedCrossRef Schlemmer HP, Pichler BJ, Schmand M, Burbar Z, Michel C, Ladebeck R, et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology. 2008;248(3):1028–35.PubMedCrossRef
95.
Zurück zum Zitat Kaneta T. A brief review of Japanese guidelines for the clinical use of (18)F-FDG-PET/MRI 2012 (Ver 1.0). Ann Nucl Med. 2013;27(4):309–13.PubMedCrossRef Kaneta T. A brief review of Japanese guidelines for the clinical use of (18)F-FDG-PET/MRI 2012 (Ver 1.0). Ann Nucl Med. 2013;27(4):309–13.PubMedCrossRef
96.
Zurück zum Zitat Aiello M, Cavaliere C, Fiorenza D, Duggento A, Passamonti L, Toschi N. Neuroinflammation in neurodegenerative diseases: current multi-modal imaging studies and future opportunities for hybrid PET/MRI. Neuroscience. 2019;403:125–35.PubMedCrossRef Aiello M, Cavaliere C, Fiorenza D, Duggento A, Passamonti L, Toschi N. Neuroinflammation in neurodegenerative diseases: current multi-modal imaging studies and future opportunities for hybrid PET/MRI. Neuroscience. 2019;403:125–35.PubMedCrossRef
97.
Zurück zum Zitat Stegger L, Martirosian P, Schwenzer N, Bisdas S, Kolb A, Pfannenberg C, et al. Simultaneous PET/MR imaging of the brain: feasibility of cerebral blood flow measurements with FAIR-TrueFISP arterial spin labeling MRI. Acta Radiol. 2012;53(9):1066–72.PubMedCrossRef Stegger L, Martirosian P, Schwenzer N, Bisdas S, Kolb A, Pfannenberg C, et al. Simultaneous PET/MR imaging of the brain: feasibility of cerebral blood flow measurements with FAIR-TrueFISP arterial spin labeling MRI. Acta Radiol. 2012;53(9):1066–72.PubMedCrossRef
98.
Zurück zum Zitat Dukart J, Mueller K, Barthel H, Villringer A, Sabri O, Schroeter ML, Alzheimer's Disease Neuroimaging Initiative. Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI. Psychiatry Res. 2013;212(3):230–6.PubMedCrossRef Dukart J, Mueller K, Barthel H, Villringer A, Sabri O, Schroeter ML, Alzheimer's Disease Neuroimaging Initiative. Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI. Psychiatry Res. 2013;212(3):230–6.PubMedCrossRef
99.
Zurück zum Zitat Rischpler C, Nekolla SG, Dregely I, Schwaiger M. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med. 2013;54(3):402–15.PubMedCrossRef Rischpler C, Nekolla SG, Dregely I, Schwaiger M. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med. 2013;54(3):402–15.PubMedCrossRef
100.
Zurück zum Zitat Nensa F, Poeppel TD, Beiderwellen K, Schelhorn J, Mahabadi AA, Erbel R, et al. Hybrid PET/MR imaging of the heart: feasibility and initial results. Radiology. 2013;268(2):366–73.PubMedCrossRef Nensa F, Poeppel TD, Beiderwellen K, Schelhorn J, Mahabadi AA, Erbel R, et al. Hybrid PET/MR imaging of the heart: feasibility and initial results. Radiology. 2013;268(2):366–73.PubMedCrossRef
101.
Zurück zum Zitat Parghane RV, Basu S. PET/computed tomography and PET/MR imaging: basic principles, methodology, and imaging protocol for musculoskeletal applications. PET Clin. 2018;13(4):459–76.PubMedCrossRef Parghane RV, Basu S. PET/computed tomography and PET/MR imaging: basic principles, methodology, and imaging protocol for musculoskeletal applications. PET Clin. 2018;13(4):459–76.PubMedCrossRef
102.
Zurück zum Zitat Hirsch FW, Sattler B, Sorge I, Kurch L, Viehweger A, Ritter L, et al. PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol. 2013;43(7):860–75.PubMedPubMedCentralCrossRef Hirsch FW, Sattler B, Sorge I, Kurch L, Viehweger A, Ritter L, et al. PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol. 2013;43(7):860–75.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Sonni I, Baratto L, Park S, Hatami N, Srinivas S, Davidzon G, et al. Initial experience with a SiPM-based PET/CT scanner: influence of acquisition time on image quality. EJNMMI Phys. 2018;5(1):9.PubMedPubMedCentralCrossRef Sonni I, Baratto L, Park S, Hatami N, Srinivas S, Davidzon G, et al. Initial experience with a SiPM-based PET/CT scanner: influence of acquisition time on image quality. EJNMMI Phys. 2018;5(1):9.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Trägårdh E, Minarik D, Almquist H, Bitzén U, Garpered S, Hvittfelt E, et al. Impact of acquisition time and penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm on a Si-photomultiplier-based PET-CT system for 18F-FDG. EJNMMI Res. 2019;9(1):64.PubMedPubMedCentralCrossRef Trägårdh E, Minarik D, Almquist H, Bitzén U, Garpered S, Hvittfelt E, et al. Impact of acquisition time and penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm on a Si-photomultiplier-based PET-CT system for 18F-FDG. EJNMMI Res. 2019;9(1):64.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Wagatsuma K, Miwa K, Sakata M, Oda K, Ono H, Kameyama M, et al. Comparison between new-generation SiPM-based and conventional PMT-based TOF-PET/CT. Phys Med. 2017;42:203–10.PubMedCrossRef Wagatsuma K, Miwa K, Sakata M, Oda K, Ono H, Kameyama M, et al. Comparison between new-generation SiPM-based and conventional PMT-based TOF-PET/CT. Phys Med. 2017;42:203–10.PubMedCrossRef
106.
Zurück zum Zitat Yeom JY, Vinke R, Levin CS. Optimizing timing performance of silicon photomultiplier-based scintillation detectors. Phys Med Biol. 2013;58(4):1207–20.PubMedPubMedCentralCrossRef Yeom JY, Vinke R, Levin CS. Optimizing timing performance of silicon photomultiplier-based scintillation detectors. Phys Med Biol. 2013;58(4):1207–20.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat López-Mora DA, Flotats A, Fuentes-Ocampo F, Camacho V, Fernández A, Ruiz A, et al. Comparison of image quality and lesion detection between digital and analog PET/CT. Eur J Nucl Med Mol Imaging. 2019;46(6):1383–90.PubMedCrossRef López-Mora DA, Flotats A, Fuentes-Ocampo F, Camacho V, Fernández A, Ruiz A, et al. Comparison of image quality and lesion detection between digital and analog PET/CT. Eur J Nucl Med Mol Imaging. 2019;46(6):1383–90.PubMedCrossRef
Metadaten
Titel
PET and SPECT imaging of the brain: a review on the current status of nuclear medicine in Japan
verfasst von
Tomohiro Kaneta
Publikationsdatum
10.02.2020
Verlag
Springer Singapore
Erschienen in
Japanese Journal of Radiology / Ausgabe 4/2020
Print ISSN: 1867-1071
Elektronische ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-019-00901-8

Weitere Artikel der Ausgabe 4/2020

Japanese Journal of Radiology 4/2020 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.