Skip to main content
Erschienen in: Annals of Nuclear Medicine 5/2020

20.03.2020 | Review Article

Pet tracers for vulnerable plaque imaging

verfasst von: Stavroula Giannakou, George Angelidis, Ioannis Tsougos, Varvara Valotassiou, Konstantinos Kappas, Panagiotis Georgoulias

Erschienen in: Annals of Nuclear Medicine | Ausgabe 5/2020

Einloggen, um Zugang zu erhalten

Abstract

Most of the acute ischemic events, such as acute coronary syndromes and stroke, are attributed to vulnerable plaques. These lesions have common histological and pathophysiological features, including inflammatory cell infiltration, neo-angiogenesis, remodelling, haemorrhage predisposition, thin fibrous cap, large lipid core, and micro-calcifications. Early detection of the presence of a plaque prone to rupture could be life-saving for the patient; however, vulnerable plaques usually cause non-haemodynamically significant stenosis, and anatomical imaging techniques often underestimate, or may not even detect, these lesions. Although ultrasound techniques are currently considered as the “first-line” examinations for the diagnostic investigation and treatment monitoring in patients with atherosclerotic plaques, positron emission tomography (PET) imaging could open new horizons in the assessment of atherosclerosis, given its ability to visualize metabolic processes and provide molecular-functional evidence regarding vulnerable plaques. Moreover, modern hybrid imaging techniques, combining PET with computed tomography or magnetic resonance imaging, can evaluate simultaneously both functional and morphological parameters of the atherosclerotic plaques, and are expected to significantly expand their clinical role in the future. This review summarizes current research on the PET imaging of the vulnerable atherosclerotic plaques, outlining current and potential applications in the clinical setting.
Literatur
1.
Zurück zum Zitat Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6–245.PubMed Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6–245.PubMed
2.
Zurück zum Zitat Bucerius J, Hyafil F, Verberne HJ, et al. Position paper of the Cardiovascular Committee of the European association of nuclear medicine (EANM) on pet imaging of atherosclerosis. Eur J Nucl Med Mol Imaging. 2016;43(4):780–92.PubMed Bucerius J, Hyafil F, Verberne HJ, et al. Position paper of the Cardiovascular Committee of the European association of nuclear medicine (EANM) on pet imaging of atherosclerosis. Eur J Nucl Med Mol Imaging. 2016;43(4):780–92.PubMed
3.
Zurück zum Zitat Spacek M, Zemanek D, Hutyra M, et al. Vulnerable atherosclerotic plaque—a review of current concepts and advanced imaging. Biomed Pap Med Fac Univ Repub. 2018;162(1):10–7. Spacek M, Zemanek D, Hutyra M, et al. Vulnerable atherosclerotic plaque—a review of current concepts and advanced imaging. Biomed Pap Med Fac Univ Repub. 2018;162(1):10–7.
4.
Zurück zum Zitat Lee KY, Chang K. Understanding vulnerable plaques: current status and future directions. Korean Circ J. 2019;49(12):1115–22.PubMedPubMedCentral Lee KY, Chang K. Understanding vulnerable plaques: current status and future directions. Korean Circ J. 2019;49(12):1115–22.PubMedPubMedCentral
5.
Zurück zum Zitat Sakamoto A, Virmani R, Finn AV. Coronary artery calcification: recent developments in our understanding of its pathologic and clinical significance. Curr Opin Cardiol. 2018;33(6):645–52.PubMed Sakamoto A, Virmani R, Finn AV. Coronary artery calcification: recent developments in our understanding of its pathologic and clinical significance. Curr Opin Cardiol. 2018;33(6):645–52.PubMed
6.
Zurück zum Zitat Arbab-Zadeh A, Fuster V. The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J Am Coll Cardiol. 2015;65(8):846–55.PubMedPubMedCentral Arbab-Zadeh A, Fuster V. The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J Am Coll Cardiol. 2015;65(8):846–55.PubMedPubMedCentral
7.
Zurück zum Zitat Kumar A, Thompson EW, Lefieux A, et al. High coronary shear stress in patients with coronary artery disease predicts myocardial infarction. J Am Coll Cardiol. 2018;72(16):1926–35.PubMed Kumar A, Thompson EW, Lefieux A, et al. High coronary shear stress in patients with coronary artery disease predicts myocardial infarction. J Am Coll Cardiol. 2018;72(16):1926–35.PubMed
8.
Zurück zum Zitat Scherer DJ, Psaltis PJ. Future imaging of atherosclerosis: molecular imaging of coronary atherosclerosis with 18F positron emission tomography. Cardiovasc Diagn Ther. 2016;6(4):354–67.PubMedPubMedCentral Scherer DJ, Psaltis PJ. Future imaging of atherosclerosis: molecular imaging of coronary atherosclerosis with 18F positron emission tomography. Cardiovasc Diagn Ther. 2016;6(4):354–67.PubMedPubMedCentral
9.
Zurück zum Zitat Tatsumi M, Cohade C, Nakamoto Y, Wahl RL. Fluorodeoxyglucose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology. 2003;229(3):831–7.PubMed Tatsumi M, Cohade C, Nakamoto Y, Wahl RL. Fluorodeoxyglucose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology. 2003;229(3):831–7.PubMed
10.
Zurück zum Zitat Figueroa AL, Abdelbaky A, Truong QA, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging. 2013;6:1250–9.PubMed Figueroa AL, Abdelbaky A, Truong QA, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging. 2013;6:1250–9.PubMed
11.
Zurück zum Zitat Kafouris PP, Koutagiar IP, Georgakopoulos AT, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography-based textural features for prediction of event prone carotid atherosclerotic plaques. J Nucl Cardiol. 2019;11:1–1. Kafouris PP, Koutagiar IP, Georgakopoulos AT, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography-based textural features for prediction of event prone carotid atherosclerotic plaques. J Nucl Cardiol. 2019;11:1–1.
12.
Zurück zum Zitat Kelly PJ, Camps-Renom P, Giannotti N, et al. Carotid plaque inflammation imaged by 18F-fluorodeoxyglucose positron emission tomography and risk of early recurrent stroke. Stroke. 2019;50(7):1776–873. Kelly PJ, Camps-Renom P, Giannotti N, et al. Carotid plaque inflammation imaged by 18F-fluorodeoxyglucose positron emission tomography and risk of early recurrent stroke. Stroke. 2019;50(7):1776–873.
13.
Zurück zum Zitat Tarkin JM, Joshi FR, Rajani NK, Rudd JH. PET imaging of atherosclerosis. Future Cardiol. 2015;11(1):115–31.PubMed Tarkin JM, Joshi FR, Rajani NK, Rudd JH. PET imaging of atherosclerosis. Future Cardiol. 2015;11(1):115–31.PubMed
14.
Zurück zum Zitat AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the journal of nuclear cardiology in 2015 part 1 of 2: plaque imaging, positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol. 2016;23(1):10–22. AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the journal of nuclear cardiology in 2015 part 1 of 2: plaque imaging, positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol. 2016;23(1):10–22.
15.
Zurück zum Zitat Hu L, Qiu C, Wang X, et al. The association between diabetes mellitus and reduction in myocardial glucose uptake: a population-based 18F-FDG PET/CT study. BMC Cardiovasc Disord. 2018;18(1):203.PubMedPubMedCentral Hu L, Qiu C, Wang X, et al. The association between diabetes mellitus and reduction in myocardial glucose uptake: a population-based 18F-FDG PET/CT study. BMC Cardiovasc Disord. 2018;18(1):203.PubMedPubMedCentral
17.
Zurück zum Zitat Kang MK, Kim CJ, Choo EH, et al. Anti-inflammatory effect of statin is continuously working throughout use: a prospective three time point 18F-FDG PET/CT imaging study. Int J Cardiovasc Imaging. 2019;35(9):45–1753. Kang MK, Kim CJ, Choo EH, et al. Anti-inflammatory effect of statin is continuously working throughout use: a prospective three time point 18F-FDG PET/CT imaging study. Int J Cardiovasc Imaging. 2019;35(9):45–1753.
18.
Zurück zum Zitat Zaman RT, Yousefi S, Chibana H, et al. In vivo translation of the CIRPI system: revealing molecular pathology of rabbit aortic atherosclerotic plaques. J Nucl Med. 2019;60(9):1308–16.PubMedPubMedCentral Zaman RT, Yousefi S, Chibana H, et al. In vivo translation of the CIRPI system: revealing molecular pathology of rabbit aortic atherosclerotic plaques. J Nucl Med. 2019;60(9):1308–16.PubMedPubMedCentral
19.
Zurück zum Zitat Meester EJ, Krenning BJ, de Swart J, et al. Perspectives on small animal radionuclide imaging; considerations and advances in atherosclerosis. Front Med (Lausanne). 2019;6:39. Meester EJ, Krenning BJ, de Swart J, et al. Perspectives on small animal radionuclide imaging; considerations and advances in atherosclerosis. Front Med (Lausanne). 2019;6:39.
20.
Zurück zum Zitat Tahara N, Mukherjee J, de Haas HJ, et al. 2-Deoxy-2-[18F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis. Nat Med. 2014;20:215–9.PubMed Tahara N, Mukherjee J, de Haas HJ, et al. 2-Deoxy-2-[18F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis. Nat Med. 2014;20:215–9.PubMed
21.
Zurück zum Zitat Tarkin JM, Joshi FR, Evans NR, et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to (18F) FDG PET imaging. J Am Coll Cardiol. 2017;69(14):1774–911.PubMedPubMedCentral Tarkin JM, Joshi FR, Evans NR, et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to (18F) FDG PET imaging. J Am Coll Cardiol. 2017;69(14):1774–911.PubMedPubMedCentral
22.
Zurück zum Zitat Wan MYS, Endozo R, Michopoulou S, et al. PET/CT imaging of unstable carotid plaque with 68Ga-labeled somatostatin receptor ligand. J Nucl Med. 2017;58(5):774–80.PubMed Wan MYS, Endozo R, Michopoulou S, et al. PET/CT imaging of unstable carotid plaque with 68Ga-labeled somatostatin receptor ligand. J Nucl Med. 2017;58(5):774–80.PubMed
23.
Zurück zum Zitat Rinne P, Hellberg S, Kiugel M, et al. Comparison of somatostatin receptor 2-targeting PET tracers in the detection of mouse atherosclerotic plaques. Mol Imaging Biol. 2016;18(1):99–108.PubMed Rinne P, Hellberg S, Kiugel M, et al. Comparison of somatostatin receptor 2-targeting PET tracers in the detection of mouse atherosclerotic plaques. Mol Imaging Biol. 2016;18(1):99–108.PubMed
24.
Zurück zum Zitat Ammirati E, Moroni F, Magnoni M, et al. Carotid artery plaque uptake of 11C-PK11195 inversely correlates with circulating monocytes and classical CD14++CD16− monocytes expressing HLA-DR. Int J Cardiol Heart Vasc. 2018;21:32–5.PubMedPubMedCentral Ammirati E, Moroni F, Magnoni M, et al. Carotid artery plaque uptake of 11C-PK11195 inversely correlates with circulating monocytes and classical CD14++CD16 monocytes expressing HLA-DR. Int J Cardiol Heart Vasc. 2018;21:32–5.PubMedPubMedCentral
25.
Zurück zum Zitat Bucerius J, Dijkgraaf I, Mottaghy FM, Schurgers LJ. Target identification for the diagnosis and intervention of vulnerable atherosclerotic plaques beyond 18F-fluorodeoxyglucose positron emission tomography imaging: promising tracers on the horizon. Eur J Nucl Med Mol Imaging. 2019;46(1):51–265. Bucerius J, Dijkgraaf I, Mottaghy FM, Schurgers LJ. Target identification for the diagnosis and intervention of vulnerable atherosclerotic plaques beyond 18F-fluorodeoxyglucose positron emission tomography imaging: promising tracers on the horizon. Eur J Nucl Med Mol Imaging. 2019;46(1):51–265.
26.
Zurück zum Zitat Hellberg S, Silvola JM, Kiugel M, et al. Type 2 diabetes enhances arterial uptake of choline in atherosclerotic mice: an imaging study with positron emission tomography tracer 18F-fluoromethylcholine. Cardiovasc Diabetol. 2016;15:26.PubMedPubMedCentral Hellberg S, Silvola JM, Kiugel M, et al. Type 2 diabetes enhances arterial uptake of choline in atherosclerotic mice: an imaging study with positron emission tomography tracer 18F-fluoromethylcholine. Cardiovasc Diabetol. 2016;15:26.PubMedPubMedCentral
27.
Zurück zum Zitat Beldman TJ, Malinova TS, Desclos E, et al. Nanoparticle-aided characterization of arterial endothelial architecture during atherosclerosis progression and metabolic therapy. ACS Nano. 2019;13(12):13759–74.PubMedPubMedCentral Beldman TJ, Malinova TS, Desclos E, et al. Nanoparticle-aided characterization of arterial endothelial architecture during atherosclerosis progression and metabolic therapy. ACS Nano. 2019;13(12):13759–74.PubMedPubMedCentral
28.
Zurück zum Zitat Zhao Y, Adjei AA. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist. 2015;20(6):660–73.PubMedPubMedCentral Zhao Y, Adjei AA. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist. 2015;20(6):660–73.PubMedPubMedCentral
29.
Zurück zum Zitat Jenkins WS, Vesey AT, Vickers A, et al. In vivo alpha-V beta-3 integrin expression in human aortic atherosclerosis. Heart. 2019;105(24):1868–75.PubMed Jenkins WS, Vesey AT, Vickers A, et al. In vivo alpha-V beta-3 integrin expression in human aortic atherosclerosis. Heart. 2019;105(24):1868–75.PubMed
30.
Zurück zum Zitat Syed MB, Fletcher AJ, Forsythe RO, et al. Emerging techniques in atherosclerosis imaging. Br J Radiol. 2019;92(1103):20180309.PubMedPubMedCentral Syed MB, Fletcher AJ, Forsythe RO, et al. Emerging techniques in atherosclerosis imaging. Br J Radiol. 2019;92(1103):20180309.PubMedPubMedCentral
31.
Zurück zum Zitat Vigne J, Thackeray J, Essers J, et al. Current and emerging preclinical approaches for imaging-based characterization of atherosclerosis. Mol Imaging Biol. 2018;20(6):869–87.PubMed Vigne J, Thackeray J, Essers J, et al. Current and emerging preclinical approaches for imaging-based characterization of atherosclerosis. Mol Imaging Biol. 2018;20(6):869–87.PubMed
32.
Zurück zum Zitat Shimizu Y, Motomura A, Takakura H, et al. Accumulation of hypoxia imaging probe “18F-FMISO” in macrophages depends on macrophage polarization in addition to hypoxic state. Ann Nucl Med. 2019;33(5):362–7.PubMed Shimizu Y, Motomura A, Takakura H, et al. Accumulation of hypoxia imaging probe “18F-FMISO” in macrophages depends on macrophage polarization in addition to hypoxic state. Ann Nucl Med. 2019;33(5):362–7.PubMed
33.
Zurück zum Zitat van der Valk FM, Sluimer JC, Vöö SA, et al. In vivo imaging of hypoxia in atherosclerotic plaques in humans. JACC Cardiovasc Imaging. 2015;8(11):1340–1.PubMed van der Valk FM, Sluimer JC, Vöö SA, et al. In vivo imaging of hypoxia in atherosclerotic plaques in humans. JACC Cardiovasc Imaging. 2015;8(11):1340–1.PubMed
34.
Zurück zum Zitat Davidson CQ, Phenix CP, Tai TC, et al. Searching for novel PET radiotracers: imaging cardiac perfusion, metabolism and inflammation. Am J Nucl Med Mol Imaging. 2018;8(3):200–27.PubMedPubMedCentral Davidson CQ, Phenix CP, Tai TC, et al. Searching for novel PET radiotracers: imaging cardiac perfusion, metabolism and inflammation. Am J Nucl Med Mol Imaging. 2018;8(3):200–27.PubMedPubMedCentral
35.
Zurück zum Zitat Rangasamy L, Geronimo BD, Ortín I, et al. Molecular imaging probes based on matrix metalloproteinase inhibitors (MMPIs). Molecules. 2019;24(16):E2982.PubMed Rangasamy L, Geronimo BD, Ortín I, et al. Molecular imaging probes based on matrix metalloproteinase inhibitors (MMPIs). Molecules. 2019;24(16):E2982.PubMed
36.
Zurück zum Zitat Reimann C, Brangsch J, Colletini F, et al. Molecular imaging of the extracellular matrix in the context of atherosclerosis. Adv Drug Deliv Rev. 2017;113:49–60.PubMed Reimann C, Brangsch J, Colletini F, et al. Molecular imaging of the extracellular matrix in the context of atherosclerosis. Adv Drug Deliv Rev. 2017;113:49–60.PubMed
37.
Zurück zum Zitat Joshi NV, Vesey AT, Williams MC, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383:705–13.PubMed Joshi NV, Vesey AT, Williams MC, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383:705–13.PubMed
38.
Zurück zum Zitat Cocker MS, Spence JD, Hammond R, et al. 18F-NaF PET/CT identifies active calcification in carotid plaque. JACC Cardiovasc Imaging. 2017;10(4):486–8.PubMed Cocker MS, Spence JD, Hammond R, et al. 18F-NaF PET/CT identifies active calcification in carotid plaque. JACC Cardiovasc Imaging. 2017;10(4):486–8.PubMed
39.
Zurück zum Zitat Oliveira-Santos M, Castelo-Branco M, Silva R, et al. Atherosclerotic plaque metabolism in high cardiovascular risk subjects—a subclinical atherosclerosis imaging study with 18F-NaF PET-CT. Atherosclerosis. 2017;260:41–6.PubMed Oliveira-Santos M, Castelo-Branco M, Silva R, et al. Atherosclerotic plaque metabolism in high cardiovascular risk subjects—a subclinical atherosclerosis imaging study with 18F-NaF PET-CT. Atherosclerosis. 2017;260:41–6.PubMed
40.
Zurück zum Zitat Kitagawa T, Yamamoto H, Toshimitsu S, et al. 18F-sodium fluoride positron emission tomography for molecular imaging of coronary atherosclerosis based on computed tomography analysis. Atherosclerosis. 2017;263:385–92.PubMed Kitagawa T, Yamamoto H, Toshimitsu S, et al. 18F-sodium fluoride positron emission tomography for molecular imaging of coronary atherosclerosis based on computed tomography analysis. Atherosclerosis. 2017;263:385–92.PubMed
41.
Zurück zum Zitat Kitagawa T, Yamamoto H, Toshimitsu S, et al. Data on analysis of coronary atherosclerosis on computed tomography and 18F-sodium fluoride positron emission tomography. Data Brief. 2017;12(13):341–5. Kitagawa T, Yamamoto H, Toshimitsu S, et al. Data on analysis of coronary atherosclerosis on computed tomography and 18F-sodium fluoride positron emission tomography. Data Brief. 2017;12(13):341–5.
42.
Zurück zum Zitat Lee JM, Bang JI, Koo BK, et al. Clinical relevance of 18F-sodium fluoride positron-emission tomography in noninvasive identification of high-risk plaque in patients with coronary artery disease. Circ Cardiovasc Imaging. 2017;10(11):e006704.PubMed Lee JM, Bang JI, Koo BK, et al. Clinical relevance of 18F-sodium fluoride positron-emission tomography in noninvasive identification of high-risk plaque in patients with coronary artery disease. Circ Cardiovasc Imaging. 2017;10(11):e006704.PubMed
43.
Zurück zum Zitat Forsythe RO, Dweck MR, McBride OMB, et al. 18F-sodium fluoride uptake in abdominal aortic aneurysms: The SoFIA3 study. J Am Coll Cardiol. 2018;671(5):513–23. Forsythe RO, Dweck MR, McBride OMB, et al. 18F-sodium fluoride uptake in abdominal aortic aneurysms: The SoFIA3 study. J Am Coll Cardiol. 2018;671(5):513–23.
44.
Zurück zum Zitat Zhang Y, Li H, Jia Y, et al. Noninvasive assessment of carotid plaques calcification by 18F-sodium fluoride accumulation: correlation with pathology. J Stroke Cerebrovasc Dis. 2018;27(7):1796–801.PubMed Zhang Y, Li H, Jia Y, et al. Noninvasive assessment of carotid plaques calcification by 18F-sodium fluoride accumulation: correlation with pathology. J Stroke Cerebrovasc Dis. 2018;27(7):1796–801.PubMed
45.
Zurück zum Zitat Li L, Li X, Jia Y, et al. Sodium-fluoride PET-CT for the non-invasive evaluation of coronary plaques in symptomatic patients with coronary artery disease: a cross-correlation study with intravascular ultrasound. Eur J Nucl Med Mol Imaging. 2018;45(12):2181–9.PubMedPubMedCentral Li L, Li X, Jia Y, et al. Sodium-fluoride PET-CT for the non-invasive evaluation of coronary plaques in symptomatic patients with coronary artery disease: a cross-correlation study with intravascular ultrasound. Eur J Nucl Med Mol Imaging. 2018;45(12):2181–9.PubMedPubMedCentral
46.
Zurück zum Zitat Kitagawa T, Yamamoto H, Nakamoto Y, et al. Predictive value of 18F-sodium fluoride positron emission tomography in detecting high-risk coronary artery disease in combination with computed tomography. J Am Heart Assoc. 2018;7(20):e010224.PubMedPubMedCentral Kitagawa T, Yamamoto H, Nakamoto Y, et al. Predictive value of 18F-sodium fluoride positron emission tomography in detecting high-risk coronary artery disease in combination with computed tomography. J Am Heart Assoc. 2018;7(20):e010224.PubMedPubMedCentral
47.
Zurück zum Zitat Hop H, de Boer SA, Reijrink M, et al. 18F-sodium fluoride positron emission tomography assessed microcalcifications in culprit and non-culprit human carotid plaques. J Nucl Cardiol. 2019;26(4):1064–75.PubMed Hop H, de Boer SA, Reijrink M, et al. 18F-sodium fluoride positron emission tomography assessed microcalcifications in culprit and non-culprit human carotid plaques. J Nucl Cardiol. 2019;26(4):1064–75.PubMed
48.
Zurück zum Zitat Kwiecinski J, Dey D, Cadet S, et al. Peri-coronary adipose tissue density is associated with 18F-sodium fluoride coronary uptake in stable patients with high-risk plaques. JACC Cardiovasc Imaging. 2019;12(10):2000–10.PubMedPubMedCentral Kwiecinski J, Dey D, Cadet S, et al. Peri-coronary adipose tissue density is associated with 18F-sodium fluoride coronary uptake in stable patients with high-risk plaques. JACC Cardiovasc Imaging. 2019;12(10):2000–10.PubMedPubMedCentral
49.
Zurück zum Zitat Kwiecinski J, Dey D, Cadet S, et al. Predictors of 18F-sodium fluoride uptake in patients with stable coronary artery disease and adverse plaque features on computed tomography angiography. Eur Heart J Cardiovasc Imaging. 2020;21(1):58–66.PubMed Kwiecinski J, Dey D, Cadet S, et al. Predictors of 18F-sodium fluoride uptake in patients with stable coronary artery disease and adverse plaque features on computed tomography angiography. Eur Heart J Cardiovasc Imaging. 2020;21(1):58–66.PubMed
50.
Zurück zum Zitat Fujimoto K, Norikane T, Yamamoto Y, et al. Association between carotid 18F-NaF and 18F-FDG uptake on PET/CT with ischemic vascular brain disease on MRI in patients with carotid artery disease. Ann Nucl Med. 2019;33(12):907–15.PubMed Fujimoto K, Norikane T, Yamamoto Y, et al. Association between carotid 18F-NaF and 18F-FDG uptake on PET/CT with ischemic vascular brain disease on MRI in patients with carotid artery disease. Ann Nucl Med. 2019;33(12):907–15.PubMed
51.
Zurück zum Zitat Sorci O, Batzdorf AS, Mayer M, et al. 18F-sodium fluoride PET/CT provides prognostic clarity compared to calcium and framingham risk scoring when addressing whole-heart arterial calcification. Eur J Nucl Med Mol Imaging. 2019;16:1. Sorci O, Batzdorf AS, Mayer M, et al. 18F-sodium fluoride PET/CT provides prognostic clarity compared to calcium and framingham risk scoring when addressing whole-heart arterial calcification. Eur J Nucl Med Mol Imaging. 2019;16:1.
52.
Zurück zum Zitat Oliveira-Santos M, McMahon G, Castelo-Branco M, et al. Renal artery wall 18F-NaF activity and glomerular filtration rate: an exploratory analysis in a high cardiovascular risk population. Nucl Med Commun. 2019;41(2):126–32. Oliveira-Santos M, McMahon G, Castelo-Branco M, et al. Renal artery wall 18F-NaF activity and glomerular filtration rate: an exploratory analysis in a high cardiovascular risk population. Nucl Med Commun. 2019;41(2):126–32.
53.
Zurück zum Zitat Kitagawa T, Nakamoto Y, Fujii Y, et al. Relationship between coronary arterial 18F-sodium fluoride uptake and epicardial adipose tissue analyzed using computed tomography. Eur J Nucl Med Mol Imaging. 2020;2:1. Kitagawa T, Nakamoto Y, Fujii Y, et al. Relationship between coronary arterial 18F-sodium fluoride uptake and epicardial adipose tissue analyzed using computed tomography. Eur J Nucl Med Mol Imaging. 2020;2:1.
54.
Zurück zum Zitat Kwiecinski J, Cadet S, Daghem M, et al. Whole-vessel coronary 18F-sodium fluoride PET for assessment of the global coronary microcalcification burden. Eur J Nucl Med Mol Imaging. 2020;2:1. Kwiecinski J, Cadet S, Daghem M, et al. Whole-vessel coronary 18F-sodium fluoride PET for assessment of the global coronary microcalcification burden. Eur J Nucl Med Mol Imaging. 2020;2:1.
55.
Zurück zum Zitat Chae SY, Kwon TW, Jin S, et al. A phase 1 first-in-human study of 18F-GP1 positron emission tomography for imaging acute arterial thrombosis. EJNMMI Res. 2019;9(1):1. Chae SY, Kwon TW, Jin S, et al. A phase 1 first-in-human study of 18F-GP1 positron emission tomography for imaging acute arterial thrombosis. EJNMMI Res. 2019;9(1):1.
Metadaten
Titel
Pet tracers for vulnerable plaque imaging
verfasst von
Stavroula Giannakou
George Angelidis
Ioannis Tsougos
Varvara Valotassiou
Konstantinos Kappas
Panagiotis Georgoulias
Publikationsdatum
20.03.2020
Verlag
Springer Singapore
Erschienen in
Annals of Nuclear Medicine / Ausgabe 5/2020
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-020-01458-7

Weitere Artikel der Ausgabe 5/2020

Annals of Nuclear Medicine 5/2020 Zur Ausgabe