Skip to main content
Erschienen in: Clinical Pharmacokinetics 2/2005

01.02.2005 | Original Research Article

Pharmacokinetic/Pharmacodynamic Modelling of Antibacterials In Vitro and In Vivo Using Bacterial Growth and Kill Kinetics

The Minimum Inhibitory Concentration versus Stationary Concentration

verfasst von: Dr Johan W. Mouton, Alexander A. Vinks

Erschienen in: Clinical Pharmacokinetics | Ausgabe 2/2005

Einloggen, um Zugang zu erhalten

Abstract

Background

The minimum inhibitory concentration (MIC) is the in vitro reference value to describe the activity of an antibacterial against micro-organisms. It does not represent the dynamic effect of the antimicrobial at any point in time, but rather the total antimicrobial effect over the incubation period at a fixed concentration.

Objective

To explore the concentration-effect relationship of antimicrobial concentrations against micro-organisms in relation to the MIC.

Methods

Time-kill curves were generated for ceftazidime, meropenem and tobramycin against Pseudomonas aeruginosa. The Hill equation with variable slope was fit to the time-kill data, and mathematical models of growth and kill were explored with reference to the MIC.

Results

With declining concentrations, bacterial killing will decrease until a specific threshold concentration is reached. This concentration, at which bacteria are neither killed nor able to grow, is named the stationary concentration (SC) and is not equal to the MIC. Pharmacokinetic/pharmacodynamic simulations over a range of kill rates, growth rates and slope factors showed that for β-lactam antibacterials, the SC is close to the MIC value, which may explain why concentrations in vivo need to be above the MIC, while regrowth of bacteria occurs when concentrations decline below the MIC. For concentration-dependent antibacterials, such as aminoglycosides and quinolones, the SC is shown to be markedly different from the MIC and, in general, is much lower.

Conclusion

The MIC is not a good pharmacodynamic parameter to characterise the concentration effect relationship of a given antimicrobial. For ‘concentration independent’ antimicrobials the SC is likely to be close to the MIC, but may be much lower for ‘concentration dependent’ antimicrobials, and may explain sub-MIC effects.
Literatur
1.
Zurück zum Zitat Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26(1): 1–10PubMedCrossRef Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26(1): 1–10PubMedCrossRef
2.
Zurück zum Zitat Nolting A, Derendorf H. Pharmacokinetic/pharmacodynamic modelling of antibiotics. In: Derendorf H, Hochhaus G, editors. Handbook of pharmacokinetic/pharmacodynamic correlation. Boca Raton (FL): CRC Press, 1995: 363–88 Nolting A, Derendorf H. Pharmacokinetic/pharmacodynamic modelling of antibiotics. In: Derendorf H, Hochhaus G, editors. Handbook of pharmacokinetic/pharmacodynamic correlation. Boca Raton (FL): CRC Press, 1995: 363–88
3.
Zurück zum Zitat Bouvier d’Yvoire MJY, Maire PH. Dosage regimens of antibacterials: implications of a pharmacokinetic/pharmacodynamic model. Clin Drug Invest 1996; 11: 229–39CrossRef Bouvier d’Yvoire MJY, Maire PH. Dosage regimens of antibacterials: implications of a pharmacokinetic/pharmacodynamic model. Clin Drug Invest 1996; 11: 229–39CrossRef
4.
Zurück zum Zitat National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard M7-A5. Wayne (NB): NCCLS, 2000 National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard M7-A5. Wayne (NB): NCCLS, 2000
5.
Zurück zum Zitat Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001; 48 Suppl. 1: 5–16PubMedCrossRef Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001; 48 Suppl. 1: 5–16PubMedCrossRef
6.
Zurück zum Zitat Mouton JW, Dudley MN, Cars O, et al. Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs. Int J Antimicrob Agents 2002; 19(4): 355–8PubMedCrossRef Mouton JW, Dudley MN, Cars O, et al. Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs. Int J Antimicrob Agents 2002; 19(4): 355–8PubMedCrossRef
7.
Zurück zum Zitat Mouton JW, Vinks AA, Punt NC. Pharmacokinetic-pharmacodynamic modeling of activity of ceftazidime during continuous and intermittent infusion. Antimicrob Agents Chemother 1997; 41(4): 733–8PubMed Mouton JW, Vinks AA, Punt NC. Pharmacokinetic-pharmacodynamic modeling of activity of ceftazidime during continuous and intermittent infusion. Antimicrob Agents Chemother 1997; 41(4): 733–8PubMed
8.
Zurück zum Zitat White CA, Toothaker RD, Smith AL, et al. In vitro evaluation of the determinants of bactericidal activity of ampicillin dosing regimens against Escherichia coli. Antimicrob Agents Chemother 1989; 33(7): 1046–51PubMedCrossRef White CA, Toothaker RD, Smith AL, et al. In vitro evaluation of the determinants of bactericidal activity of ampicillin dosing regimens against Escherichia coli. Antimicrob Agents Chemother 1989; 33(7): 1046–51PubMedCrossRef
9.
Zurück zum Zitat White CA, Toothaker RD, Smith AL, et al. Correction for bacterial loss in in vitro dilution models. Antimicrob Agents Chemother 1987; 31(11): 1859–60PubMedCrossRef White CA, Toothaker RD, Smith AL, et al. Correction for bacterial loss in in vitro dilution models. Antimicrob Agents Chemother 1987; 31(11): 1859–60PubMedCrossRef
10.
Zurück zum Zitat Zhi JG, Nightingale CH, Quintiliani R. Microbial pharmaco-dynamics of piperacillin in neutropenic mice of systematic infection due to Pseudomonas aeruginosa. J Pharmacokinet Biopharm 1988; 16(4): 355–75PubMed Zhi JG, Nightingale CH, Quintiliani R. Microbial pharmaco-dynamics of piperacillin in neutropenic mice of systematic infection due to Pseudomonas aeruginosa. J Pharmacokinet Biopharm 1988; 16(4): 355–75PubMed
11.
Zurück zum Zitat Mattie H, van Dokkum AM, Brus-Weijer L, et al. Antibacterial activity of four cephalosporins in an experimental infection in relation to in vitro effect and pharmacokinetics. J Infect Dis 1990; 162(3): 717–22PubMedCrossRef Mattie H, van Dokkum AM, Brus-Weijer L, et al. Antibacterial activity of four cephalosporins in an experimental infection in relation to in vitro effect and pharmacokinetics. J Infect Dis 1990; 162(3): 717–22PubMedCrossRef
12.
Zurück zum Zitat Corvaisier S, Maire PH, Bouvier d’Yvoire MY, et al. Comparisons between antimicrobial pharmacodynamic indices and bacterial killing as described by using the Zhi model. Antimicrob Agents Chemother 1998; 42(71): 1731–7PubMed Corvaisier S, Maire PH, Bouvier d’Yvoire MY, et al. Comparisons between antimicrobial pharmacodynamic indices and bacterial killing as described by using the Zhi model. Antimicrob Agents Chemother 1998; 42(71): 1731–7PubMed
14.
Zurück zum Zitat Vogelman B, Craig WA. Kinetics of antimicrobial activity. J Pediatr 1986; 108 (5 Pt 2): 835–40PubMedCrossRef Vogelman B, Craig WA. Kinetics of antimicrobial activity. J Pediatr 1986; 108 (5 Pt 2): 835–40PubMedCrossRef
15.
Zurück zum Zitat Mouton JW, Vinks AATMM, Punt N, et al. Pharmacokinetic pharmacodynamic modelling of bacterial killing in vivo [abstract]. Interscience Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 28–Oct 1; Toronto Mouton JW, Vinks AATMM, Punt N, et al. Pharmacokinetic pharmacodynamic modelling of bacterial killing in vivo [abstract]. Interscience Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 28–Oct 1; Toronto
16.
Zurück zum Zitat Knudsen JD, Frimodt-Moller N, Espersen F. Pharmacodynamics of penicillin are unaffected by bacterial growth phases of Streptococcus pneumoniae in the mouse peritonitis model. J Antimicrob Chemother 1998; 41(4): 451–9PubMedCrossRef Knudsen JD, Frimodt-Moller N, Espersen F. Pharmacodynamics of penicillin are unaffected by bacterial growth phases of Streptococcus pneumoniae in the mouse peritonitis model. J Antimicrob Chemother 1998; 41(4): 451–9PubMedCrossRef
17.
Zurück zum Zitat Zhi J, Nightingale CH, Quintiliani R. A pharmacodynamic model for the activity of antibiotics against microorganisms under nonsaturable conditions. J Pharm Sci 1986; 75(11): 1063–7PubMedCrossRef Zhi J, Nightingale CH, Quintiliani R. A pharmacodynamic model for the activity of antibiotics against microorganisms under nonsaturable conditions. J Pharm Sci 1986; 75(11): 1063–7PubMedCrossRef
18.
Zurück zum Zitat den Hollander JG, Mouton JW, van Goor MP, et al. Alteration of postantibiotic effect during one dosing interval of tobramycin, simulated in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 1996; 40(3): 784–6 den Hollander JG, Mouton JW, van Goor MP, et al. Alteration of postantibiotic effect during one dosing interval of tobramycin, simulated in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 1996; 40(3): 784–6
19.
Zurück zum Zitat Tuomanen E. Phenotypic tolerance: the search for beta-lactam antibiotics that kill nongrowing bacteria. Rev Infect Dis 1986; 8 Suppl. 3: S279–91PubMedCrossRef Tuomanen E. Phenotypic tolerance: the search for beta-lactam antibiotics that kill nongrowing bacteria. Rev Infect Dis 1986; 8 Suppl. 3: S279–91PubMedCrossRef
Metadaten
Titel
Pharmacokinetic/Pharmacodynamic Modelling of Antibacterials In Vitro and In Vivo Using Bacterial Growth and Kill Kinetics
The Minimum Inhibitory Concentration versus Stationary Concentration
verfasst von
Dr Johan W. Mouton
Alexander A. Vinks
Publikationsdatum
01.02.2005
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 2/2005
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200544020-00005

Weitere Artikel der Ausgabe 2/2005

Clinical Pharmacokinetics 2/2005 Zur Ausgabe