Skip to main content
Erschienen in: Inflammation 4/2016

04.06.2016 | ORIGINAL ARTICLE

Pharmacological Beta-Adrenergic Receptor Activation Attenuates Neutrophil Recruitment by a Mechanism Dependent on Nicotinic Receptor and the Spleen

verfasst von: Rangel L. Silva, Fernanda V. Castanheira, Jozi G. Figueiredo, Gabriel S. Bassi, Sérgio H. Ferreira, Fernando Q. Cunha, Thiago M. Cunha, Alexandre Kanashiro

Erschienen in: Inflammation | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

The aim of this study was to identify the effect of beta-adrenergic receptor activation on neutrophil migration in experimental peritonitis elucidating the neuroimmune components involved such as nicotinic receptors and the spleen. Mice pre-treated with mecamylamine (nicotinic antagonist) and propranolol (beta-adrenergic antagonist) or splenectomized animals were treated with isoproterenol (beta-adrenergic agonist) prior to intraperitoneal injection of carrageenan. After 4 h, the infiltrating neutrophils and the local cytokine/chemokine levels were evaluated in the peritoneal lavage. The effect of isoproterenol on neutrophil chemotaxis was investigated in a Boyden chamber. Isoproterenol inhibited neutrophil trafficking, reducing the cytokine/chemokine release and neutrophil chemotaxis. Surprisingly, the isoproterenol effect on neutrophil migration was totally reverted by splenectomy and mecamylamine pre-treatment. In contrast, the inhibitory effect of nicotine on neutrophil migration was abrogated only by splenectomy but not by propranolol pre-treatment. Collectively, our data show that beta-adrenergic receptor activation regulates the acute neutrophil recruitment via splenic nicotinic receptor.
Literatur
1.
2.
Zurück zum Zitat Kolaczkowska, E., and P. Kubes. 2013. Neutrophil recruitment and function in health and inflammation. Nature Reviews. Immunology 13(3): 159–75.CrossRefPubMed Kolaczkowska, E., and P. Kubes. 2013. Neutrophil recruitment and function in health and inflammation. Nature Reviews. Immunology 13(3): 159–75.CrossRefPubMed
3.
Zurück zum Zitat McDonald, B., K. Pittman, G.B. Menezes, S.A. Hirota, I. Slaba, C.C. Waterhouse, P.L. Beck, D.A. Muruve, and P. Kubes. 2010. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330(6002): 362–6.CrossRefPubMed McDonald, B., K. Pittman, G.B. Menezes, S.A. Hirota, I. Slaba, C.C. Waterhouse, P.L. Beck, D.A. Muruve, and P. Kubes. 2010. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330(6002): 362–6.CrossRefPubMed
4.
Zurück zum Zitat Alves-Filho, J.C., A. Freitas, F. Spiller, F.O. Souto, and F.Q. Cunha. 2008. The role of neutrophils in severe sepsis. Shock 30: 3–9.CrossRefPubMed Alves-Filho, J.C., A. Freitas, F. Spiller, F.O. Souto, and F.Q. Cunha. 2008. The role of neutrophils in severe sepsis. Shock 30: 3–9.CrossRefPubMed
5.
Zurück zum Zitat Sherwood, E.R., and T. Toliver-Kinsky. 2004. Mechanisms of the inflammatory response. Best Practice & Research Clinical Anaesthesiology 18: 385–405.CrossRef Sherwood, E.R., and T. Toliver-Kinsky. 2004. Mechanisms of the inflammatory response. Best Practice & Research Clinical Anaesthesiology 18: 385–405.CrossRef
6.
Zurück zum Zitat Segel, G.B., M.W. Halterman, and M.A. Lichtman. 2011. The paradox of the neutrophil’s role in tissue injury. Journal of Leukocyte Biology 89(3): 359–7.CrossRefPubMed Segel, G.B., M.W. Halterman, and M.A. Lichtman. 2011. The paradox of the neutrophil’s role in tissue injury. Journal of Leukocyte Biology 89(3): 359–7.CrossRefPubMed
7.
Zurück zum Zitat Németh, T., and A. Mócsai. 2012. The role of neutrophils in autoimmune diseases. Immunology Letters 143: 9–19.CrossRefPubMed Németh, T., and A. Mócsai. 2012. The role of neutrophils in autoimmune diseases. Immunology Letters 143: 9–19.CrossRefPubMed
8.
Zurück zum Zitat Mackay, C.R. 2008. Moving targets: cell migration inhibitors as new anti-inflammatory therapies. Nature Immunology 9: 988–98.CrossRefPubMed Mackay, C.R. 2008. Moving targets: cell migration inhibitors as new anti-inflammatory therapies. Nature Immunology 9: 988–98.CrossRefPubMed
9.
Zurück zum Zitat Sun, J., V. Singh, R. Kajino-Sakamoto, and A. Aballay. 2011. Neuronal GPCR controls innate immunity by regulating noncanonical unfolded protein response genes. Science 332: 729–32.CrossRefPubMedPubMedCentral Sun, J., V. Singh, R. Kajino-Sakamoto, and A. Aballay. 2011. Neuronal GPCR controls innate immunity by regulating noncanonical unfolded protein response genes. Science 332: 729–32.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Torres-Rosas, R., G. Yehia, G. Peña, P. Mishra, Thompson-Bonilla M. del Rocio, M.A. Moreno-Eutimio, L.A. Arriaga-Pizano, A. Isibasi, and L. Ulloa. 2014. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nature Medicine 20(3): 291–5.CrossRefPubMedPubMedCentral Torres-Rosas, R., G. Yehia, G. Peña, P. Mishra, Thompson-Bonilla M. del Rocio, M.A. Moreno-Eutimio, L.A. Arriaga-Pizano, A. Isibasi, and L. Ulloa. 2014. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nature Medicine 20(3): 291–5.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Ulloa, L. 2005. The vagus nerve and the nicotinic anti-inflammatory pathway. Nature Reviews. Drug Discovery 4(8): 673–84.CrossRefPubMed Ulloa, L. 2005. The vagus nerve and the nicotinic anti-inflammatory pathway. Nature Reviews. Drug Discovery 4(8): 673–84.CrossRefPubMed
12.
Zurück zum Zitat Vida, G., G. Peña, E.A. Deitch, and L. Ulloa. 2011. α7-Cholinergic receptor mediates vagal induction of splenic norepinephrine. Journal Immunology 186(7): 4340–6.CrossRef Vida, G., G. Peña, E.A. Deitch, and L. Ulloa. 2011. α7-Cholinergic receptor mediates vagal induction of splenic norepinephrine. Journal Immunology 186(7): 4340–6.CrossRef
13.
Zurück zum Zitat Tracey, K.J. 2011. Physiology and immunology of the cholinergic anti-inflammatory pathway. Journal of Clinical Investigation 117: 289–96.CrossRef Tracey, K.J. 2011. Physiology and immunology of the cholinergic anti-inflammatory pathway. Journal of Clinical Investigation 117: 289–96.CrossRef
14.
Zurück zum Zitat Borovikova, L.V., S. Ivanova, M. Zhang, H. Yang, G.I. Botchkina, L.R. Watkins, H. Wang, N. Abumrad, J.W. Eaton, and K.J. Tracey. 2000. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785): 458–62.CrossRefPubMed Borovikova, L.V., S. Ivanova, M. Zhang, H. Yang, G.I. Botchkina, L.R. Watkins, H. Wang, N. Abumrad, J.W. Eaton, and K.J. Tracey. 2000. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785): 458–62.CrossRefPubMed
15.
Zurück zum Zitat Rosas-Ballina, M., M. Ochani, W.R. Parrish, K. Ochani, Y.T. Harris, J.M. Huston, S. Chavan, and K.J. Tracey. 2008. Splenic nerve is required for cholinergic anti-inflammatory pathway control of TNF in endotoxemia. Proceedings of the National Academy of Sciences 105: 11008–13.CrossRef Rosas-Ballina, M., M. Ochani, W.R. Parrish, K. Ochani, Y.T. Harris, J.M. Huston, S. Chavan, and K.J. Tracey. 2008. Splenic nerve is required for cholinergic anti-inflammatory pathway control of TNF in endotoxemia. Proceedings of the National Academy of Sciences 105: 11008–13.CrossRef
16.
Zurück zum Zitat Rosas-Ballina, M., P.S. Olofsson, M. Ochani, S.I. Valdés-Ferrer, Y.A. Levine, C. Reardon, M.W. Tusche, V.A. Pavlov, U. Andersson, S. Chavan, T.W. Mak, and K.J. Tracey. 2011. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334(6052): 98–101.CrossRefPubMedPubMedCentral Rosas-Ballina, M., P.S. Olofsson, M. Ochani, S.I. Valdés-Ferrer, Y.A. Levine, C. Reardon, M.W. Tusche, V.A. Pavlov, U. Andersson, S. Chavan, T.W. Mak, and K.J. Tracey. 2011. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334(6052): 98–101.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Vida, G., G. Peña, A. Kanashiro, M.R. Thompson-Bonilla, D. Palange, E.A. Deitch, and L. Ulloa. 2011. β2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB Journal 25: 4476–85.CrossRefPubMedPubMedCentral Vida, G., G. Peña, A. Kanashiro, M.R. Thompson-Bonilla, D. Palange, E.A. Deitch, and L. Ulloa. 2011. β2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB Journal 25: 4476–85.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Wang, H., M. Yu, M. Ochani, C.A. Amella, M. Tanovic, S. Susarla, J.H. Li, H. Wang, H. Yang, L. Ulloa, Y. Al-Abed, C.J. Czura, and K.J. Tracey. 2003. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421(6921): 384–8.CrossRefPubMed Wang, H., M. Yu, M. Ochani, C.A. Amella, M. Tanovic, S. Susarla, J.H. Li, H. Wang, H. Yang, L. Ulloa, Y. Al-Abed, C.J. Czura, and K.J. Tracey. 2003. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421(6921): 384–8.CrossRefPubMed
19.
Zurück zum Zitat Saeed, R.W., S. Varma, T. Peng-Nemeroff, B. Sherry, D. Balakhaneh, J. Huston, K.J. Tracey, Y. Al-Abed, and C.N. Metz. 2005. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. The Journal of Experimental Medicine 201(7): 1113–23.CrossRefPubMedPubMedCentral Saeed, R.W., S. Varma, T. Peng-Nemeroff, B. Sherry, D. Balakhaneh, J. Huston, K.J. Tracey, Y. Al-Abed, and C.N. Metz. 2005. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. The Journal of Experimental Medicine 201(7): 1113–23.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Huston, J.M., M. Rosas-Ballina, X. Xue, O. Dowling, K. Ochani, M. Ochani, M.M. Yeboah, P.K. Chatterjee, K.J. Tracey, and C.N. Metz. 2009. Cholinergic neural signals to the spleen down-regulate leukocyte trafficking via CD11b. Journal of Immunology 183(1): 552–9.CrossRef Huston, J.M., M. Rosas-Ballina, X. Xue, O. Dowling, K. Ochani, M. Ochani, M.M. Yeboah, P.K. Chatterjee, K.J. Tracey, and C.N. Metz. 2009. Cholinergic neural signals to the spleen down-regulate leukocyte trafficking via CD11b. Journal of Immunology 183(1): 552–9.CrossRef
21.
Zurück zum Zitat Mabley, J., S. Gordon, and P. Pacher. 2011. Nicotine exerts an anti-inflammatory effect in a murine model of acute lung injury. Inflammation 34(4): 231–7.CrossRefPubMedPubMedCentral Mabley, J., S. Gordon, and P. Pacher. 2011. Nicotine exerts an anti-inflammatory effect in a murine model of acute lung injury. Inflammation 34(4): 231–7.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Figueiredo, J., A.E. Ferreira, R.L. Silva, L. Ulloa, P. Grieco, T.M. Cunha, S.H. Ferreira, F.Q. Cunha, and A. Kanashiro. 2013. NDP-MSH inhibits neutrophil migration through nicotinic and adrenergic receptors in experimental peritonitis. Naunyn-Schmiedeberg’s Archives of Pharmacology 386(4): 311–8.CrossRefPubMed Figueiredo, J., A.E. Ferreira, R.L. Silva, L. Ulloa, P. Grieco, T.M. Cunha, S.H. Ferreira, F.Q. Cunha, and A. Kanashiro. 2013. NDP-MSH inhibits neutrophil migration through nicotinic and adrenergic receptors in experimental peritonitis. Naunyn-Schmiedeberg’s Archives of Pharmacology 386(4): 311–8.CrossRefPubMed
24.
Zurück zum Zitat Elenkov, I.J., G. Haskó, K.J. Kovács, and E.S. Vizi. 1995. Modulation of lipopolysaccharide-induced tumor necrosis factor-alpha production by selective alpha- and beta-adrenergic drugs in mice. Journal of Neuroimmunology 61(2): 123–31.CrossRefPubMed Elenkov, I.J., G. Haskó, K.J. Kovács, and E.S. Vizi. 1995. Modulation of lipopolysaccharide-induced tumor necrosis factor-alpha production by selective alpha- and beta-adrenergic drugs in mice. Journal of Neuroimmunology 61(2): 123–31.CrossRefPubMed
25.
Zurück zum Zitat Karimi, K., J. Bienenstock, L. Wang, and P. Forsythe. 2010. The vagus nerve modulates CD4+ T cell activity. Brain, Behavior, and Immunity 24(2): 316–23.CrossRefPubMed Karimi, K., J. Bienenstock, L. Wang, and P. Forsythe. 2010. The vagus nerve modulates CD4+ T cell activity. Brain, Behavior, and Immunity 24(2): 316–23.CrossRefPubMed
26.
Zurück zum Zitat Huston, J.M., M. Ochani, M. Rosas-Ballina, H. Liao, K. Ochani, V.A. Pavlov, M. Gallowitsch-Puerta, M. Ashok, C.J. Czura, B. Foxwell, K.J. Tracey, and L. Ulloa. 2006. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. The Journal of Experimental Medicine 203(7): 1623–8.CrossRefPubMedPubMedCentral Huston, J.M., M. Ochani, M. Rosas-Ballina, H. Liao, K. Ochani, V.A. Pavlov, M. Gallowitsch-Puerta, M. Ashok, C.J. Czura, B. Foxwell, K.J. Tracey, and L. Ulloa. 2006. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. The Journal of Experimental Medicine 203(7): 1623–8.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Rios-Santos, F., J.C. Alves-Filho, F.O. Souto, F. Spiller, A. Freitas, C.M.C. Lotufo, M.B.P. Soares, R.R. Santos, M.M. Teixeira, and F.Q. Cunha. 2007. Down-regulation of CXCR2 on neutrophils in severe sepsis is mediated by inducible nitric oxide synthase-derived nitric oxide. American Journal of Respiratory and Critical Care Medicine 175(5): 490–497.CrossRefPubMed Rios-Santos, F., J.C. Alves-Filho, F.O. Souto, F. Spiller, A. Freitas, C.M.C. Lotufo, M.B.P. Soares, R.R. Santos, M.M. Teixeira, and F.Q. Cunha. 2007. Down-regulation of CXCR2 on neutrophils in severe sepsis is mediated by inducible nitric oxide synthase-derived nitric oxide. American Journal of Respiratory and Critical Care Medicine 175(5): 490–497.CrossRefPubMed
28.
Zurück zum Zitat Vieira, S.M., H.P. Lemos, R. Grespan, M.H. Napimoga, D. Dal-Secco, A. Freitas, T.M. Cunha, W.A. Verri Jr., D.A. Souza-Junior, M.C. Jamur, K.S. Fernandes, C. Oliver, J.S. Silva, M.M. Teixeira, and F.Q. Cunha. 2009. A crucial role for TNF-alpha in mediating neutrophil influx induced by endogenously generated or exogenous chemokines, KC/CXCL1 and LIX/CXCL5. British Journal of Pharmacology 158(3): 779–89.CrossRefPubMedPubMedCentral Vieira, S.M., H.P. Lemos, R. Grespan, M.H. Napimoga, D. Dal-Secco, A. Freitas, T.M. Cunha, W.A. Verri Jr., D.A. Souza-Junior, M.C. Jamur, K.S. Fernandes, C. Oliver, J.S. Silva, M.M. Teixeira, and F.Q. Cunha. 2009. A crucial role for TNF-alpha in mediating neutrophil influx induced by endogenously generated or exogenous chemokines, KC/CXCL1 and LIX/CXCL5. British Journal of Pharmacology 158(3): 779–89.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Dantzer, R., J.C. O’Connor, G.G. Freund, R.W. Johnson, and K.W. Kelley. 2008. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience 9: 46–56.CrossRefPubMedPubMedCentral Dantzer, R., J.C. O’Connor, G.G. Freund, R.W. Johnson, and K.W. Kelley. 2008. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience 9: 46–56.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Steinman, L. 2004. Elaborate interactions between the immune and nervous systems. Nature Immunology 5: 575–81.CrossRefPubMed Steinman, L. 2004. Elaborate interactions between the immune and nervous systems. Nature Immunology 5: 575–81.CrossRefPubMed
31.
Zurück zum Zitat Imura, H., and J. Fukata. 1994. Endocrine-paracrine interaction in communication between the immune and endocrine systems. Activation of the hypothalamic-pituitary-adrenal axis in inflammation. European Journal of Endocrinology 130(1): 32–7.CrossRefPubMed Imura, H., and J. Fukata. 1994. Endocrine-paracrine interaction in communication between the immune and endocrine systems. Activation of the hypothalamic-pituitary-adrenal axis in inflammation. European Journal of Endocrinology 130(1): 32–7.CrossRefPubMed
32.
Zurück zum Zitat Szelényi, J., J.P. Kiss, and E.S. Vizi. 2000. Differential involvement of sympathetic nervous system and immune system in the modulation of TNF-alpha production by alpha2- and beta-adrenoceptors in mice. Journal of Neuroimmunology 103(1): 34–40.CrossRefPubMed Szelényi, J., J.P. Kiss, and E.S. Vizi. 2000. Differential involvement of sympathetic nervous system and immune system in the modulation of TNF-alpha production by alpha2- and beta-adrenoceptors in mice. Journal of Neuroimmunology 103(1): 34–40.CrossRefPubMed
33.
Zurück zum Zitat Spengler, R.N., S.W. Chensue, D.A. Giacherio, N. Blenk, and S.L. Kunkel. 1994. Endogenous norepinephrine regulates tumor necrosis factor-alpha production from macrophages in vitro. Journal of Immunology 152(6): 3024–31. Spengler, R.N., S.W. Chensue, D.A. Giacherio, N. Blenk, and S.L. Kunkel. 1994. Endogenous norepinephrine regulates tumor necrosis factor-alpha production from macrophages in vitro. Journal of Immunology 152(6): 3024–31.
34.
Zurück zum Zitat Haskó, G., Z.H. Németh, C. Szabó, G. Zsilla, A.L. Salzman, and E.S. Vizi. 1998. Isoproterenol inhibits Il-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages. Brain Research Bulletin 45(2): 183–7.CrossRefPubMed Haskó, G., Z.H. Németh, C. Szabó, G. Zsilla, A.L. Salzman, and E.S. Vizi. 1998. Isoproterenol inhibits Il-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages. Brain Research Bulletin 45(2): 183–7.CrossRefPubMed
35.
Zurück zum Zitat Mert, T., B. Tugtag, M. Kilinc, E. Sahin, H. Oksuz, and Y. Gunes. 2014. Preventive and therapeutic effects of a beta adrenoreceptor agonist, dobutamine, in carrageenan-induced inflammatory nociception in rats. Inflammation 37(5): 1814–25.CrossRefPubMed Mert, T., B. Tugtag, M. Kilinc, E. Sahin, H. Oksuz, and Y. Gunes. 2014. Preventive and therapeutic effects of a beta adrenoreceptor agonist, dobutamine, in carrageenan-induced inflammatory nociception in rats. Inflammation 37(5): 1814–25.CrossRefPubMed
36.
Zurück zum Zitat Xiang, H., B. Hu, Z. Li, and J. Li. 2014. Dexmedetomidine controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Inflammation 37(5): 1763–70.CrossRefPubMed Xiang, H., B. Hu, Z. Li, and J. Li. 2014. Dexmedetomidine controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Inflammation 37(5): 1763–70.CrossRefPubMed
37.
Zurück zum Zitat Giuliani, D., A. Ottani, D. Altavilla, C. Bazzani, F. Squadrito, and S. Guarini. 2010. Melanocortins and the cholinergic anti-inflammatory pathway. Advances in Experimental Medicine and Biology 681: 71–87.CrossRefPubMed Giuliani, D., A. Ottani, D. Altavilla, C. Bazzani, F. Squadrito, and S. Guarini. 2010. Melanocortins and the cholinergic anti-inflammatory pathway. Advances in Experimental Medicine and Biology 681: 71–87.CrossRefPubMed
38.
Zurück zum Zitat Bugajski, A.J., D. Zurowski, P. Thor, and A. Gadek-Michalska. 2007. Effect of subdiaphragmatic vagotomy and cholinergic agents in the hypothalamic-pituitary-adrenal axis activity. Journal of Physiology and Pharmacology 58(2): 335–47.PubMed Bugajski, A.J., D. Zurowski, P. Thor, and A. Gadek-Michalska. 2007. Effect of subdiaphragmatic vagotomy and cholinergic agents in the hypothalamic-pituitary-adrenal axis activity. Journal of Physiology and Pharmacology 58(2): 335–47.PubMed
39.
Zurück zum Zitat Scanzano, A., L. Schembri, E. Rasini, A. Luini, J. Dallatorre, M. Legnaro, R. Bombelli, T. Congiu, M. Cosentino, and F. Marino. 2015. Adrenergic modulation of migration, CD11b and CD18 expression, ROS and interleukin-8 production by human polymorphonuclear leukocytes. Inflammation Research 64(2): 127–35.CrossRefPubMed Scanzano, A., L. Schembri, E. Rasini, A. Luini, J. Dallatorre, M. Legnaro, R. Bombelli, T. Congiu, M. Cosentino, and F. Marino. 2015. Adrenergic modulation of migration, CD11b and CD18 expression, ROS and interleukin-8 production by human polymorphonuclear leukocytes. Inflammation Research 64(2): 127–35.CrossRefPubMed
40.
Zurück zum Zitat Yu, H., Y.H. Yang, R. Rajaiah, and K.D. Moudgil. 2011. Nicotine-induced differential modulation of autoimmune arthritis in the Lewis rat involves changes in interleukin-17 and anti-cyclic citrullinated peptide antibodies. Arthritis and Rheumatology 63(4): 981–91.CrossRef Yu, H., Y.H. Yang, R. Rajaiah, and K.D. Moudgil. 2011. Nicotine-induced differential modulation of autoimmune arthritis in the Lewis rat involves changes in interleukin-17 and anti-cyclic citrullinated peptide antibodies. Arthritis and Rheumatology 63(4): 981–91.CrossRef
41.
Zurück zum Zitat Boland, C., V. Collet, E. Laterre, C. Lecuivre, X. Wittebole, and P.F. Laterre. 2011. Electrical vagus nerve stimulation and nicotine effects in peritonitis-induced acute lung injury in rats. Inflammation 34(1): 29–35.CrossRefPubMed Boland, C., V. Collet, E. Laterre, C. Lecuivre, X. Wittebole, and P.F. Laterre. 2011. Electrical vagus nerve stimulation and nicotine effects in peritonitis-induced acute lung injury in rats. Inflammation 34(1): 29–35.CrossRefPubMed
42.
Zurück zum Zitat Nabe, T., F. Hosokawa, K. Matsuya, T. Morishita, A. Ikedo, M. Fujii, N. Mizutani, S. Yoshino, and D.D. Chaplin. 2011. Important role of neutrophils in the late asthmatic response in mice. Life Science 88(25-26): 1127–35.CrossRef Nabe, T., F. Hosokawa, K. Matsuya, T. Morishita, A. Ikedo, M. Fujii, N. Mizutani, S. Yoshino, and D.D. Chaplin. 2011. Important role of neutrophils in the late asthmatic response in mice. Life Science 88(25-26): 1127–35.CrossRef
43.
Zurück zum Zitat Blanchet, M.R., E. Israël-Assayag, and Y. Cormier. 2005. Modulation of airway inflammation and resistance in mice by a nicotinic receptor agonist. European Respiratory Journal 26(1): 21–7.CrossRefPubMed Blanchet, M.R., E. Israël-Assayag, and Y. Cormier. 2005. Modulation of airway inflammation and resistance in mice by a nicotinic receptor agonist. European Respiratory Journal 26(1): 21–7.CrossRefPubMed
44.
Zurück zum Zitat Rehani, K., D.A. Scott, D. Renaud, H. Hamza, L.R. Williams, H. Wang, and M. Martin. 2008. Cotinine-induced convergence of the cholinergic and PI3 kinase-dependent anti-inflammatory pathways in innate immune cells. Biochimica et Biophysica Acta 1783(3): 375–82.CrossRefPubMed Rehani, K., D.A. Scott, D. Renaud, H. Hamza, L.R. Williams, H. Wang, and M. Martin. 2008. Cotinine-induced convergence of the cholinergic and PI3 kinase-dependent anti-inflammatory pathways in innate immune cells. Biochimica et Biophysica Acta 1783(3): 375–82.CrossRefPubMed
45.
Zurück zum Zitat Parrish, W.R., M. Rosas-Ballina, M. Gallowitsch-Puerta, M. Ochani, K. Ochani, L.H. Yang, L. Hudson, X. Lin, N. Patel, S.M. Johnson, S. Chavan, R.S. Goldstein, C.J. Czura, E.J. Miller, Y. Al-Abed, K.J. Tracey, and V.A. Pavlov. 2008. Modulation of TNF release by choline requires alpha7 subunit nicotinic acetylcholine receptor-mediated signaling. Molecular Medicine 14(9-10): 567–74.CrossRefPubMedPubMedCentral Parrish, W.R., M. Rosas-Ballina, M. Gallowitsch-Puerta, M. Ochani, K. Ochani, L.H. Yang, L. Hudson, X. Lin, N. Patel, S.M. Johnson, S. Chavan, R.S. Goldstein, C.J. Czura, E.J. Miller, Y. Al-Abed, K.J. Tracey, and V.A. Pavlov. 2008. Modulation of TNF release by choline requires alpha7 subunit nicotinic acetylcholine receptor-mediated signaling. Molecular Medicine 14(9-10): 567–74.CrossRefPubMedPubMedCentral
Metadaten
Titel
Pharmacological Beta-Adrenergic Receptor Activation Attenuates Neutrophil Recruitment by a Mechanism Dependent on Nicotinic Receptor and the Spleen
verfasst von
Rangel L. Silva
Fernanda V. Castanheira
Jozi G. Figueiredo
Gabriel S. Bassi
Sérgio H. Ferreira
Fernando Q. Cunha
Thiago M. Cunha
Alexandre Kanashiro
Publikationsdatum
04.06.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2016
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0372-9

Weitere Artikel der Ausgabe 4/2016

Inflammation 4/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.