Skip to main content
Erschienen in: Wiener Medizinische Wochenschrift 9-10/2017

12.01.2016 | main topic

Pharmacological therapies for Angelman syndrome

verfasst von: Wen-Hann Tan, Lynne M. Bird, MD

Erschienen in: Wiener Medizinische Wochenschrift | Ausgabe 9-10/2017

Einloggen, um Zugang zu erhalten

Summary

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by a loss of the maternally inherited UBE3A; the paternal UBE3A is silenced in neurons by a mechanism involving an antisense transcript (UBE3A-AS). We reviewed the published information on clinical trials that have been completed as well as the publicly available information on ongoing trials of therapies for AS. Attempts at hypermethylating the maternal locus through dietary compounds were ineffective. The results of a clinical trial using minocycline as a matrix metalloproteinase-9 inhibitor were inconclusive; another clinical trial is underway. Findings from a clinical trial using L-dopa to alter phosphorylation of calcium/calmodulin-dependent kinase II are awaited. Topoisomerase inhibitors and antisense oligonucleotides are being developed to directly inhibit UBE3A-AS. Other strategies targeting specific pathways are briefly discussed. We also reviewed the medications that are currently used to treat seizures and sleep disturbances, which are two of the more debilitating manifestations of AS.
Literatur
1.
Zurück zum Zitat Thibert RL, Larson AM, Hsieh DT, et al. Neurologic manifestations of Angelman syndrome. Pediatr Neurol. 2013;48:271–9.PubMedCrossRef Thibert RL, Larson AM, Hsieh DT, et al. Neurologic manifestations of Angelman syndrome. Pediatr Neurol. 2013;48:271–9.PubMedCrossRef
3.
Zurück zum Zitat Larson AM, Shinnick JE, Shaaya EA, et al. Angelman syndrome in adulthood. Am J Med Genet A. 2015;167 A:331–44.CrossRef Larson AM, Shinnick JE, Shaaya EA, et al. Angelman syndrome in adulthood. Am J Med Genet A. 2015;167 A:331–44.CrossRef
4.
Zurück zum Zitat Williams CA, Beaudet AL, Clayton-Smith J, et al. Angelman syndrome 2005: updated consensus for diagnostic criteria. Am J Med Genet A. 2006;140:413–8.PubMedCrossRef Williams CA, Beaudet AL, Clayton-Smith J, et al. Angelman syndrome 2005: updated consensus for diagnostic criteria. Am J Med Genet A. 2006;140:413–8.PubMedCrossRef
5.
Zurück zum Zitat Dagli A, Buiting K, Williams CA. Molecular and clinical aspects of Angelman syndrome. Mol Syndromol. 2012;2:100–12.PubMed Dagli A, Buiting K, Williams CA. Molecular and clinical aspects of Angelman syndrome. Mol Syndromol. 2012;2:100–12.PubMed
6.
7.
Zurück zum Zitat Jensen L, Farook MF, Reiter LT. Proteomic profiling in Drosophila reveals potential Dube3a regulation of the actin cytoskeleton and neuronal homeostasis. PLoS One. 2013;8:e61952.PubMedPubMedCentralCrossRef Jensen L, Farook MF, Reiter LT. Proteomic profiling in Drosophila reveals potential Dube3a regulation of the actin cytoskeleton and neuronal homeostasis. PLoS One. 2013;8:e61952.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Buiting K, Lich C, Cottrell S, et al. A 5-kb imprinting center deletion in a family with Angelman syndrome reduces the shortest region of deletion overlap to 880 bp. Hum Genet. 1999;105:665–6.PubMed Buiting K, Lich C, Cottrell S, et al. A 5-kb imprinting center deletion in a family with Angelman syndrome reduces the shortest region of deletion overlap to 880 bp. Hum Genet. 1999;105:665–6.PubMed
9.
Zurück zum Zitat Dubose AJ, Smith EY, Yang TP, et al. A new deletion refines the boundaries of the murine Prader–Willi syndrome imprinting center. Hum Mol Genet. 2011;20:3461–6.PubMedPubMedCentralCrossRef Dubose AJ, Smith EY, Yang TP, et al. A new deletion refines the boundaries of the murine Prader–Willi syndrome imprinting center. Hum Mol Genet. 2011;20:3461–6.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Dittrich B, Buiting K, Korn B, et al. Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene. Nat Genet. 1996;14:163–70.PubMedCrossRef Dittrich B, Buiting K, Korn B, et al. Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene. Nat Genet. 1996;14:163–70.PubMedCrossRef
11.
Zurück zum Zitat Farber C, Dittrich B, Buiting K, et al. The chromosome 15 imprinting centre (IC) region has undergone multiple duplication events and contains an upstream exon of SNRPN that is deleted in all Angelman syndrome patients with an IC microdeletion. Hum Mol Genet. 1999;8:337–43.PubMedCrossRef Farber C, Dittrich B, Buiting K, et al. The chromosome 15 imprinting centre (IC) region has undergone multiple duplication events and contains an upstream exon of SNRPN that is deleted in all Angelman syndrome patients with an IC microdeletion. Hum Mol Genet. 1999;8:337–43.PubMedCrossRef
12.
Zurück zum Zitat Lewis MW, Brant JO, Kramer JM, et al. Angelman syndrome imprinting center encodes a transcriptional promoter. Proc Natl Acad Sci USA. 2015;112:6871–5.PubMedCrossRef Lewis MW, Brant JO, Kramer JM, et al. Angelman syndrome imprinting center encodes a transcriptional promoter. Proc Natl Acad Sci USA. 2015;112:6871–5.PubMedCrossRef
13.
Zurück zum Zitat Chamberlain SJ. RNAs of the human chromosome 15q11-q13 imprinted region. Wiley Interdiscip Rev RNA. 2013;4:155–66.PubMedCrossRef Chamberlain SJ. RNAs of the human chromosome 15q11-q13 imprinted region. Wiley Interdiscip Rev RNA. 2013;4:155–66.PubMedCrossRef
14.
Zurück zum Zitat Chamberlain SJ, Brannan CI. The Prader–Willi syndrome imprinting center activates the paternally expressed murine Ube3a antisense transcript but represses paternal Ube3a. Genomics. 2001;73:316–22.PubMedCrossRef Chamberlain SJ, Brannan CI. The Prader–Willi syndrome imprinting center activates the paternally expressed murine Ube3a antisense transcript but represses paternal Ube3a. Genomics. 2001;73:316–22.PubMedCrossRef
15.
Zurück zum Zitat Dindot SV, Antalffy BA, Bhattacharjee MB, et al. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet. 2008;17:111–8.PubMedCrossRef Dindot SV, Antalffy BA, Bhattacharjee MB, et al. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet. 2008;17:111–8.PubMedCrossRef
16.
Zurück zum Zitat Jiang YH, Armstrong D, Albrecht U, et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron. 1998;21:799–811.PubMedCrossRef Jiang YH, Armstrong D, Albrecht U, et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron. 1998;21:799–811.PubMedCrossRef
17.
18.
Zurück zum Zitat Dizik M, Christman JK, Wainfan E. Alterations in expression and methylation of specific genes in livers of rats fed a cancer promoting methyl-deficient diet. Carcinogenesis. 1991;12:1307–12.PubMedCrossRef Dizik M, Christman JK, Wainfan E. Alterations in expression and methylation of specific genes in livers of rats fed a cancer promoting methyl-deficient diet. Carcinogenesis. 1991;12:1307–12.PubMedCrossRef
19.
20.
Zurück zum Zitat Peters SU, Bird LM, Kimonis V, et al. Double-blind therapeutic trial in Angelman syndrome using betaine and folic acid. Am J Med Genet A. 2010;152 A:1994–2001.CrossRef Peters SU, Bird LM, Kimonis V, et al. Double-blind therapeutic trial in Angelman syndrome using betaine and folic acid. Am J Med Genet A. 2010;152 A:1994–2001.CrossRef
21.
Zurück zum Zitat Bird LM, Tan WH, Bacino CA, et al. A therapeutic trial of pro-methylation dietary supplements in Angelman syndrome. Am J Med Genet A. 2011;155 A:2956–63.CrossRef Bird LM, Tan WH, Bacino CA, et al. A therapeutic trial of pro-methylation dietary supplements in Angelman syndrome. Am J Med Genet A. 2011;155 A:2956–63.CrossRef
22.
Zurück zum Zitat Huang HS, Allen JA, Mabb AM, et al. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature. 2012;481:185–9.CrossRef Huang HS, Allen JA, Mabb AM, et al. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature. 2012;481:185–9.CrossRef
23.
Zurück zum Zitat Powell WT, Coulson RL, Gonzales ML, et al. R-loop formation at Snord116 mediates topotecan inhibition of Ube3a-antisense and allele-specific chromatin decondensation. Proc Natl Acad Sci U S A. 2013;110:13938–43.PubMedPubMedCentralCrossRef Powell WT, Coulson RL, Gonzales ML, et al. R-loop formation at Snord116 mediates topotecan inhibition of Ube3a-antisense and allele-specific chromatin decondensation. Proc Natl Acad Sci U S A. 2013;110:13938–43.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Skourti-Stathaki K, Proudfoot NJ. A double-edged sword: r loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev. 2014;28:1384–96.PubMedPubMedCentralCrossRef Skourti-Stathaki K, Proudfoot NJ. A double-edged sword: r loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev. 2014;28:1384–96.PubMedPubMedCentralCrossRef
25.
26.
27.
Zurück zum Zitat Meng L, Person RE, Huang W, et al. Truncation of Ube3a-ATS unsilences paternal Ube3a and ameliorates behavioral defects in the Angelman syndrome mouse model. PLoS Genet. 2013;9:e1004039.PubMedPubMedCentralCrossRef Meng L, Person RE, Huang W, et al. Truncation of Ube3a-ATS unsilences paternal Ube3a and ameliorates behavioral defects in the Angelman syndrome mouse model. PLoS Genet. 2013;9:e1004039.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Santos RD, Raal FJ, Catapano AL, et al. Mipomersen, an antisense oligonucleotide to apolipoprotein B-100, reduces lipoprotein(a) in various populations with hypercholesterolemia: results of 4 phase III trials. Arterioscler Thromb Vasc Biol. 2015;35:689–99.PubMedPubMedCentralCrossRef Santos RD, Raal FJ, Catapano AL, et al. Mipomersen, an antisense oligonucleotide to apolipoprotein B-100, reduces lipoprotein(a) in various populations with hypercholesterolemia: results of 4 phase III trials. Arterioscler Thromb Vasc Biol. 2015;35:689–99.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Marafini I, Di Fusco D, Calabrese E, et al. Antisense approach to inflammatory bowel disease: prospects and challenges. Drugs. 2015;75:723–30.PubMedCrossRef Marafini I, Di Fusco D, Calabrese E, et al. Antisense approach to inflammatory bowel disease: prospects and challenges. Drugs. 2015;75:723–30.PubMedCrossRef
30.
Zurück zum Zitat Voit T, Topaloglu H, Straub V, et al. Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomised, placebo-controlled phase 2 study. Lancet Neurol. 2014;13:987–96.PubMedCrossRef Voit T, Topaloglu H, Straub V, et al. Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomised, placebo-controlled phase 2 study. Lancet Neurol. 2014;13:987–96.PubMedCrossRef
31.
Zurück zum Zitat Evers MM, Toonen LJ, van Roon-Mom WM. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliv Rev. 2015. Evers MM, Toonen LJ, van Roon-Mom WM. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliv Rev. 2015.
32.
Zurück zum Zitat Meng L, Ward AJ, Chun S, et al. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature. 2015;518:409–12.PubMedCrossRef Meng L, Ward AJ, Chun S, et al. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature. 2015;518:409–12.PubMedCrossRef
33.
Zurück zum Zitat Daily JL, Nash K, Jinwal U, et al. Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome. PLoS One. 2011;6:e27221.PubMedPubMedCentralCrossRef Daily JL, Nash K, Jinwal U, et al. Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome. PLoS One. 2011;6:e27221.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci. 2002;3:175–90.PubMedCrossRef Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci. 2002;3:175–90.PubMedCrossRef
35.
Zurück zum Zitat Blitzer RD, Iyengar R, Landau EM. Postsynaptic signaling networks: cellular cogwheels underlying long-term plasticity. Biol Psychiatry. 2005;57:113–9.PubMedCrossRef Blitzer RD, Iyengar R, Landau EM. Postsynaptic signaling networks: cellular cogwheels underlying long-term plasticity. Biol Psychiatry. 2005;57:113–9.PubMedCrossRef
36.
Zurück zum Zitat Giese KP, Fedorov NB, Filipkowski RK, et al. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 1998;279:870–3.PubMedCrossRef Giese KP, Fedorov NB, Filipkowski RK, et al. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 1998;279:870–3.PubMedCrossRef
37.
Zurück zum Zitat Elgersma Y, Fedorov NB, Ikonen S, et al. Inhibitory autophosphorylation of CaMKII controls PSD association, plasticity, and learning. Neuron. 2002;36:493–505.PubMedCrossRef Elgersma Y, Fedorov NB, Ikonen S, et al. Inhibitory autophosphorylation of CaMKII controls PSD association, plasticity, and learning. Neuron. 2002;36:493–505.PubMedCrossRef
38.
Zurück zum Zitat Weeber EJ, Jiang YH, Elgersma Y, et al. Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. J Neurosci. 2003;23:2634–44.PubMed Weeber EJ, Jiang YH, Elgersma Y, et al. Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. J Neurosci. 2003;23:2634–44.PubMed
39.
Zurück zum Zitat van Woerden GM, Harris KD, Hojjati MR, et al. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat Neurosci. 2007;10:280–2.PubMedCrossRef van Woerden GM, Harris KD, Hojjati MR, et al. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat Neurosci. 2007;10:280–2.PubMedCrossRef
40.
Zurück zum Zitat Brown AM, Deutch AY, Colbran RJ. Dopamine depletion alters phosphorylation of striatal proteins in a model of Parkinsonism. Eur J Neurosci. 2005;22:247–56.PubMedPubMedCentralCrossRef Brown AM, Deutch AY, Colbran RJ. Dopamine depletion alters phosphorylation of striatal proteins in a model of Parkinsonism. Eur J Neurosci. 2005;22:247–56.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Mulherkar SA, Jana NR. Loss of dopaminergic neurons and resulting behavioural deficits in mouse model of Angelman syndrome. Neurobiol Dis. 2010;40:586–92.PubMedCrossRef Mulherkar SA, Jana NR. Loss of dopaminergic neurons and resulting behavioural deficits in mouse model of Angelman syndrome. Neurobiol Dis. 2010;40:586–92.PubMedCrossRef
42.
Zurück zum Zitat Riday TT, Dankoski EC, Krouse MC, et al. Pathway-specific dopaminergic deficits in a mouse model of Angelman syndrome. J Clin Invest. 2012;122:4544–54.PubMedPubMedCentralCrossRef Riday TT, Dankoski EC, Krouse MC, et al. Pathway-specific dopaminergic deficits in a mouse model of Angelman syndrome. J Clin Invest. 2012;122:4544–54.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Dziembowska M, Wlodarczyk J. MMP9: a novel function in synaptic plasticity. Int J Biochem Cell Biol. 2012;44:709–13.PubMedCrossRef Dziembowska M, Wlodarczyk J. MMP9: a novel function in synaptic plasticity. Int J Biochem Cell Biol. 2012;44:709–13.PubMedCrossRef
45.
Zurück zum Zitat Fragkouli A, Papatheodoropoulos C, Georgopoulos S, et al. Enhanced neuronal plasticity and elevated endogenous sAPPalpha levels in mice over-expressing MMP9. J Neurochem. 2012;121:239–51.PubMedCrossRef Fragkouli A, Papatheodoropoulos C, Georgopoulos S, et al. Enhanced neuronal plasticity and elevated endogenous sAPPalpha levels in mice over-expressing MMP9. J Neurochem. 2012;121:239–51.PubMedCrossRef
46.
Zurück zum Zitat Bilousova TV, Dansie L, Ngo M, et al. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet. 2009;46:94–102.PubMedCrossRef Bilousova TV, Dansie L, Ngo M, et al. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet. 2009;46:94–102.PubMedCrossRef
47.
48.
Zurück zum Zitat Sidhu H, Dansie LE, Hickmott PW, et al. Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model. J Neurosci. 2014;34:9867–79.PubMedPubMedCentralCrossRef Sidhu H, Dansie LE, Hickmott PW, et al. Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model. J Neurosci. 2014;34:9867–79.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Cullen SI, Cohan RH. Minocycline therapy in acne vulgaris. Cutis. 1976;17:1208–10, 1214.PubMed Cullen SI, Cohan RH. Minocycline therapy in acne vulgaris. Cutis. 1976;17:1208–10, 1214.PubMed
51.
Zurück zum Zitat Griffin MO, Fricovsky E, Ceballos G, et al. Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. Am J Physiol Cell Physiol. 2010;299:C539–48.PubMedPubMedCentralCrossRef Griffin MO, Fricovsky E, Ceballos G, et al. Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. Am J Physiol Cell Physiol. 2010;299:C539–48.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Busner J, Targum SD. The clinical global impressions scale: applying a research tool in clinical practice. Psychiatry (Edgmont). 2007;4:28–37. Busner J, Targum SD. The clinical global impressions scale: applying a research tool in clinical practice. Psychiatry (Edgmont). 2007;4:28–37.
53.
Zurück zum Zitat Leigh MJ, Nguyen DV, Mu Y, et al. A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with fragile X syndrome. J Dev Behav Pediatr. 2013;34:147–55.PubMedPubMedCentralCrossRef Leigh MJ, Nguyen DV, Mu Y, et al. A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with fragile X syndrome. J Dev Behav Pediatr. 2013;34:147–55.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Dziembowska M, Pretto DI, Janusz A, et al. High MMP-9 activity levels in fragile X syndrome are lowered by minocycline. Am J Med Genet A. 2013;161 A:1897–903.CrossRef Dziembowska M, Pretto DI, Janusz A, et al. High MMP-9 activity levels in fragile X syndrome are lowered by minocycline. Am J Med Genet A. 2013;161 A:1897–903.CrossRef
55.
Zurück zum Zitat Grieco JC, Ciarlone SL, Gieron-Korthals M, et al. An open-label pilot trial of minocycline in children as a treatment for Angelman syndrome. BMC Neurol. 2014;14:232.PubMedPubMedCentralCrossRef Grieco JC, Ciarlone SL, Gieron-Korthals M, et al. An open-label pilot trial of minocycline in children as a treatment for Angelman syndrome. BMC Neurol. 2014;14:232.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Greer PL, Hanayama R, Bloodgood BL, et al. The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell. 2010;140:704–16.PubMedPubMedCentralCrossRef Greer PL, Hanayama R, Bloodgood BL, et al. The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell. 2010;140:704–16.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Margolis SS, Salogiannis J, Lipton DM, et al. EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell. 2010;143:442–55.PubMedPubMedCentralCrossRef Margolis SS, Salogiannis J, Lipton DM, et al. EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell. 2010;143:442–55.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Kuhnle S, Mothes B, Matentzoglu K, et al. Role of the ubiquitin ligase E6AP/UBE3A in controlling levels of the synaptic protein Arc. Proc Natl Acad Sci U S A. 2013;110:8888–93.PubMedPubMedCentralCrossRef Kuhnle S, Mothes B, Matentzoglu K, et al. Role of the ubiquitin ligase E6AP/UBE3A in controlling levels of the synaptic protein Arc. Proc Natl Acad Sci U S A. 2013;110:8888–93.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Mandel-Brehm C, Salogiannis J, Dhamne SC, et al. Seizure-like activity in a juvenile Angelman syndrome mouse model is attenuated by reducing Arc expression. Proc Natl Acad Sci USA. 2015;112:5129–34.PubMedPubMedCentralCrossRef Mandel-Brehm C, Salogiannis J, Dhamne SC, et al. Seizure-like activity in a juvenile Angelman syndrome mouse model is attenuated by reducing Arc expression. Proc Natl Acad Sci USA. 2015;112:5129–34.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Roden WH, Peugh LD, Jansen LA. Altered GABA(A) receptor subunit expression and pharmacology in human Angelman syndrome cortex. Neurosci Lett. 2010;483:167–72.PubMedPubMedCentralCrossRef Roden WH, Peugh LD, Jansen LA. Altered GABA(A) receptor subunit expression and pharmacology in human Angelman syndrome cortex. Neurosci Lett. 2010;483:167–72.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Egawa K, Kitagawa K, Inoue K, et al. Decreased tonic inhibition in cerebellar granule cells causes motor dysfunction in a mouse model of Angelman syndrome. Sci Transl Med. 2012;4:163ra57.CrossRef Egawa K, Kitagawa K, Inoue K, et al. Decreased tonic inhibition in cerebellar granule cells causes motor dysfunction in a mouse model of Angelman syndrome. Sci Transl Med. 2012;4:163ra57.CrossRef
62.
Zurück zum Zitat Baudry M, Bi X, Gall C, et al. The biochemistry of memory: the 26 year journey of a ‘new and specific hypothesis̕’. Neurobiol Learn Mem. 2011;95:125–33.PubMedCrossRef Baudry M, Bi X, Gall C, et al. The biochemistry of memory: the 26 year journey of a ‘new and specific hypothesis̕’. Neurobiol Learn Mem. 2011;95:125–33.PubMedCrossRef
64.
Zurück zum Zitat Simmons DA, Rex CS, Palmer L, et al. Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington̕s disease knockin mice. Proc Natl Acad Sci USA. 2009;106:4906–11.PubMedPubMedCentralCrossRef Simmons DA, Rex CS, Palmer L, et al. Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington̕s disease knockin mice. Proc Natl Acad Sci USA. 2009;106:4906–11.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Baudry M, Kramar E, Xu X, et al. Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome. Neurobiol Dis. 2012;47:210–5.PubMedPubMedCentralCrossRef Baudry M, Kramar E, Xu X, et al. Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome. Neurobiol Dis. 2012;47:210–5.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Chang PK, Verbich D, McKinney RA. AMPA receptors as drug targets in neurological disease–advantages, caveats, and future outlook. Eur J Neurosci. 2012;35:1908–16.PubMedCrossRef Chang PK, Verbich D, McKinney RA. AMPA receptors as drug targets in neurological disease–advantages, caveats, and future outlook. Eur J Neurosci. 2012;35:1908–16.PubMedCrossRef
67.
Zurück zum Zitat Panja D, Bramham CR. BDNF mechanisms in late LTP formation: a synthesis and breakdown. Neuropharmacology. 2014;76 Pt C:664–76.PubMedCrossRef Panja D, Bramham CR. BDNF mechanisms in late LTP formation: a synthesis and breakdown. Neuropharmacology. 2014;76 Pt C:664–76.PubMedCrossRef
69.
Zurück zum Zitat Yoshii A, Constantine-Paton M. BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat Neurosci. 2007;10:702–11.PubMedCrossRef Yoshii A, Constantine-Paton M. BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat Neurosci. 2007;10:702–11.PubMedCrossRef
70.
Zurück zum Zitat Yoshii A, Murata Y, Kim J, et al. TrkB and protein kinase Mzeta regulate synaptic localization of PSD-95 in developing cortex. J Neurosci. 2011;31:11894–904.PubMedPubMedCentralCrossRef Yoshii A, Murata Y, Kim J, et al. TrkB and protein kinase Mzeta regulate synaptic localization of PSD-95 in developing cortex. J Neurosci. 2011;31:11894–904.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Kaphzan H, Hernandez P, Jung JI, et al. Reversal of impaired hippocampal long-term potentiation and contextual fear memory deficits in Angelman syndrome model mice by ErbB inhibitors. Biol Psychiatry. 2012;72:182–90.PubMedPubMedCentralCrossRef Kaphzan H, Hernandez P, Jung JI, et al. Reversal of impaired hippocampal long-term potentiation and contextual fear memory deficits in Angelman syndrome model mice by ErbB inhibitors. Biol Psychiatry. 2012;72:182–90.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Kwon OB, Longart M, Vullhorst D, et al. Neuregulin-1 reverses long-term potentiation at CA1 hippocampal synapses. J Neurosci. 2005;25:9378–83.PubMedCrossRef Kwon OB, Longart M, Vullhorst D, et al. Neuregulin-1 reverses long-term potentiation at CA1 hippocampal synapses. J Neurosci. 2005;25:9378–83.PubMedCrossRef
73.
74.
Zurück zum Zitat Sun J, Liu Y, Moreno S, et al. Imbalanced mechanistic target of rapamycin C1 and C2 activity in the cerebellum of Angelman syndrome mice impairs motor function. J Neurosci. 2015;35:4706–18.PubMedPubMedCentralCrossRef Sun J, Liu Y, Moreno S, et al. Imbalanced mechanistic target of rapamycin C1 and C2 activity in the cerebellum of Angelman syndrome mice impairs motor function. J Neurosci. 2015;35:4706–18.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Rogers JT, Rusiana I, Trotter J, et al. Reelin supplementation enhances cognitive ability, synaptic plasticity, and dendritic spine density. Learn Mem. 2011;18:558–64.PubMedPubMedCentralCrossRef Rogers JT, Rusiana I, Trotter J, et al. Reelin supplementation enhances cognitive ability, synaptic plasticity, and dendritic spine density. Learn Mem. 2011;18:558–64.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Hethorn WR, Ciarlone SL, Filonova I, et al. Reelin supplementation recovers synaptic plasticity and cognitive deficits in a mouse model for Angelman syndrome. Eur J Neurosci. 2015;41:1372–80.PubMedPubMedCentralCrossRef Hethorn WR, Ciarlone SL, Filonova I, et al. Reelin supplementation recovers synaptic plasticity and cognitive deficits in a mouse model for Angelman syndrome. Eur J Neurosci. 2015;41:1372–80.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Su H, Fan W, Coskun PE, et al. Mitochondrial dysfunction in CA1 hippocampal neurons of the UBE3A deficient mouse model for Angelman syndrome. Neurosci Lett. 2011;487:129–33.PubMedCrossRef Su H, Fan W, Coskun PE, et al. Mitochondrial dysfunction in CA1 hippocampal neurons of the UBE3A deficient mouse model for Angelman syndrome. Neurosci Lett. 2011;487:129–33.PubMedCrossRef
78.
Zurück zum Zitat Llewellyn KJ, Nalbandian A, Gomez A, et al. Administration of CoQ10 analogue ameliorates dysfunction of the mitochondrial respiratory chain in a mouse model of Angelman syndrome. Neurobiol Dis. 2015;76:77–86.PubMedCrossRef Llewellyn KJ, Nalbandian A, Gomez A, et al. Administration of CoQ10 analogue ameliorates dysfunction of the mitochondrial respiratory chain in a mouse model of Angelman syndrome. Neurobiol Dis. 2015;76:77–86.PubMedCrossRef
79.
80.
Zurück zum Zitat Thibert RL, Conant KD, Braun EK, et al. Epilepsy in Angelman syndrome: a questionnaire-based assessment of the natural history and current treatment options. Epilepsia. 2009;50:2369–76.PubMedCrossRef Thibert RL, Conant KD, Braun EK, et al. Epilepsy in Angelman syndrome: a questionnaire-based assessment of the natural history and current treatment options. Epilepsia. 2009;50:2369–76.PubMedCrossRef
81.
Zurück zum Zitat Valente KD, Varela MC, Koiffmann CP, et al. Angelman syndrome caused by deletion: a genotype-phenotype correlation determined by breakpoint. Epilepsy Res. 2013;105:234–9.PubMedCrossRef Valente KD, Varela MC, Koiffmann CP, et al. Angelman syndrome caused by deletion: a genotype-phenotype correlation determined by breakpoint. Epilepsy Res. 2013;105:234–9.PubMedCrossRef
82.
Zurück zum Zitat Dion MH, Novotny EJ Jr, Carmant L, et al. Lamotrigine therapy of epilepsy with Angelman̕s syndrome. Epilepsia. 2007;48:593–6.PubMedCrossRef Dion MH, Novotny EJ Jr, Carmant L, et al. Lamotrigine therapy of epilepsy with Angelman̕s syndrome. Epilepsia. 2007;48:593–6.PubMedCrossRef
83.
Zurück zum Zitat Franz DN, Glauser TA, Tudor C, et al. Topiramate therapy of epilepsy associated with Angelman̕s syndrome. Neurology. 2000;54:1185–8.PubMedCrossRef Franz DN, Glauser TA, Tudor C, et al. Topiramate therapy of epilepsy associated with Angelman̕s syndrome. Neurology. 2000;54:1185–8.PubMedCrossRef
84.
Zurück zum Zitat Ostergaard JR, Balslev T. Efficacy of different antiepileptic drugs in children with Angelman syndrome associated with 15q11-13 deletion: the Danish experience. Dev Med Child Neurol. 2001;43:718–9.PubMedCrossRef Ostergaard JR, Balslev T. Efficacy of different antiepileptic drugs in children with Angelman syndrome associated with 15q11-13 deletion: the Danish experience. Dev Med Child Neurol. 2001;43:718–9.PubMedCrossRef
85.
Zurück zum Zitat Valente KD, Koiffmann CP, Fridman C, et al. Epilepsy in patients with Angelman syndrome caused by deletion of the chromosome 15q11-13. Arch Neurol. 2006;63:122–8.PubMedCrossRef Valente KD, Koiffmann CP, Fridman C, et al. Epilepsy in patients with Angelman syndrome caused by deletion of the chromosome 15q11-13. Arch Neurol. 2006;63:122–8.PubMedCrossRef
86.
Zurück zum Zitat Neal EG, Chaffe H, Schwartz RH, et al. A randomized trial of classical and medium-chain triglyceride ketogenic diets in the treatment of childhood epilepsy. Epilepsia. 2009;50:1109–17.PubMedCrossRef Neal EG, Chaffe H, Schwartz RH, et al. A randomized trial of classical and medium-chain triglyceride ketogenic diets in the treatment of childhood epilepsy. Epilepsia. 2009;50:1109–17.PubMedCrossRef
87.
Zurück zum Zitat Neal EG, Chaffe H, Schwartz RH, et al. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 2008;7:500–6.PubMedCrossRef Neal EG, Chaffe H, Schwartz RH, et al. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 2008;7:500–6.PubMedCrossRef
88.
Zurück zum Zitat Levy RG, Cooper PN, Giri P. Ketogenic diet and other dietary treatments for epilepsy. Cochrane Database Syst Rev. 2012;3:CD001903. Levy RG, Cooper PN, Giri P. Ketogenic diet and other dietary treatments for epilepsy. Cochrane Database Syst Rev. 2012;3:CD001903.
89.
Zurück zum Zitat Evangeliou A, Doulioglou V, Haidopoulou K, et al. Ketogenic diet in a patient with Angelman syndrome. Pediatr Int. 2010;52:831–4.PubMedCrossRef Evangeliou A, Doulioglou V, Haidopoulou K, et al. Ketogenic diet in a patient with Angelman syndrome. Pediatr Int. 2010;52:831–4.PubMedCrossRef
90.
Zurück zum Zitat Stein D, Chetty M, Rho JM. A “happy” toddler presenting with sudden, life-threatening seizures. Semin Pediatr Neurol. 2010;17:35–8.PubMedCrossRef Stein D, Chetty M, Rho JM. A “happy” toddler presenting with sudden, life-threatening seizures. Semin Pediatr Neurol. 2010;17:35–8.PubMedCrossRef
91.
Zurück zum Zitat Kossoff EH, Zupec-Kania BA, Amark PE, et al. Optimal clinical management of children receiving the ketogenic diet: recommendations of the International Ketogenic Diet Study Group. Epilepsia. 2009;50:304–17.PubMedCrossRef Kossoff EH, Zupec-Kania BA, Amark PE, et al. Optimal clinical management of children receiving the ketogenic diet: recommendations of the International Ketogenic Diet Study Group. Epilepsia. 2009;50:304–17.PubMedCrossRef
92.
Zurück zum Zitat Bergqvist AG. Long-term monitoring of the ketogenic diet: do’s and Don’ts. Epilepsy Res. 2012;100:261–6.PubMedCrossRef Bergqvist AG. Long-term monitoring of the ketogenic diet: do’s and Don’ts. Epilepsy Res. 2012;100:261–6.PubMedCrossRef
93.
Zurück zum Zitat Hemingway C, Freeman JM, Pillas DJ, et al. The ketogenic diet: a 3- to 6-year follow-up of 150 children enrolled prospectively. Pediatrics. 2001;108:898–905.PubMedCrossRef Hemingway C, Freeman JM, Pillas DJ, et al. The ketogenic diet: a 3- to 6-year follow-up of 150 children enrolled prospectively. Pediatrics. 2001;108:898–905.PubMedCrossRef
94.
Zurück zum Zitat Thibert RL, Pfeifer HH, Larson AM, et al. Low glycemic index treatment for seizures in Angelman syndrome. Epilepsia. 2012;53:1498–502.PubMedCrossRef Thibert RL, Pfeifer HH, Larson AM, et al. Low glycemic index treatment for seizures in Angelman syndrome. Epilepsia. 2012;53:1498–502.PubMedCrossRef
95.
Zurück zum Zitat Forrest KM, Young H, Dale RC, et al. Benefit of corticosteroid therapy in Angelman syndrome. J Child Neurol. 2009;24:952–8.PubMedCrossRef Forrest KM, Young H, Dale RC, et al. Benefit of corticosteroid therapy in Angelman syndrome. J Child Neurol. 2009;24:952–8.PubMedCrossRef
96.
Zurück zum Zitat dos Santos RG, Hallak JE, Leite JP, et al. Phytocannabinoids and epilepsy. J Clin Pharm Ther. 2015;40:135–43.PubMedCrossRef dos Santos RG, Hallak JE, Leite JP, et al. Phytocannabinoids and epilepsy. J Clin Pharm Ther. 2015;40:135–43.PubMedCrossRef
97.
Zurück zum Zitat Didden R, Sigafoos J. A review of the nature and treatment of sleep disorders in individuals with developmental disabilities. Res Dev Disabil. 2001;22:255–72.PubMedCrossRef Didden R, Sigafoos J. A review of the nature and treatment of sleep disorders in individuals with developmental disabilities. Res Dev Disabil. 2001;22:255–72.PubMedCrossRef
98.
Zurück zum Zitat Goldman SE, Bichell TJ, Surdyka K, et al. Sleep in children and adolescents with Angelman syndrome: association with parent sleep and stress. J Intellect Disabil Res. 2012;56:600–8.PubMedCrossRef Goldman SE, Bichell TJ, Surdyka K, et al. Sleep in children and adolescents with Angelman syndrome: association with parent sleep and stress. J Intellect Disabil Res. 2012;56:600–8.PubMedCrossRef
99.
Zurück zum Zitat Bruni O, Ferri R, D’Agostino G, et al. Sleep disturbances in Angelman syndrome: a questionnaire study. Brain Dev. 2004;26:233–40.PubMedCrossRef Bruni O, Ferri R, D’Agostino G, et al. Sleep disturbances in Angelman syndrome: a questionnaire study. Brain Dev. 2004;26:233–40.PubMedCrossRef
100.
Zurück zum Zitat Didden R, Korzilius H, Smits MG, et al. Sleep problems in individuals with Angelman syndrome. Am J Ment Retard. 2004;109:275–84.PubMedCrossRef Didden R, Korzilius H, Smits MG, et al. Sleep problems in individuals with Angelman syndrome. Am J Ment Retard. 2004;109:275–84.PubMedCrossRef
101.
Zurück zum Zitat Walz NC, Beebe D, Byars K. Sleep in individuals with Angelman syndrome: parent perceptions of patterns and problems. Am J Ment Retard. 2005;110:243–52.PubMedCrossRef Walz NC, Beebe D, Byars K. Sleep in individuals with Angelman syndrome: parent perceptions of patterns and problems. Am J Ment Retard. 2005;110:243–52.PubMedCrossRef
102.
Zurück zum Zitat Miano S, Bruni O, Leuzzi V, et al. Sleep polygraphy in Angelman syndrome. Clin Neurophysiol. 2004;115:938–45.PubMedCrossRef Miano S, Bruni O, Leuzzi V, et al. Sleep polygraphy in Angelman syndrome. Clin Neurophysiol. 2004;115:938–45.PubMedCrossRef
103.
Zurück zum Zitat Miano S, Bruni O, Elia M, et al. Sleep breathing and periodic leg movement pattern in Angelman Syndrome: a polysomnographic study. Clin Neurophysiol. 2005;116:2685–92.PubMed Miano S, Bruni O, Elia M, et al. Sleep breathing and periodic leg movement pattern in Angelman Syndrome: a polysomnographic study. Clin Neurophysiol. 2005;116:2685–92.PubMed
104.
Zurück zum Zitat Pelc K, Cheron G, Boyd SG, et al. Are there distinctive sleep problems in Angelman syndrome? Sleep Med. 2008;9:434–41.PubMedCrossRef Pelc K, Cheron G, Boyd SG, et al. Are there distinctive sleep problems in Angelman syndrome? Sleep Med. 2008;9:434–41.PubMedCrossRef
105.
Zurück zum Zitat Takaesu Y, Komada Y, Inoue Y. Melatonin profile and its relation to circadian rhythm sleep disorders in Angelman syndrome patients. Sleep Med. 2012;13:1164–70.PubMedCrossRef Takaesu Y, Komada Y, Inoue Y. Melatonin profile and its relation to circadian rhythm sleep disorders in Angelman syndrome patients. Sleep Med. 2012;13:1164–70.PubMedCrossRef
106.
Zurück zum Zitat Zhdanova IV, Wurtman RJ, Wagstaff J. Effects of a low dose of melatonin on sleep in children with Angelman syndrome. J Pediatr Endocrinol Metab. 1999;12:57–67.PubMedCrossRef Zhdanova IV, Wurtman RJ, Wagstaff J. Effects of a low dose of melatonin on sleep in children with Angelman syndrome. J Pediatr Endocrinol Metab. 1999;12:57–67.PubMedCrossRef
107.
Zurück zum Zitat Braam W, Didden R, Smits MG, et al. Melatonin for chronic insomnia in Angelman syndrome: a randomized placebo-controlled trial. J Child Neurol. 2008;23:649–54.PubMedCrossRef Braam W, Didden R, Smits MG, et al. Melatonin for chronic insomnia in Angelman syndrome: a randomized placebo-controlled trial. J Child Neurol. 2008;23:649–54.PubMedCrossRef
108.
Zurück zum Zitat Braam W, Smits MG, Didden R, et al. Exogenous melatonin for sleep problems in individuals with intellectual disability: a meta-analysis. Dev Med Child Neurol. 2009;51:340–9.PubMedCrossRef Braam W, Smits MG, Didden R, et al. Exogenous melatonin for sleep problems in individuals with intellectual disability: a meta-analysis. Dev Med Child Neurol. 2009;51:340–9.PubMedCrossRef
110.
Zurück zum Zitat Ingrassia A, Turk J. The use of clonidine for severe and intractable sleep problems in children with neurodevelopmental disorders–a case series. Eur Child Adolesc Psychiatry. 2005;14:34–40.PubMedCrossRef Ingrassia A, Turk J. The use of clonidine for severe and intractable sleep problems in children with neurodevelopmental disorders–a case series. Eur Child Adolesc Psychiatry. 2005;14:34–40.PubMedCrossRef
111.
Zurück zum Zitat Allen KD, Kuhn BR, DeHaai KA, et al. Evaluation of a behavioral treatment package to reduce sleep problems in children with Angelman Syndrome. Res Dev Disabil. 2013;34:676–86.PubMedCrossRef Allen KD, Kuhn BR, DeHaai KA, et al. Evaluation of a behavioral treatment package to reduce sleep problems in children with Angelman Syndrome. Res Dev Disabil. 2013;34:676–86.PubMedCrossRef
112.
Zurück zum Zitat Grigg-Damberger M, Ralls F. Treatment strategies for complex behavioral insomnia in children with neurodevelopmental disorders. Curr Opin Pulm Med. 2013;19:616–25.PubMedCrossRef Grigg-Damberger M, Ralls F. Treatment strategies for complex behavioral insomnia in children with neurodevelopmental disorders. Curr Opin Pulm Med. 2013;19:616–25.PubMedCrossRef
113.
Zurück zum Zitat Conant KD, Thibert RL, Thiele EA. Epilepsy and the sleep-wake patterns found in Angelman syndrome. Epilepsia. 2009;50:2497–500.PubMedCrossRef Conant KD, Thibert RL, Thiele EA. Epilepsy and the sleep-wake patterns found in Angelman syndrome. Epilepsia. 2009;50:2497–500.PubMedCrossRef
115.
Zurück zum Zitat Miura K, Kishino T, Li E, et al. Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice. Neurobiol Dis. 2002;9:149–59.PubMedCrossRef Miura K, Kishino T, Li E, et al. Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice. Neurobiol Dis. 2002;9:149–59.PubMedCrossRef
117.
Zurück zum Zitat Huang HS, Burns AJ, Nonneman RJ, et al. Behavioral deficits in an Angelman syndrome model: effects of genetic background and age. Behav Brain Res. 2013;243:79–90.PubMedPubMedCentralCrossRef Huang HS, Burns AJ, Nonneman RJ, et al. Behavioral deficits in an Angelman syndrome model: effects of genetic background and age. Behav Brain Res. 2013;243:79–90.PubMedPubMedCentralCrossRef
Metadaten
Titel
Pharmacological therapies for Angelman syndrome
verfasst von
Wen-Hann Tan
Lynne M. Bird, MD
Publikationsdatum
12.01.2016
Verlag
Springer Vienna
Erschienen in
Wiener Medizinische Wochenschrift / Ausgabe 9-10/2017
Print ISSN: 0043-5341
Elektronische ISSN: 1563-258X
DOI
https://doi.org/10.1007/s10354-015-0408-z

Weitere Artikel der Ausgabe 9-10/2017

Wiener Medizinische Wochenschrift 9-10/2017 Zur Ausgabe