Skip to main content
Erschienen in: Lasers in Medical Science 2/2019

13.08.2018 | Original Article

Photobiomodulation promotes adenoviral gene transduction in auditory cells

verfasst von: So-Young Chang, Yong-Ho Park, Nathaniel T. Carpena, Tiffany T. Pham, Phil-Sang Chung, Jae Yun Jung, Min Young Lee

Erschienen in: Lasers in Medical Science | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

Gene therapy is the delivery of a therapeutic gene into target cells to treat disorders by replacing disease-causing mutated genes with healthy ones. Gene therapy of the inner ear has been recently described, with applications for sensorineural hearing loss. However, gene delivery to the location of the inner ear, and thus efficacy of therapy, is challenging. Photobiomodulation (PBM) with a low-level laser has been suggested to have a therapeutic effect and has the potential to augment gene therapy. To investigate whether PBM improves the rate of adenovirus (Ad)-mediated viral delivery, we compared low-level laser therapy (LLLT) and non-LLLT HEI-OC1 cells treated with an Ad viral vector carrying green fluorescent protein (GFP). Cultured HEI-OC1 cells were divided into six groups: no treatment control, LLLT only, 1 μL Ad-GFP, 3 μL Ad-GFP, 1 μL Ad-GFP + LLLT, and 3 μL Ad-GFP + LLLT (LLLT: 808 nm at 15 mW for 15 min). Cells were irradiated twice: at 2 h and again at 24 h. A nonparametric Mann-Whitney U test was used to statistically analyze differences between the control and treatment groups. The viral inoculations used in this study did not change the amount of viable HEI-OC1 cells (N = 4–8). The 1 μL Ad-GFP + LLLT and 3 μL Ad-GFP + LLLT groups showed an increased density of GFP-positive cells compared to 1 μL and 3 μL Ad-GFP cells (N = 5–8, 1 μL: p = 0.0159; 3 μL: p = 0.0168,). The quantitative analysis of the epifluorescence of the 1 μL Ad-GFP + LLLT, and 3 μL Ad-GFP + LLLT groups revealed increased GFP expression/cell compared to 1 μL and 3 μL Ad-GFP cells (N = 6–15, 1 μL: p = 0.0082; 3 μL: p = 0.0012). The RT-qPCR results were consistent (N = 4–5, p = 0.0159). These findings suggest that PBM may enhance the gene delivery of Ad-mediated viral transduction, and the combination of the two may be a promising tool for gene therapy for sensorineural hearing loss.
Literatur
1.
Zurück zum Zitat Braun R, Wang Z, Mack DL, Childers MK (2014) Gene therapy for inherited muscle diseases: where genetics meets rehabilitation medicine. Am J Phys Med Rehabil 93:S97–S107CrossRefPubMedPubMedCentral Braun R, Wang Z, Mack DL, Childers MK (2014) Gene therapy for inherited muscle diseases: where genetics meets rehabilitation medicine. Am J Phys Med Rehabil 93:S97–S107CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Verma IM, Somia N (1997) Gene therapy -- promises, problems and prospects. Nature 389:239–242CrossRefPubMed Verma IM, Somia N (1997) Gene therapy -- promises, problems and prospects. Nature 389:239–242CrossRefPubMed
5.
Zurück zum Zitat Choong CJ, Baba K, Mochizuki H (2016) Gene therapy for neurological disorders. Expert Opin Biol Ther 16:143–159CrossRefPubMed Choong CJ, Baba K, Mochizuki H (2016) Gene therapy for neurological disorders. Expert Opin Biol Ther 16:143–159CrossRefPubMed
7.
Zurück zum Zitat Lee MY, Kurioka T, Nelson MM, Prieskorn DM, Swiderski DL, Takada Y, Beyer LA, Raphael Y (2016) Viral-mediated Ntf3 overexpression disrupts innervation and hearing in nondeafened guinea pig cochleae. Mol Ther Methods Clin Dev 3:16052CrossRefPubMedPubMedCentral Lee MY, Kurioka T, Nelson MM, Prieskorn DM, Swiderski DL, Takada Y, Beyer LA, Raphael Y (2016) Viral-mediated Ntf3 overexpression disrupts innervation and hearing in nondeafened guinea pig cochleae. Mol Ther Methods Clin Dev 3:16052CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Takada Y, Beyer LA, Swiderski DL, O'Neal AL, Prieskorn DM, Shivatzki S, Avraham KB, Raphael Y (2014) Connexin 26 null mice exhibit spiral ganglion degeneration that can be blocked by BDNF gene therapy. Hear Res 309:124–135CrossRefPubMed Takada Y, Beyer LA, Swiderski DL, O'Neal AL, Prieskorn DM, Shivatzki S, Avraham KB, Raphael Y (2014) Connexin 26 null mice exhibit spiral ganglion degeneration that can be blocked by BDNF gene therapy. Hear Res 309:124–135CrossRefPubMed
9.
Zurück zum Zitat Cooper LB, Chan DK, Roediger FC, Shaffer BR, Fraser JF, Musatov S, Selesnick SH, Kaplitt MG (2006) AAV-mediated delivery of the caspase inhibitor XIAP protects against cisplatin ototoxicity. Otol Neurotol 27:484–490PubMed Cooper LB, Chan DK, Roediger FC, Shaffer BR, Fraser JF, Musatov S, Selesnick SH, Kaplitt MG (2006) AAV-mediated delivery of the caspase inhibitor XIAP protects against cisplatin ototoxicity. Otol Neurotol 27:484–490PubMed
11.
Zurück zum Zitat Park YH, Wilson KF, Ueda Y, Tung Wong H, Beyer LA, Swiderski DL, Dolan DF, Raphael Y (2014) Conditioning the cochlea to facilitate survival and integration of exogenous cells into the auditory epithelium. Mol Ther 22:873–880CrossRefPubMedPubMedCentral Park YH, Wilson KF, Ueda Y, Tung Wong H, Beyer LA, Swiderski DL, Dolan DF, Raphael Y (2014) Conditioning the cochlea to facilitate survival and integration of exogenous cells into the auditory epithelium. Mol Ther 22:873–880CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Shu Y, Tao Y, Li W, Shen J, Wang Z, Chen ZY (2016) Adenovirus vectors target several cell subtypes of mammalian inner ear in vivo. Neural Plast 2016:9409846CrossRefPubMedPubMedCentral Shu Y, Tao Y, Li W, Shen J, Wang Z, Chen ZY (2016) Adenovirus vectors target several cell subtypes of mammalian inner ear in vivo. Neural Plast 2016:9409846CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Raphael Y, Frisancho JC, Roessler BJ (1996) Adenoviral-mediated gene transfer into guinea pig cochlear cells in vivo. Neurosci Lett 207:137–141CrossRefPubMed Raphael Y, Frisancho JC, Roessler BJ (1996) Adenoviral-mediated gene transfer into guinea pig cochlear cells in vivo. Neurosci Lett 207:137–141CrossRefPubMed
14.
Zurück zum Zitat Hrnjak M, Kuljic-Kapulica N, Budisin A, Giser A (1995) Stimulatory effect of low-power density He-Ne laser radiation on human fibroblasts in vitro. Vojnosanit Pregl 52:539–546PubMed Hrnjak M, Kuljic-Kapulica N, Budisin A, Giser A (1995) Stimulatory effect of low-power density He-Ne laser radiation on human fibroblasts in vitro. Vojnosanit Pregl 52:539–546PubMed
15.
Zurück zum Zitat Boulton M, Marshall J (1986) He-Ne laser stimulation of human fibroblast proliferation and attachment in vitro. Lasers Life Sci 1:125–134 Boulton M, Marshall J (1986) He-Ne laser stimulation of human fibroblast proliferation and attachment in vitro. Lasers Life Sci 1:125–134
16.
Zurück zum Zitat Karu T (1989) Laser biostimulation: a photobiological phenomenon. J Photochem Photobiol B 3:638–640CrossRefPubMed Karu T (1989) Laser biostimulation: a photobiological phenomenon. J Photochem Photobiol B 3:638–640CrossRefPubMed
17.
Zurück zum Zitat Farivar S, Malekshahabi T, Shiari R (2014) Biological effects of low level laser therapy. J Lasers Med Sci 5:58–62PubMedPubMedCentral Farivar S, Malekshahabi T, Shiari R (2014) Biological effects of low level laser therapy. J Lasers Med Sci 5:58–62PubMedPubMedCentral
18.
Zurück zum Zitat Martins A, Trindade F, Leite L (2008) Facial scars after a road accident--combined treatment with pulsed dye laser and Q-switched Nd:YAG laser. J Cosmet Dermatol 7:227–229CrossRefPubMed Martins A, Trindade F, Leite L (2008) Facial scars after a road accident--combined treatment with pulsed dye laser and Q-switched Nd:YAG laser. J Cosmet Dermatol 7:227–229CrossRefPubMed
19.
Zurück zum Zitat Hagiwara S, Iwasaka H, Hasegawa A, Noguchi T (2008) Pre-irradiation of blood by gallium aluminum arsenide (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. Anesth Analg 107:1058–1063CrossRefPubMed Hagiwara S, Iwasaka H, Hasegawa A, Noguchi T (2008) Pre-irradiation of blood by gallium aluminum arsenide (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. Anesth Analg 107:1058–1063CrossRefPubMed
20.
Zurück zum Zitat Aimbire F, Ligeiro de Oliveira AP, Albertini R, Correa JC, Ladeira de Campos CB, Lyon JP, Silva JA Jr, Costa MS (2008) Low level laser therapy (LLLT) decreases pulmonary microvascular leakage, neutrophil influx and IL-1beta levels in airway and lung from rat subjected to LPS-induced inflammation. Inflammation 31:189–197CrossRefPubMed Aimbire F, Ligeiro de Oliveira AP, Albertini R, Correa JC, Ladeira de Campos CB, Lyon JP, Silva JA Jr, Costa MS (2008) Low level laser therapy (LLLT) decreases pulmonary microvascular leakage, neutrophil influx and IL-1beta levels in airway and lung from rat subjected to LPS-induced inflammation. Inflammation 31:189–197CrossRefPubMed
21.
Zurück zum Zitat Aimbire F, Santos FV, Albertini R, Castro-Faria-Neto HC, Mittmann J, Pacheco-Soares C (2008) Low-level laser therapy decreases levels of lung neutrophils anti-apoptotic factors by a NF-kappaB dependent mechanism. Int Immunopharmacol 8:603–605CrossRefPubMed Aimbire F, Santos FV, Albertini R, Castro-Faria-Neto HC, Mittmann J, Pacheco-Soares C (2008) Low-level laser therapy decreases levels of lung neutrophils anti-apoptotic factors by a NF-kappaB dependent mechanism. Int Immunopharmacol 8:603–605CrossRefPubMed
22.
Zurück zum Zitat Stergioulas A (2004) Low-level laser treatment can reduce edema in second degree ankle sprains. J Clin Laser Med Surg 22:125–128CrossRefPubMed Stergioulas A (2004) Low-level laser treatment can reduce edema in second degree ankle sprains. J Clin Laser Med Surg 22:125–128CrossRefPubMed
23.
Zurück zum Zitat Mandelbaum-Livnat MM, Almog M, Nissan M, Loeb E, Shapira Y, Rochkind S (2016) Photobiomodulation triple treatment in peripheral nerve injury: nerve and muscle response. Photomed Laser Surg 34:638–645CrossRefPubMed Mandelbaum-Livnat MM, Almog M, Nissan M, Loeb E, Shapira Y, Rochkind S (2016) Photobiomodulation triple treatment in peripheral nerve injury: nerve and muscle response. Photomed Laser Surg 34:638–645CrossRefPubMed
24.
Zurück zum Zitat Tuby H, Maltz L, Oron U (2011) Induction of autologous mesenchymal stem cells in the bone marrow by low-level laser therapy has profound beneficial effects on the infarcted rat heart. Lasers Surg Med 43:401–409CrossRefPubMed Tuby H, Maltz L, Oron U (2011) Induction of autologous mesenchymal stem cells in the bone marrow by low-level laser therapy has profound beneficial effects on the infarcted rat heart. Lasers Surg Med 43:401–409CrossRefPubMed
25.
Zurück zum Zitat Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84:1091–1099CrossRefPubMed Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84:1091–1099CrossRefPubMed
27.
Zurück zum Zitat Shirahata Y, Ohkohchi N, Itagak H, Satomi S (2001) New technique for gene transfection using laser irradiation. J Investig Med 49:184–190CrossRefPubMed Shirahata Y, Ohkohchi N, Itagak H, Satomi S (2001) New technique for gene transfection using laser irradiation. J Investig Med 49:184–190CrossRefPubMed
28.
Zurück zum Zitat Yao CP, Zhang ZX, Rahmanzadeh R, Huettmann G (2008) Laser-based gene transfection and gene therapy. IEEE Trans Nanobioscience 7:111–119CrossRefPubMed Yao CP, Zhang ZX, Rahmanzadeh R, Huettmann G (2008) Laser-based gene transfection and gene therapy. IEEE Trans Nanobioscience 7:111–119CrossRefPubMed
29.
Zurück zum Zitat de Paula EC, Aranha AC, Simoes A, Bello-Silva MS, Ramalho KM, Esteves-Oliveira M, de Freitas PM, Marotti J, Tuner J (2014) Laser treatment of recurrent herpes labialis: a literature review. Lasers Med Sci 29:1517–1529CrossRef de Paula EC, Aranha AC, Simoes A, Bello-Silva MS, Ramalho KM, Esteves-Oliveira M, de Freitas PM, Marotti J, Tuner J (2014) Laser treatment of recurrent herpes labialis: a literature review. Lasers Med Sci 29:1517–1529CrossRef
30.
Zurück zum Zitat Lugongolo MY, Manoto SL, Ombinda-Lemboumba S, Maaza M, Mthunzi-Kufa P (2017) The effects of low level laser therapy on both HIV-1 infected and uninfected TZM-bl cells. J Biophotonics 10:1335–1344CrossRefPubMed Lugongolo MY, Manoto SL, Ombinda-Lemboumba S, Maaza M, Mthunzi-Kufa P (2017) The effects of low level laser therapy on both HIV-1 infected and uninfected TZM-bl cells. J Biophotonics 10:1335–1344CrossRefPubMed
31.
Zurück zum Zitat Tsen SW, Chapa T, Beatty W, Xu B, Tsen KT, Achilefu S (2014) Ultrashort pulsed laser treatment inactivates viruses by inhibiting viral replication and transcription in the host nucleus. Antivir Res 110:70–76CrossRefPubMed Tsen SW, Chapa T, Beatty W, Xu B, Tsen KT, Achilefu S (2014) Ultrashort pulsed laser treatment inactivates viruses by inhibiting viral replication and transcription in the host nucleus. Antivir Res 110:70–76CrossRefPubMed
32.
Zurück zum Zitat Goins WF, Huang S, Cohen JB, Glorioso JC (2014) Engineering HSV-1 vectors for gene therapy. Methods Mol Biol 1144:63–79CrossRefPubMed Goins WF, Huang S, Cohen JB, Glorioso JC (2014) Engineering HSV-1 vectors for gene therapy. Methods Mol Biol 1144:63–79CrossRefPubMed
33.
Zurück zum Zitat Almerie MQ, Gossedge G, Wright KE, Jayne DG (2017) Treatment of peritoneal carcinomatosis with photodynamic therapy: systematic review of current evidence. Photodiagn Photodyn Ther 20:276–286CrossRef Almerie MQ, Gossedge G, Wright KE, Jayne DG (2017) Treatment of peritoneal carcinomatosis with photodynamic therapy: systematic review of current evidence. Photodiagn Photodyn Ther 20:276–286CrossRef
34.
Zurück zum Zitat Hodgkinson N, Kruger CA, Abrahamse H (2017) Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer and colon cancer stem cells. Tumour Biol 39:1010428317734691CrossRefPubMed Hodgkinson N, Kruger CA, Abrahamse H (2017) Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer and colon cancer stem cells. Tumour Biol 39:1010428317734691CrossRefPubMed
35.
Zurück zum Zitat Lee MY, Bae SH, Chang SY, Lee JH, Kim SH, Ahn JC, Chung PS, Moy W, Jung JY (2016) Photobiomodulation by laser therapy rescued auditory neuropathy induced by ouabain. Neurosci Lett 633:165–173CrossRefPubMed Lee MY, Bae SH, Chang SY, Lee JH, Kim SH, Ahn JC, Chung PS, Moy W, Jung JY (2016) Photobiomodulation by laser therapy rescued auditory neuropathy induced by ouabain. Neurosci Lett 633:165–173CrossRefPubMed
36.
Zurück zum Zitat Lee JH, Chang SY, Moy WJ et al (2016) Simultaneous bilateral laser therapy accelerates recovery after noise-induced hearing loss in a rat model. PeerJ 4:e2252CrossRefPubMedPubMedCentral Lee JH, Chang SY, Moy WJ et al (2016) Simultaneous bilateral laser therapy accelerates recovery after noise-induced hearing loss in a rat model. PeerJ 4:e2252CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Moon TH, Lee MY, Jung JY, Ahn JC, Chang SY, Chung PS, Rhee CK, Kim YH, Suh MW (2016) Safety assessment of trans-tympanic photobiomodulation. Lasers Med Sci 31:323–333CrossRefPubMed Moon TH, Lee MY, Jung JY, Ahn JC, Chang SY, Chung PS, Rhee CK, Kim YH, Suh MW (2016) Safety assessment of trans-tympanic photobiomodulation. Lasers Med Sci 31:323–333CrossRefPubMed
39.
Zurück zum Zitat Rhee CK, He P, Jung JY, Ahn JC, Chung PS, Lee MY, Suh MW (2013) Effect of low-level laser treatment on cochlea hair-cell recovery after ototoxic hearing loss. J Biomed Opt 18:128003CrossRefPubMed Rhee CK, He P, Jung JY, Ahn JC, Chung PS, Lee MY, Suh MW (2013) Effect of low-level laser treatment on cochlea hair-cell recovery after ototoxic hearing loss. J Biomed Opt 18:128003CrossRefPubMed
Metadaten
Titel
Photobiomodulation promotes adenoviral gene transduction in auditory cells
verfasst von
So-Young Chang
Yong-Ho Park
Nathaniel T. Carpena
Tiffany T. Pham
Phil-Sang Chung
Jae Yun Jung
Min Young Lee
Publikationsdatum
13.08.2018
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 2/2019
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-018-2605-7

Weitere Artikel der Ausgabe 2/2019

Lasers in Medical Science 2/2019 Zur Ausgabe