Skip to main content
Erschienen in: Lasers in Medical Science 5/2018

13.01.2018 | Original Article

Photodynamic antimicrobial chemotherapy (PACT) using toluidine blue inhibits both growth and biofilm formation by Candida krusei

verfasst von: Bruna Graziele Marques da Silva, Moisés Lopes Carvalho, Isabela Bueno Rosseti, Stella Zamuner, Maricilia Silva Costa

Erschienen in: Lasers in Medical Science | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

Among non-albicans Candida species, the opportunistic pathogen Candida krusei emerges because of the high mortality related to infections produced by this yeast. The Candida krusei is an opportunistic pathogen presenting an intrinsic resistance to fluconazol. In spite of the reduced number of infections produced by C. krusei, its occurrence is increasing in some groups of patients submitted to the use of fluconazol for prophylaxis. Photodynamic antimicrobial chemotherapy (PACT) is a potential antimicrobial therapy that combines visible light and a nontoxic dye, known as a photosensitizer, producing reactive oxygen species (ROS) that can kill the treated cells. The objective of this study was to investigate the effects of PACT, using toluidine blue, as a photosensitizer on both growth and biofilm formation by Candida krusei. In this work, we studied the effect of the PACT, using TB on both cell growth and biofilm formation by C. krusei. PACT was performed using a light source with output power of 0.068 W and peak wavelength of 630 nm, resulting in a fluence of 20, 30, or 40 J/cm2. In addition, ROS production was determined after PACT. The number of samples used in this study varied from 6 to 8. Statistical differences were evaluated by analysis of variance (ANOVA) and post hoc comparison with Tukey-Kramer test. PACT inhibited both growth and biofilm formation by C. krusei. It was also observed that PACT stimulated ROS production. Comparing to cells not irradiated, irradiation was able to increase ROS production in 11.43, 6.27, and 4.37 times, in the presence of TB 0.01, 0.02, and 0.05 mg/mL, respectively. These results suggest that the inhibition observed in the cell growth after PACT could be related to the ROS production, promoting cellular damage. Taken together, these results demonstrated the ability of PACT reducing both cell growth and biofilm formation by C. krusei.
Literatur
1.
Zurück zum Zitat Morgan J, Meltzer MI, Plikaytis BD, Sofair AN, Huie-White S, Wilcox S, Harrison LH, Seaberg EC, Hajjeh RA, Teutsch SM (2005) Excess mortality, hospital stay, and cost due to candidemia: a case control study using data from population-based candidemia surveillance. Infect Control Hosp Epidemiol 26:540–547CrossRefPubMed Morgan J, Meltzer MI, Plikaytis BD, Sofair AN, Huie-White S, Wilcox S, Harrison LH, Seaberg EC, Hajjeh RA, Teutsch SM (2005) Excess mortality, hospital stay, and cost due to candidemia: a case control study using data from population-based candidemia surveillance. Infect Control Hosp Epidemiol 26:540–547CrossRefPubMed
3.
Zurück zum Zitat Pfaller MA, Diekema DJ (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36:1–53CrossRefPubMed Pfaller MA, Diekema DJ (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36:1–53CrossRefPubMed
4.
Zurück zum Zitat Pfaller MA, Jones RN, Messer SA, Edmond MB, Wenzel RP (1998) National surveillance of nosocomial blood stream infection due to species of Candida other than Candida albicans: frequency of occurrence and antifungal susceptibility in the SCOPE Program. SCOPE Participant Group. Surveillance and Control of Pathogens of Epidemiologic. Diagn Microbiol Infect Dis 30:121–129CrossRefPubMed Pfaller MA, Jones RN, Messer SA, Edmond MB, Wenzel RP (1998) National surveillance of nosocomial blood stream infection due to species of Candida other than Candida albicans: frequency of occurrence and antifungal susceptibility in the SCOPE Program. SCOPE Participant Group. Surveillance and Control of Pathogens of Epidemiologic. Diagn Microbiol Infect Dis 30:121–129CrossRefPubMed
5.
Zurück zum Zitat Bassetti M, Righi E, Costa A, Fasce R, Molinari MP, Rosso R, Pallavicini FB, Viscoli C (2006) Epidemiological trends in nosocomial candidemia in intensive care. BMC Infect Dis 6:21CrossRefPubMedPubMedCentral Bassetti M, Righi E, Costa A, Fasce R, Molinari MP, Rosso R, Pallavicini FB, Viscoli C (2006) Epidemiological trends in nosocomial candidemia in intensive care. BMC Infect Dis 6:21CrossRefPubMedPubMedCentral
6.
7.
Zurück zum Zitat Pemán J, Cantón E, Quindós G, Eraso E, Alcoba J, Guinea J, Merino P, Ruiz-Pérez-de-Pipaon MT, Pérez-del-Molino L, Linares-Sicilia MJ, Marco F, García J, Roselló EM, Gómez-G-de-la-Pedrosa E, Borrell N, Porras A, Yagüe G, FUNGEMYCA Study Group (2012) Epidemiology, species distribution and in vitro antifungal susceptibility of fungaemia in a Spanish multicentre prospective survey. J Antimicrob Chemother 67:1181–1187CrossRefPubMed Pemán J, Cantón E, Quindós G, Eraso E, Alcoba J, Guinea J, Merino P, Ruiz-Pérez-de-Pipaon MT, Pérez-del-Molino L, Linares-Sicilia MJ, Marco F, García J, Roselló EM, Gómez-G-de-la-Pedrosa E, Borrell N, Porras A, Yagüe G, FUNGEMYCA Study Group (2012) Epidemiology, species distribution and in vitro antifungal susceptibility of fungaemia in a Spanish multicentre prospective survey. J Antimicrob Chemother 67:1181–1187CrossRefPubMed
8.
Zurück zum Zitat Abbas J, Bodey GP, Hanna HA, Mardani M, Girgawy E, Abi-Said D, Whimbey E, Hachem R, Raad I (2000) Candida krusei fungemia. An escalating serious infection in immunocompromised patients. Arch Intern Med 160:2659–2664CrossRefPubMed Abbas J, Bodey GP, Hanna HA, Mardani M, Girgawy E, Abi-Said D, Whimbey E, Hachem R, Raad I (2000) Candida krusei fungemia. An escalating serious infection in immunocompromised patients. Arch Intern Med 160:2659–2664CrossRefPubMed
9.
Zurück zum Zitat Muñoz P, Saánchez-Somolinos M, Alcalá L, Rodríguez-Créixems M, Peláez T, Bouza E (2005) Candida krusei fungaemia: antifungal susceptibility and clinical presentation of an uncommon entity during 15 years in a single general hospital. J Antimicrob Chemother 55:188–193CrossRefPubMed Muñoz P, Saánchez-Somolinos M, Alcalá L, Rodríguez-Créixems M, Peláez T, Bouza E (2005) Candida krusei fungaemia: antifungal susceptibility and clinical presentation of an uncommon entity during 15 years in a single general hospital. J Antimicrob Chemother 55:188–193CrossRefPubMed
10.
Zurück zum Zitat Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Nagy E, Dobiasova S, Rinaldi M, Barton R, Veselov A, Global Antifungal Surveillance Group (2008) Candida krusei, a multidrug-resistant opportunistic fungal pathogen: geographic and temporal trends from the ARTEMIS DISK Antifungal Surveillance Program, 2001 to 2005. J Clin Microbiol 46:515–521CrossRefPubMed Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Nagy E, Dobiasova S, Rinaldi M, Barton R, Veselov A, Global Antifungal Surveillance Group (2008) Candida krusei, a multidrug-resistant opportunistic fungal pathogen: geographic and temporal trends from the ARTEMIS DISK Antifungal Surveillance Program, 2001 to 2005. J Clin Microbiol 46:515–521CrossRefPubMed
11.
Zurück zum Zitat Samaranayake YH, Samaranayake LP (1994) Candida krusei: biology, epidemiology, pathogenicity and clinical manifestations of an emerging pathogen. J Med Microbiol 41:295–310CrossRefPubMed Samaranayake YH, Samaranayake LP (1994) Candida krusei: biology, epidemiology, pathogenicity and clinical manifestations of an emerging pathogen. J Med Microbiol 41:295–310CrossRefPubMed
12.
Zurück zum Zitat Espinel-Ingroff A, Pfaller MA, Bustamante B, Canton E, Fothergill A, Fuller J, Gonzalez GM, Lass-Flörl C, Lockhart SR, Martin-Mazuelos E, Meis JF, Melhem MS, Ostrosky-Zeichner L, Pelaez T, Szeszs MW, St-Germain G, Bonfietti LX, Guarro J, Turnidge J (2014) Multilaboratory study of epidemiological cutoff values for detection of resistance in eight Candida species to fluconazole, posaconazole, and voriconazole. Antimicrob Agents Chemother 58:2006–2012CrossRefPubMedPubMedCentral Espinel-Ingroff A, Pfaller MA, Bustamante B, Canton E, Fothergill A, Fuller J, Gonzalez GM, Lass-Flörl C, Lockhart SR, Martin-Mazuelos E, Meis JF, Melhem MS, Ostrosky-Zeichner L, Pelaez T, Szeszs MW, St-Germain G, Bonfietti LX, Guarro J, Turnidge J (2014) Multilaboratory study of epidemiological cutoff values for detection of resistance in eight Candida species to fluconazole, posaconazole, and voriconazole. Antimicrob Agents Chemother 58:2006–2012CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Wingard JR, Merz WG, Rinaldi MG, Johnson TR, Karp JE, Saral R (1991) Increase in Candida krusei infection among patients with bone marrow transplantation and neutropenia treated prophylactically with fluconazole. N Engl J Med 325:1274–1277CrossRefPubMed Wingard JR, Merz WG, Rinaldi MG, Johnson TR, Karp JE, Saral R (1991) Increase in Candida krusei infection among patients with bone marrow transplantation and neutropenia treated prophylactically with fluconazole. N Engl J Med 325:1274–1277CrossRefPubMed
14.
Zurück zum Zitat Cantón E, Pemán J, Gobernado M, Viudes A, Espinel-Ingroff A (2004) Patterns of amphotericin B killing kinetics against seven Candida species. Antimicrob Agents Chemother 48:2477–2482CrossRefPubMedPubMedCentral Cantón E, Pemán J, Gobernado M, Viudes A, Espinel-Ingroff A (2004) Patterns of amphotericin B killing kinetics against seven Candida species. Antimicrob Agents Chemother 48:2477–2482CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Scorzoni L, de Lucas MP, Mesa-Arango AC, Fusco-Almeida AM, Lozano E, Cuenca-Estrella M, Mendes-Giannini MJ, Zaragoza O (2013) Antifungal efficacy during Candida krusei infection in non-conventional models correlates with the yeast in vitro susceptibility profile. PLoS One 8:e60047CrossRefPubMedPubMedCentral Scorzoni L, de Lucas MP, Mesa-Arango AC, Fusco-Almeida AM, Lozano E, Cuenca-Estrella M, Mendes-Giannini MJ, Zaragoza O (2013) Antifungal efficacy during Candida krusei infection in non-conventional models correlates with the yeast in vitro susceptibility profile. PLoS One 8:e60047CrossRefPubMedPubMedCentral
16.
17.
Zurück zum Zitat Allison RR, Moghissi K (2013) Photodynamic therapy (PDT): PDT mechanisms. Clin Endoscopy 46:24–29CrossRef Allison RR, Moghissi K (2013) Photodynamic therapy (PDT): PDT mechanisms. Clin Endoscopy 46:24–29CrossRef
18.
Zurück zum Zitat Sharma SK, Mroz P, Dai T, Huang Y-Y, St. Denis TG, Hamblin MR (2012) Photodynamic therapy for cancer and for infections: what is the difference? Isr J Chem 52:691–705CrossRefPubMedPubMedCentral Sharma SK, Mroz P, Dai T, Huang Y-Y, St. Denis TG, Hamblin MR (2012) Photodynamic therapy for cancer and for infections: what is the difference? Isr J Chem 52:691–705CrossRefPubMedPubMedCentral
19.
20.
Zurück zum Zitat Wilson BC, Patterson MS (2008) The physics, biophysics and technology of photodynamic therapy. Phys Med Biol 53:R61–109CrossRefPubMed Wilson BC, Patterson MS (2008) The physics, biophysics and technology of photodynamic therapy. Phys Med Biol 53:R61–109CrossRefPubMed
21.
Zurück zum Zitat Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42:13–28CrossRefPubMed Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42:13–28CrossRefPubMed
22.
Zurück zum Zitat Sperandio FF, Sabino CP, Vecchio D, Garcia-Diaz M, Huang L, Huang Y-Y, Hamblin MR (2015) Antimicrobial photodynamic therapy in dentistry. In: de Freitas PM, Simões A (eds) Lasers in Dentistry: Guide for Clinical Practice. John Wiley & Sons, Inc, Hoboken Sperandio FF, Sabino CP, Vecchio D, Garcia-Diaz M, Huang L, Huang Y-Y, Hamblin MR (2015) Antimicrobial photodynamic therapy in dentistry. In: de Freitas PM, Simões A (eds) Lasers in Dentistry: Guide for Clinical Practice. John Wiley & Sons, Inc, Hoboken
23.
Zurück zum Zitat Maisch T (2007) Anti-microbial photodynamic therapy: useful in the future? Lasers Med Sci 22:83–91CrossRefPubMed Maisch T (2007) Anti-microbial photodynamic therapy: useful in the future? Lasers Med Sci 22:83–91CrossRefPubMed
24.
25.
Zurück zum Zitat Vera DM, Haynes MH, Ball AR, Dai T, Astrakas C, Kelso MJ, Hamblin MR, Tegos GP (2012) Strategies to potentiate antimicrobial photoinactivation by overcoming resistant phenotypes. Photochem Photobiol 88:499–511CrossRefPubMedPubMedCentral Vera DM, Haynes MH, Ball AR, Dai T, Astrakas C, Kelso MJ, Hamblin MR, Tegos GP (2012) Strategies to potentiate antimicrobial photoinactivation by overcoming resistant phenotypes. Photochem Photobiol 88:499–511CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Huang L, Huang YY, Mroz P, Tegos GP, Zhiyentayev T, Sharma SK, Lu Z, Balasubramanian T, Krayer M, Ruzié C, Yang E, Kee HL, Kirmaier C, Diers JR, Bocian DF, Holten D, Lindsey JS, Hamblin MR (2010) Stable synthetic cationic bacteriochlorins as selective antimicrobial photosensitizers. Antimicrob Agents Chemother 54:3834–3841CrossRefPubMedPubMedCentral Huang L, Huang YY, Mroz P, Tegos GP, Zhiyentayev T, Sharma SK, Lu Z, Balasubramanian T, Krayer M, Ruzié C, Yang E, Kee HL, Kirmaier C, Diers JR, Bocian DF, Holten D, Lindsey JS, Hamblin MR (2010) Stable synthetic cationic bacteriochlorins as selective antimicrobial photosensitizers. Antimicrob Agents Chemother 54:3834–3841CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Calzavara-Pinton P, Rossi MT, Sala R, Venturini M (2012) Photodynamic antifungal chemotherapy. Photochem Photobiol 88:512–522CrossRefPubMed Calzavara-Pinton P, Rossi MT, Sala R, Venturini M (2012) Photodynamic antifungal chemotherapy. Photochem Photobiol 88:512–522CrossRefPubMed
29.
Zurück zum Zitat Chabrier-Roselló Y, Foster TH, Pérez-Nazario N, Mitra S, Haidaris CG (2005) Sensitivity of Candida albicans germ tubes and biofilms to photofrin-mediated phototoxicity. Antimicrob Agents Chemother 49:4288–4295CrossRefPubMedPubMedCentral Chabrier-Roselló Y, Foster TH, Pérez-Nazario N, Mitra S, Haidaris CG (2005) Sensitivity of Candida albicans germ tubes and biofilms to photofrin-mediated phototoxicity. Antimicrob Agents Chemother 49:4288–4295CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Demidova TN, Hamblin MR (2005) Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother 49:2329–2335CrossRefPubMedPubMedCentral Demidova TN, Hamblin MR (2005) Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother 49:2329–2335CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Lambrechts SA, Aalders MC, Van Marle J (2005) Mechanistic study of the photodynamic inactivation of Candida albicans by a cationic porphyrin. Antimicrob Agents Chemother 49:2026–2034CrossRefPubMedPubMedCentral Lambrechts SA, Aalders MC, Van Marle J (2005) Mechanistic study of the photodynamic inactivation of Candida albicans by a cationic porphyrin. Antimicrob Agents Chemother 49:2026–2034CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Lam M, Jou PC, Lattif AA, Lee Y, Malbasa CL, Mukherjee PK, Oleinick NL, Ghannoum MA, Cooper KD, Baron ED (2011) Photodynamic therapy with Pc 4 induces apoptosis of Candida albicans. Photochem Photobiol 87:904–909CrossRefPubMedPubMedCentral Lam M, Jou PC, Lattif AA, Lee Y, Malbasa CL, Mukherjee PK, Oleinick NL, Ghannoum MA, Cooper KD, Baron ED (2011) Photodynamic therapy with Pc 4 induces apoptosis of Candida albicans. Photochem Photobiol 87:904–909CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Souza SC, Junqueira JC, Balducci I, Koga-Ito CY, Munin E, Jorge AO (2006) Photosensitization of different Candida species by low power laser light. J Photochem Photobiol B 83:34–38CrossRefPubMed Souza SC, Junqueira JC, Balducci I, Koga-Ito CY, Munin E, Jorge AO (2006) Photosensitization of different Candida species by low power laser light. J Photochem Photobiol B 83:34–38CrossRefPubMed
35.
Zurück zum Zitat Munin E, Giroldo LM, Alves LP, Costa MS (2007) Study of germ tube formation by Candida albicans after photodynamic antimicrobial chemotherapy (PACT). J Photochem Photobiol B 88:16–20CrossRefPubMed Munin E, Giroldo LM, Alves LP, Costa MS (2007) Study of germ tube formation by Candida albicans after photodynamic antimicrobial chemotherapy (PACT). J Photochem Photobiol B 88:16–20CrossRefPubMed
36.
Zurück zum Zitat Carvalho GG, Felipe MP, Costa MS (2009) The photodynamic effect of methylene blue and toluidine blue on Candida albicans is dependent on medium conditions. J Microbiol 47:619–623CrossRefPubMed Carvalho GG, Felipe MP, Costa MS (2009) The photodynamic effect of methylene blue and toluidine blue on Candida albicans is dependent on medium conditions. J Microbiol 47:619–623CrossRefPubMed
37.
Zurück zum Zitat Giroldo LM, Felipe MP, de Oliveira MA, Munin E, Alves LP, Costa MS (2009) Photodynamic antimicrobial chemotherapy (PACT) with methylene blue increases membrane permeability in Candida albicans. Lasers Med Sci 24:109–112CrossRefPubMed Giroldo LM, Felipe MP, de Oliveira MA, Munin E, Alves LP, Costa MS (2009) Photodynamic antimicrobial chemotherapy (PACT) with methylene blue increases membrane permeability in Candida albicans. Lasers Med Sci 24:109–112CrossRefPubMed
38.
Zurück zum Zitat Prates RA, Kato IT, Ribeiro MS, Tegos GP, Hamblin MR (2011) Influence of multidrug efflux systems on methylene blue-mediated photodynamic inactivation of Candida albicans. J Antimicrob Chemother 66:1525–1532CrossRefPubMedPubMedCentral Prates RA, Kato IT, Ribeiro MS, Tegos GP, Hamblin MR (2011) Influence of multidrug efflux systems on methylene blue-mediated photodynamic inactivation of Candida albicans. J Antimicrob Chemother 66:1525–1532CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Rosseti IB, Chagas LR, Costa MS (2014) Photodynamic antimicrobial chemotherapy (PACT) inhibits biofilm formation by Candida albicans, increasing both ROS production and membrane permeability. Lasers Med Sci 29:1059–1064CrossRefPubMed Rosseti IB, Chagas LR, Costa MS (2014) Photodynamic antimicrobial chemotherapy (PACT) inhibits biofilm formation by Candida albicans, increasing both ROS production and membrane permeability. Lasers Med Sci 29:1059–1064CrossRefPubMed
40.
Zurück zum Zitat Tanaka M, Kinoshita M, Yoshihara Y, Shinomiya N, Seki S, Nemoto K, Hirayama T, Dai T, Huang L, Hamblin MR, Morimoto Y (2012) Optimal photosensitizers for photodynamic therapy of infections should kill bacteria but spare neutrophils. Photochem Photobiol 88:227–232CrossRefPubMed Tanaka M, Kinoshita M, Yoshihara Y, Shinomiya N, Seki S, Nemoto K, Hirayama T, Dai T, Huang L, Hamblin MR, Morimoto Y (2012) Optimal photosensitizers for photodynamic therapy of infections should kill bacteria but spare neutrophils. Photochem Photobiol 88:227–232CrossRefPubMed
41.
Zurück zum Zitat Souza RC, Junqueira JC, Rossoni RD, Pereira CA, Munin E, Jorge AO (2010) Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers Med Sci 25:385–389CrossRefPubMed Souza RC, Junqueira JC, Rossoni RD, Pereira CA, Munin E, Jorge AO (2010) Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers Med Sci 25:385–389CrossRefPubMed
42.
Zurück zum Zitat Barbério GS, da Costa SV, dos Santos Silva M, de Oliveira TM, Silva TC, de Andrade Moreira Machado MA (2014) Photodynamic inactivation of Candida albicans mediated by a low density of light energy. Lasers Med Sci 29:907–910PubMed Barbério GS, da Costa SV, dos Santos Silva M, de Oliveira TM, Silva TC, de Andrade Moreira Machado MA (2014) Photodynamic inactivation of Candida albicans mediated by a low density of light energy. Lasers Med Sci 29:907–910PubMed
43.
Zurück zum Zitat Wilson M, Mia N (1993) Sensitisation of Candida albicans to killing by low-power laser light. J Oral Pathol Med 22:354–357CrossRefPubMed Wilson M, Mia N (1993) Sensitisation of Candida albicans to killing by low-power laser light. J Oral Pathol Med 22:354–357CrossRefPubMed
44.
Zurück zum Zitat Soares BM, da Silva DL, Sousa GR, Amorim JC, de Resende MA, Pinotti M, Cisalpino OS (2009) In vitro photodynamic inactivation of Candida spp. growth and adhesion to buccal epithelial cells. J Photochem Photobiol B 94:65–70CrossRefPubMed Soares BM, da Silva DL, Sousa GR, Amorim JC, de Resende MA, Pinotti M, Cisalpino OS (2009) In vitro photodynamic inactivation of Candida spp. growth and adhesion to buccal epithelial cells. J Photochem Photobiol B 94:65–70CrossRefPubMed
45.
Zurück zum Zitat Rodrigues GB, Dias-Baruffi M, Holman N, Wainwright M, Braga GU (2013) In vitro photodynamic inactivation of Candida species and mouse fibroblasts with phenothiazinium photosensitisers and red light. Photodiagn Photodyn Ther 10:141–149CrossRef Rodrigues GB, Dias-Baruffi M, Holman N, Wainwright M, Braga GU (2013) In vitro photodynamic inactivation of Candida species and mouse fibroblasts with phenothiazinium photosensitisers and red light. Photodiagn Photodyn Ther 10:141–149CrossRef
46.
Zurück zum Zitat Espinel-Ingroff A, Canton E, Peman J, Rinaldi MG, Fothergill AW (2009) Comparison of 24-hour and 48-hour voriconazole MICs as determined by the Clinical and Laboratory Standards Institute broth microdilution method (M27–A3 document) in three laboratories: results obtained with 2,162 clinical isolates of Candida spp. and other yeasts. J Clin Microbiol 47:2766–2771CrossRefPubMedPubMedCentral Espinel-Ingroff A, Canton E, Peman J, Rinaldi MG, Fothergill AW (2009) Comparison of 24-hour and 48-hour voriconazole MICs as determined by the Clinical and Laboratory Standards Institute broth microdilution method (M27–A3 document) in three laboratories: results obtained with 2,162 clinical isolates of Candida spp. and other yeasts. J Clin Microbiol 47:2766–2771CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Ruhnke M, Rickerts V, Cornely OA, Buchheidt D, Glöckner A, Heinz W, Höhl R, Horré R, Karthaus M, Kujath P, Willinger B, Presterl E, Rath P, Ritter J, Glasmacher A, Lass-Flörl C, Groll AH (2011) Diagnosis and therapy of Candida infections: joint recommendations of the German Speaking Mycological Society and the Paul-Ehrlich-Society for Chemotherapy. Mycoses 54:279–310CrossRefPubMed Ruhnke M, Rickerts V, Cornely OA, Buchheidt D, Glöckner A, Heinz W, Höhl R, Horré R, Karthaus M, Kujath P, Willinger B, Presterl E, Rath P, Ritter J, Glasmacher A, Lass-Flörl C, Groll AH (2011) Diagnosis and therapy of Candida infections: joint recommendations of the German Speaking Mycological Society and the Paul-Ehrlich-Society for Chemotherapy. Mycoses 54:279–310CrossRefPubMed
48.
Zurück zum Zitat Van de Veerdonk FL, Netea MG, Joosten LA, van der Meer JW, Kullberg BJ (2010) Novel strategies for the prevention and treatment of Candida infections: the potential of immunotherapy. FEMS Microbiol Rev 34:1063–1075CrossRefPubMed Van de Veerdonk FL, Netea MG, Joosten LA, van der Meer JW, Kullberg BJ (2010) Novel strategies for the prevention and treatment of Candida infections: the potential of immunotherapy. FEMS Microbiol Rev 34:1063–1075CrossRefPubMed
49.
Zurück zum Zitat White TC, Marr KA, Bowden RA (1998) Clinical cellular and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382–402PubMedPubMedCentral White TC, Marr KA, Bowden RA (1998) Clinical cellular and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382–402PubMedPubMedCentral
50.
Zurück zum Zitat Cannon RD, Lamping E, Holmes AR, Niimi K, Tanabe K, Niimi M, Monk BC (2007) Candida albicans drug resistance another way to cope with stress. Microbiology 153:3211–3217CrossRefPubMed Cannon RD, Lamping E, Holmes AR, Niimi K, Tanabe K, Niimi M, Monk BC (2007) Candida albicans drug resistance another way to cope with stress. Microbiology 153:3211–3217CrossRefPubMed
52.
Zurück zum Zitat Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Köhler JR, Kadosh D, Lopez-Ribot JL (2010) Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 6:e1000828CrossRefPubMedPubMedCentral Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Köhler JR, Kadosh D, Lopez-Ribot JL (2010) Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 6:e1000828CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Ha KC, White TC (1999) Effects of azole antifungal drugs on the transition from yeast cells to hyphae in susceptible and resistant isolates of the pathogenic yeast Candida albicans. Antimicrob Agents Chemother 43:763–768PubMedPubMedCentral Ha KC, White TC (1999) Effects of azole antifungal drugs on the transition from yeast cells to hyphae in susceptible and resistant isolates of the pathogenic yeast Candida albicans. Antimicrob Agents Chemother 43:763–768PubMedPubMedCentral
55.
Zurück zum Zitat Chandra J, Mukherjee PK, Ghannoum MA (2012) Candida biofilms associated with CVC and medical devices. Mycoses 55:46–57CrossRef Chandra J, Mukherjee PK, Ghannoum MA (2012) Candida biofilms associated with CVC and medical devices. Mycoses 55:46–57CrossRef
56.
Zurück zum Zitat Bliss JM, Bigelow CE, Foster TH, Haidaris CG (2004) Susceptibility of candida species to photodynamic effects of photofrin. Antimicrob Agents Chemother 48:2000–2006CrossRefPubMedPubMedCentral Bliss JM, Bigelow CE, Foster TH, Haidaris CG (2004) Susceptibility of candida species to photodynamic effects of photofrin. Antimicrob Agents Chemother 48:2000–2006CrossRefPubMedPubMedCentral
Metadaten
Titel
Photodynamic antimicrobial chemotherapy (PACT) using toluidine blue inhibits both growth and biofilm formation by Candida krusei
verfasst von
Bruna Graziele Marques da Silva
Moisés Lopes Carvalho
Isabela Bueno Rosseti
Stella Zamuner
Maricilia Silva Costa
Publikationsdatum
13.01.2018
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 5/2018
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-017-2428-y

Weitere Artikel der Ausgabe 5/2018

Lasers in Medical Science 5/2018 Zur Ausgabe