Skip to main content
Erschienen in: Current Osteoporosis Reports 1/2017

30.01.2017 | Biomechanics (M Silva and K Jepsen, Section Editors)

Physical Activity for Strengthening Fracture Prone Regions of the Proximal Femur

verfasst von: Robyn K. Fuchs, Mariana E. Kersh, Julio Carballido-Gamio, William R. Thompson, Joyce H. Keyak, Stuart J. Warden

Erschienen in: Current Osteoporosis Reports | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Physical activity improves proximal femoral bone health; however, it remains unclear whether changes translate into a reduction in fracture risk. To enhance any fracture-protective effects of physical activity, fracture prone regions within the proximal femur need to be targeted.

Recent Findings

The proximal femur is designed to withstand forces in the weight-bearing direction, but less so forces associated with falls in a sideways direction. Sideways falls heighten femoral neck fracture risk by loading the relatively weak superolateral region of femoral neck. Recent studies exploring regional adaptation of the femoral neck to physical activity have identified heterogeneous adaptation, with adaptation principally occurring within inferomedial weight-bearing regions and little to no adaptation occurring in the superolateral femoral neck.

Summary

There is a need to develop novel physical activities that better target and strengthen the superolateral femoral neck within the proximal femur. Design of these activities may be guided by subject-specific musculoskeletal modeling and finite-element modeling approaches.
Literatur
1.
Zurück zum Zitat Wright NC, Looker AC, Saag KG, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014;29:2520–6.CrossRefPubMedPubMedCentral Wright NC, Looker AC, Saag KG, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014;29:2520–6.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22:465–75.CrossRefPubMed Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22:465–75.CrossRefPubMed
3.
Zurück zum Zitat Delmas PD, Marin F, Marcus R, Misurski DA, Mitlak BH. Beyond hip: importance of other nonspinal fractures. Am J Med. 2007;120:381–7.CrossRefPubMed Delmas PD, Marin F, Marcus R, Misurski DA, Mitlak BH. Beyond hip: importance of other nonspinal fractures. Am J Med. 2007;120:381–7.CrossRefPubMed
4.
Zurück zum Zitat Vochteloo AJ, Moerman S, Tuinebreijer WE, et al. More than half of hip fracture patients do not regain mobility in the first postoperative year. Geriatr Gerontol Int. 2013;13:334–41.CrossRefPubMed Vochteloo AJ, Moerman S, Tuinebreijer WE, et al. More than half of hip fracture patients do not regain mobility in the first postoperative year. Geriatr Gerontol Int. 2013;13:334–41.CrossRefPubMed
5.
6.
Zurück zum Zitat Freemantle N, Cooper C, Diez-Perez A, et al. Results of indirect and mixed treatment comparison of fracture efficacy for osteoporosis treatments: a meta-analysis. Osteoporos Int. 2013;24:209–17.CrossRefPubMed Freemantle N, Cooper C, Diez-Perez A, et al. Results of indirect and mixed treatment comparison of fracture efficacy for osteoporosis treatments: a meta-analysis. Osteoporos Int. 2013;24:209–17.CrossRefPubMed
7.
Zurück zum Zitat Murad MH, Drake MT, Mullan RJ, et al. Clinical review. Comparative effectiveness of drug treatments to prevent fragility fractures: a systematic review and network meta-analysis. J Clin Endocrinol Metab. 2012;97:1871–80.CrossRefPubMed Murad MH, Drake MT, Mullan RJ, et al. Clinical review. Comparative effectiveness of drug treatments to prevent fragility fractures: a systematic review and network meta-analysis. J Clin Endocrinol Metab. 2012;97:1871–80.CrossRefPubMed
8.
Zurück zum Zitat Rossini M, Adami G, Adami S, Viapiana O, Gatti D. Safety issues and adverse reactions with osteoporosis management. Expert Opin Drug Saf. 2016;15:321–32.CrossRefPubMed Rossini M, Adami G, Adami S, Viapiana O, Gatti D. Safety issues and adverse reactions with osteoporosis management. Expert Opin Drug Saf. 2016;15:321–32.CrossRefPubMed
10.
Zurück zum Zitat Thompson WR, Scott A, Loghmani MT, Ward SR, Warden SJ. Understanding mechanobiology: physical therapists as a force in mechanotherapy and musculoskeletal regenerative rehabilitation. Phys Ther. 2016;96:560–9.CrossRefPubMed Thompson WR, Scott A, Loghmani MT, Ward SR, Warden SJ. Understanding mechanobiology: physical therapists as a force in mechanotherapy and musculoskeletal regenerative rehabilitation. Phys Ther. 2016;96:560–9.CrossRefPubMed
11.
Zurück zum Zitat •• Warden SJ, Mantila Roosa SM, Kersh ME, et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci U S A. 2014;111:5337–42. Series of studies demonstrating (1) the osteogenic potential of physical activity; (2) that physical activity completed when young has lifelong benefits on cortical bone size and estimated strength, but not mass; and (3) physical activity continued during aging has benefits on bone mass and estimated strength CrossRefPubMedPubMedCentral •• Warden SJ, Mantila Roosa SM, Kersh ME, et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci U S A. 2014;111:5337–42. Series of studies demonstrating (1) the osteogenic potential of physical activity; (2) that physical activity completed when young has lifelong benefits on cortical bone size and estimated strength, but not mass; and (3) physical activity continued during aging has benefits on bone mass and estimated strength CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res. 2001;16:148–56.CrossRefPubMed Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res. 2001;16:148–56.CrossRefPubMed
13.
Zurück zum Zitat Mackelvie KJ, McKay HA, Khan KM, Crocker PR. A school-based exercise intervention augments bone mineral accrual in early pubertal girls. J Pediatr. 2001;139:501–8.CrossRefPubMed Mackelvie KJ, McKay HA, Khan KM, Crocker PR. A school-based exercise intervention augments bone mineral accrual in early pubertal girls. J Pediatr. 2001;139:501–8.CrossRefPubMed
14.
Zurück zum Zitat Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res. 2002;17:363–72.CrossRefPubMed Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res. 2002;17:363–72.CrossRefPubMed
15.
Zurück zum Zitat Beck TJ, Oreskovic TL, Stone KL, Ruff CB, Ensrud K, Nevitt MC, et al. Structural adaptation to changing skeletal load in the progression toward hip fragility: the study of osteoporotic fractures. J Bone Miner Res. 2001;16:1108–19.CrossRefPubMed Beck TJ, Oreskovic TL, Stone KL, Ruff CB, Ensrud K, Nevitt MC, et al. Structural adaptation to changing skeletal load in the progression toward hip fragility: the study of osteoporotic fractures. J Bone Miner Res. 2001;16:1108–19.CrossRefPubMed
16.
Zurück zum Zitat Kemmler W, von Stengel S, Engelke K, Haberle L, Kalender WA. Exercise effects on bone mineral density, falls, coronary risk factors, and health care costs in older women: the randomized controlled senior fitness and prevention (SEFIP) study. Arch Intern Med. 2010;170:179–85.CrossRefPubMed Kemmler W, von Stengel S, Engelke K, Haberle L, Kalender WA. Exercise effects on bone mineral density, falls, coronary risk factors, and health care costs in older women: the randomized controlled senior fitness and prevention (SEFIP) study. Arch Intern Med. 2010;170:179–85.CrossRefPubMed
17.
Zurück zum Zitat Tanner DA, Kloseck M, Crilly RG, Chesworth B, Gilliland J. Hip fracture types in men and women change differently with age. BMC Geriatr. 2010;10:12.CrossRefPubMedPubMedCentral Tanner DA, Kloseck M, Crilly RG, Chesworth B, Gilliland J. Hip fracture types in men and women change differently with age. BMC Geriatr. 2010;10:12.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Cristofolini L. In vitro evidence of the structural optimization of the human skeletal bones. J Biomech. 2015;48:787–96.CrossRefPubMed Cristofolini L. In vitro evidence of the structural optimization of the human skeletal bones. J Biomech. 2015;48:787–96.CrossRefPubMed
19.
Zurück zum Zitat Cristofolini L, Juszczyk M, Taddei F, Viceconti M. Strain distribution in the proximal human femoral metaphysis. Proc Inst Mech Eng H. 2009;223:273–88.CrossRefPubMed Cristofolini L, Juszczyk M, Taddei F, Viceconti M. Strain distribution in the proximal human femoral metaphysis. Proc Inst Mech Eng H. 2009;223:273–88.CrossRefPubMed
20.
Zurück zum Zitat Lotz JC, Cheal EJ, Hayes WC. Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int. 1995;5:252–61.CrossRefPubMed Lotz JC, Cheal EJ, Hayes WC. Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int. 1995;5:252–61.CrossRefPubMed
21.
Zurück zum Zitat Nawathe S, Nguyen BP, Barzanian N, Akhlaghpour H, Bouxsein ML, Keaveny TM. Cortical and trabecular load sharing in the human femoral neck. J Biomech. 2015;48:816–22.CrossRefPubMed Nawathe S, Nguyen BP, Barzanian N, Akhlaghpour H, Bouxsein ML, Keaveny TM. Cortical and trabecular load sharing in the human femoral neck. J Biomech. 2015;48:816–22.CrossRefPubMed
22.
Zurück zum Zitat Van Rietbergen B, Huiskes R, Eckstein F, Ruegsegger P. Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res. 2003;18:1781–8.CrossRefPubMed Van Rietbergen B, Huiskes R, Eckstein F, Ruegsegger P. Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res. 2003;18:1781–8.CrossRefPubMed
23.
Zurück zum Zitat Zani L, Erani P, Grassi L, Taddei F, Cristofolini L. Strain distribution in the proximal human femur during in vitro simulated sideways fall. J Biomech. 2015;48:2130–43.CrossRefPubMed Zani L, Erani P, Grassi L, Taddei F, Cristofolini L. Strain distribution in the proximal human femur during in vitro simulated sideways fall. J Biomech. 2015;48:2130–43.CrossRefPubMed
24.
Zurück zum Zitat Verhulp E, van Rietbergen B, Huiskes R. Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone. 2008;42:30–5.CrossRefPubMed Verhulp E, van Rietbergen B, Huiskes R. Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone. 2008;42:30–5.CrossRefPubMed
25.
Zurück zum Zitat Taddei F, Palmadori I, Taylor WR, et al. European Society of Biomechanics S.M. Perren Award 2014: Safety factor of the proximal femur during gait: a population-based finite element study. J Biomech. 2014;47:3433–40.CrossRefPubMed Taddei F, Palmadori I, Taylor WR, et al. European Society of Biomechanics S.M. Perren Award 2014: Safety factor of the proximal femur during gait: a population-based finite element study. J Biomech. 2014;47:3433–40.CrossRefPubMed
26.
Zurück zum Zitat Carballido-Gamio J, Harnish R, Saeed I, et al. Proximal femoral density distribution and structure in relation to age and hip fracture risk in women. J Bone Miner Res. 2013;28:537–46.CrossRefPubMedPubMedCentral Carballido-Gamio J, Harnish R, Saeed I, et al. Proximal femoral density distribution and structure in relation to age and hip fracture risk in women. J Bone Miner Res. 2013;28:537–46.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Johannesdottir F, Poole KE, Reeve J, et al. Distribution of cortical bone in the femoral neck and hip fracture: a prospective case-control analysis of 143 incident hip fractures; the AGES-REYKJAVIK Study. Bone. 2011;48:1268–76.CrossRefPubMedPubMedCentral Johannesdottir F, Poole KE, Reeve J, et al. Distribution of cortical bone in the femoral neck and hip fracture: a prospective case-control analysis of 143 incident hip fractures; the AGES-REYKJAVIK Study. Bone. 2011;48:1268–76.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Mayhew PM, Thomas CD, Clement JG, et al. Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet. 2005;366:129–35.CrossRefPubMed Mayhew PM, Thomas CD, Clement JG, et al. Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet. 2005;366:129–35.CrossRefPubMed
29.
Zurück zum Zitat Poole KE, Mayhew PM, Rose CM, et al. Changing structure of the femoral neck across the adult female lifespan. J Bone Miner Res. 2010;25:482–91.CrossRefPubMed Poole KE, Mayhew PM, Rose CM, et al. Changing structure of the femoral neck across the adult female lifespan. J Bone Miner Res. 2010;25:482–91.CrossRefPubMed
30.
Zurück zum Zitat Thomas CD, Mayhew PM, Power J, et al. Femoral neck trabecular bone: loss with aging and role in preventing fracture. J Bone Miner Res. 2009;24:1808–18.CrossRefPubMed Thomas CD, Mayhew PM, Power J, et al. Femoral neck trabecular bone: loss with aging and role in preventing fracture. J Bone Miner Res. 2009;24:1808–18.CrossRefPubMed
31.
Zurück zum Zitat Parkkari J, Kannus P, Palvanen M, et al. Majority of hip fractures occur as a result of a fall and impact on the greater trochanter of the femur: a prospective controlled hip fracture study with 206 consecutive patients. Calcif Tissue Int. 1999;65:183–7.CrossRefPubMed Parkkari J, Kannus P, Palvanen M, et al. Majority of hip fractures occur as a result of a fall and impact on the greater trochanter of the femur: a prospective controlled hip fracture study with 206 consecutive patients. Calcif Tissue Int. 1999;65:183–7.CrossRefPubMed
32.
Zurück zum Zitat Nevitt MC, Cummings SR. Type of fall and risk of hip and wrist fractures: the study of osteoporotic fractures. The Study of Osteoporotic Fractures Research Group. J Am Geriatr Soc. 1993;41:1226–34.CrossRefPubMed Nevitt MC, Cummings SR. Type of fall and risk of hip and wrist fractures: the study of osteoporotic fractures. The Study of Osteoporotic Fractures Research Group. J Am Geriatr Soc. 1993;41:1226–34.CrossRefPubMed
33.
Zurück zum Zitat Greenspan SL, Myers ER, Kiel DP, Parker RA, Hayes WC, Resnick NM. Fall direction, bone mineral density, and function: risk factors for hip fracture in frail nursing home elderly. Am J Med. 1998;104:539–45.CrossRefPubMed Greenspan SL, Myers ER, Kiel DP, Parker RA, Hayes WC, Resnick NM. Fall direction, bone mineral density, and function: risk factors for hip fracture in frail nursing home elderly. Am J Med. 1998;104:539–45.CrossRefPubMed
34.
Zurück zum Zitat Greenspan SL, Myers ER, Maitland LA, Resnick NM, Hayes WC. Fall severity and bone mineral density as risk factors for hip fracture in ambulatory elderly. JAMA. 1994;271:128–33.CrossRefPubMed Greenspan SL, Myers ER, Maitland LA, Resnick NM, Hayes WC. Fall severity and bone mineral density as risk factors for hip fracture in ambulatory elderly. JAMA. 1994;271:128–33.CrossRefPubMed
35.
Zurück zum Zitat Schwartz AV, Kelsey JL, Sidney S, Grisso JA. Characteristics of falls and risk of hip fracture in elderly men. Osteoporos Int. 1998;8:240–6.CrossRefPubMed Schwartz AV, Kelsey JL, Sidney S, Grisso JA. Characteristics of falls and risk of hip fracture in elderly men. Osteoporos Int. 1998;8:240–6.CrossRefPubMed
36.
Zurück zum Zitat Ford CM, Keaveny TM, Hayes WC. The effect of impact direction on the structural capacity of the proximal femur during falls. J Bone Miner Res. 1996;11:377–83.CrossRefPubMed Ford CM, Keaveny TM, Hayes WC. The effect of impact direction on the structural capacity of the proximal femur during falls. J Bone Miner Res. 1996;11:377–83.CrossRefPubMed
37.
Zurück zum Zitat Keyak JH, Skinner HB, Fleming JA. Effect of force direction on femoral fracture load for two types of loading conditions. J Orthop Res. 2001;19:539–44.CrossRefPubMed Keyak JH, Skinner HB, Fleming JA. Effect of force direction on femoral fracture load for two types of loading conditions. J Orthop Res. 2001;19:539–44.CrossRefPubMed
38.
Zurück zum Zitat Pinilla TP, Boardman KC, Bouxsein ML, Myers ER, Hayes WC. Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif Tissue Int. 1996;58:231–5.CrossRefPubMed Pinilla TP, Boardman KC, Bouxsein ML, Myers ER, Hayes WC. Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif Tissue Int. 1996;58:231–5.CrossRefPubMed
39.
Zurück zum Zitat Keyak JH. Relationships between femoral fracture loads for two load configurations. J Biomech. 2000;33:499–502.CrossRefPubMed Keyak JH. Relationships between femoral fracture loads for two load configurations. J Biomech. 2000;33:499–502.CrossRefPubMed
40.
Zurück zum Zitat Pottecher P, Engelke K, Duchemin L, et al. Prediction of hip failure load: in vitro study of 80 femurs using three imaging methods and finite element models—The European Fracture Study (EFFECT). Radiology. 2016;142796 Pottecher P, Engelke K, Duchemin L, et al. Prediction of hip failure load: in vitro study of 80 femurs using three imaging methods and finite element models—The European Fracture Study (EFFECT). Radiology. 2016;142796
41.
Zurück zum Zitat Kersh ME, Pandy MG, Bui QM, et al. The heterogeneity in femoral neck structure and strength. J Bone Miner Res. 2013;28:1022–8.CrossRefPubMed Kersh ME, Pandy MG, Bui QM, et al. The heterogeneity in femoral neck structure and strength. J Bone Miner Res. 2013;28:1022–8.CrossRefPubMed
42.
Zurück zum Zitat de Bakker PM, Manske SL, Ebacher V, Oxland TR, Cripton PA, Guy P. During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures. J Biomech. 2009;42:1917–25.CrossRefPubMed de Bakker PM, Manske SL, Ebacher V, Oxland TR, Cripton PA, Guy P. During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures. J Biomech. 2009;42:1917–25.CrossRefPubMed
43.
Zurück zum Zitat Juszczyk MM, Cristofolini L, Salva M, Zani L, Schileo E, Viceconti M. Accurate in vitro identification of fracture onset in bones: failure mechanism of the proximal human femur. J Biomech. 2013;46:158–64.CrossRefPubMed Juszczyk MM, Cristofolini L, Salva M, Zani L, Schileo E, Viceconti M. Accurate in vitro identification of fracture onset in bones: failure mechanism of the proximal human femur. J Biomech. 2013;46:158–64.CrossRefPubMed
44.
Zurück zum Zitat Treece GM, Gee AH, Tonkin C, et al. Predicting hip fracture type with cortical bone mapping (CBM) in the Osteoporotic Fractures in Men (MrOS) Study. J Bone Miner Res. 2015;30:2067–77.CrossRefPubMedPubMedCentral Treece GM, Gee AH, Tonkin C, et al. Predicting hip fracture type with cortical bone mapping (CBM) in the Osteoporotic Fractures in Men (MrOS) Study. J Bone Miner Res. 2015;30:2067–77.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Robling AG, Hinant FM, Burr DB, Turner CH. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res. 2002;17:1545–54.CrossRefPubMed Robling AG, Hinant FM, Burr DB, Turner CH. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res. 2002;17:1545–54.CrossRefPubMed
46.
Zurück zum Zitat Warden SJ, Hurst JA, Sanders MS, Turner CH, Burr DB, Li J. Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. J Bone Miner Res. 2005;20:809–16.CrossRefPubMed Warden SJ, Hurst JA, Sanders MS, Turner CH, Burr DB, Li J. Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. J Bone Miner Res. 2005;20:809–16.CrossRefPubMed
47.
Zurück zum Zitat Bramble DM, Lieberman DE. Endurance running and the evolution of Homo. Nature. 2004;432:345–52.CrossRefPubMed Bramble DM, Lieberman DE. Endurance running and the evolution of Homo. Nature. 2004;432:345–52.CrossRefPubMed
48.
Zurück zum Zitat Nikander R, Sievanen H, Heinonen A, Daly RM, Uusi-Rasi K, Kannus P. Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life. BMC Med. 2010;8:47.CrossRefPubMedPubMedCentral Nikander R, Sievanen H, Heinonen A, Daly RM, Uusi-Rasi K, Kannus P. Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life. BMC Med. 2010;8:47.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Tan VP, Macdonald HM, Kim S, et al. Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res. 2014;29:2161–81.CrossRefPubMed Tan VP, Macdonald HM, Kim S, et al. Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res. 2014;29:2161–81.CrossRefPubMed
50.
Zurück zum Zitat Järvinen TLN, Kannus P, Sievänen H. Have the DXA-based exercise studies seriously underestimated the effects of mechanical loading on bone? J Bone Miner Res. 1999;14:1634–5.CrossRefPubMed Järvinen TLN, Kannus P, Sievänen H. Have the DXA-based exercise studies seriously underestimated the effects of mechanical loading on bone? J Bone Miner Res. 1999;14:1634–5.CrossRefPubMed
51.
Zurück zum Zitat Warden SJ, Fuchs RK, Castillo AB, Nelson IR, Turner CH. Exercise when young provides lifelong benefits to bone structure and strength. J Bone Miner Res. 2007;22:251–9.CrossRefPubMed Warden SJ, Fuchs RK, Castillo AB, Nelson IR, Turner CH. Exercise when young provides lifelong benefits to bone structure and strength. J Bone Miner Res. 2007;22:251–9.CrossRefPubMed
52.
Zurück zum Zitat Warden SJ, Galley MR, Hurd AL, et al. Cortical and trabecular bone benefits of mechanical loading are maintained long-term in mice independent of ovariectomy. J Bone Miner Res. 2014;29:1131–40.CrossRefPubMedPubMedCentral Warden SJ, Galley MR, Hurd AL, et al. Cortical and trabecular bone benefits of mechanical loading are maintained long-term in mice independent of ovariectomy. J Bone Miner Res. 2014;29:1131–40.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Warden SJ, Mantila Roosa SM. Physical activity completed when young has residual bone benefits at 94 years of age: a within-subject controlled case study. J Musculoskelet Neuronal Interact. 2014;14:239–43.PubMedPubMedCentral Warden SJ, Mantila Roosa SM. Physical activity completed when young has residual bone benefits at 94 years of age: a within-subject controlled case study. J Musculoskelet Neuronal Interact. 2014;14:239–43.PubMedPubMedCentral
54.
Zurück zum Zitat Beck TJ, Broy SB. Measurement of hip geometry—technical background. J Clin Densitom. 2015;18:331–7.CrossRefPubMed Beck TJ, Broy SB. Measurement of hip geometry—technical background. J Clin Densitom. 2015;18:331–7.CrossRefPubMed
55.
Zurück zum Zitat Nikander R, Kannus P, Dastidar P, et al. Targeted exercises against hip fragility. Osteoporos Int. 2009;20:1321–8.CrossRefPubMed Nikander R, Kannus P, Dastidar P, et al. Targeted exercises against hip fragility. Osteoporos Int. 2009;20:1321–8.CrossRefPubMed
56.
Zurück zum Zitat • Abe S, Narra N, Nikander R, Hyttinen J, Kouhia R, Sievanen H. Exercise loading history and femoral neck strength in a sideways fall: a three-dimensional finite element modeling study. Bone. 2016;92:9–17. Cross-sectional study exploring the spatial distribution of stress within the proximal femur during a simulated sideways fall in athletes competing in a range of different sports CrossRefPubMed • Abe S, Narra N, Nikander R, Hyttinen J, Kouhia R, Sievanen H. Exercise loading history and femoral neck strength in a sideways fall: a three-dimensional finite element modeling study. Bone. 2016;92:9–17. Cross-sectional study exploring the spatial distribution of stress within the proximal femur during a simulated sideways fall in athletes competing in a range of different sports CrossRefPubMed
57.
Zurück zum Zitat •• Allison SJ, Poole KE, Treece GM, et al. The influence of high-impact exercise on cortical and trabecular bone mineral content and 3D distribution across the proximal femur in older men: a randomized controlled unilateral intervention. J Bone Miner Res. 2015;30:1709–16. Randomized, within-subject controlled study revealing the spatial distribution of benefits at the proximal femur of a high-impact unilateral exercise intervention CrossRefPubMed •• Allison SJ, Poole KE, Treece GM, et al. The influence of high-impact exercise on cortical and trabecular bone mineral content and 3D distribution across the proximal femur in older men: a randomized controlled unilateral intervention. J Bone Miner Res. 2015;30:1709–16. Randomized, within-subject controlled study revealing the spatial distribution of benefits at the proximal femur of a high-impact unilateral exercise intervention CrossRefPubMed
58.
Zurück zum Zitat • Lang TF, Saeed IH, Streeper T, et al. 2013 Spatial heterogeneity in the response of the proximal femur to two lower-body resistance exercise regimens. J Bone Miner Res. Preliminary longitudinal study utilizing voxel-based morphometry and finite element models to reveal potential spatial heterogeneous effects on the proximal femur of two different exercise programs. • Lang TF, Saeed IH, Streeper T, et al. 2013 Spatial heterogeneity in the response of the proximal femur to two lower-body resistance exercise regimens. J Bone Miner Res. Preliminary longitudinal study utilizing voxel-based morphometry and finite element models to reveal potential spatial heterogeneous effects on the proximal femur of two different exercise programs.
59.
Zurück zum Zitat Carballido-Gamio J, Nicolella DP. Computational anatomy in the study of bone structure. Curr Osteoporos Rep. 2013;11:237–45.CrossRefPubMed Carballido-Gamio J, Nicolella DP. Computational anatomy in the study of bone structure. Curr Osteoporos Rep. 2013;11:237–45.CrossRefPubMed
60.
Zurück zum Zitat Allison SJ, Folland JP, Rennie WJ, Summers GD, Brooke-Wavell K. High impact exercise increased femoral neck bone mineral density in older men: a randomised unilateral intervention. Bone. 2013;53:321–8.CrossRefPubMed Allison SJ, Folland JP, Rennie WJ, Summers GD, Brooke-Wavell K. High impact exercise increased femoral neck bone mineral density in older men: a randomised unilateral intervention. Bone. 2013;53:321–8.CrossRefPubMed
61.
Zurück zum Zitat Keyak JH, Fourkas MG, Meagher JM, Skinner HB. Validation of an automated method of three-dimensional finite element modelling of bone. J Biomed Eng. 1993;15:505–9.CrossRefPubMed Keyak JH, Fourkas MG, Meagher JM, Skinner HB. Validation of an automated method of three-dimensional finite element modelling of bone. J Biomed Eng. 1993;15:505–9.CrossRefPubMed
62.
Zurück zum Zitat Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M. Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech. 2007;40:2982–9.CrossRefPubMed Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M. Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech. 2007;40:2982–9.CrossRefPubMed
63.
Zurück zum Zitat Dall’Ara E, Luisier B, Schmidt R, Kainberger F, Zysset P, Pahr D. A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone. 2013;52:27–38.CrossRefPubMed Dall’Ara E, Luisier B, Schmidt R, Kainberger F, Zysset P, Pahr D. A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone. 2013;52:27–38.CrossRefPubMed
64.
Zurück zum Zitat Keyak JH. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys. 2001;23:165–73.CrossRefPubMed Keyak JH. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys. 2001;23:165–73.CrossRefPubMed
65.
Zurück zum Zitat Keyak JH, Kaneko TS, Tehranzadeh J, Skinner HB. Predicting proximal femoral strength using structural engineering models. Clin Orthop Relat Res. 2005;219-28 Keyak JH, Kaneko TS, Tehranzadeh J, Skinner HB. Predicting proximal femoral strength using structural engineering models. Clin Orthop Relat Res. 2005;219-28
66.
Zurück zum Zitat Keyak JH, Koyama AK, LeBlanc A, Lu Y, Lang TF. Reduction in proximal femoral strength due to long-duration spaceflight. Bone. 2009;44:449–53.CrossRefPubMed Keyak JH, Koyama AK, LeBlanc A, Lu Y, Lang TF. Reduction in proximal femoral strength due to long-duration spaceflight. Bone. 2009;44:449–53.CrossRefPubMed
67.
Zurück zum Zitat Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech. 1998;31:125–33.CrossRefPubMed Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech. 1998;31:125–33.CrossRefPubMed
68.
Zurück zum Zitat Keyak JH, Sigurdsson S, Karlsdottir G, Oskarsdottir D, Sigmarsdottir A, Zhao S, et al. Male-female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone. 2011;48:1239–45.CrossRefPubMedPubMedCentral Keyak JH, Sigurdsson S, Karlsdottir G, Oskarsdottir D, Sigmarsdottir A, Zhao S, et al. Male-female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone. 2011;48:1239–45.CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Lang TF, Sigurdsson S, Karlsdottir G, et al. Age-related loss of proximal femoral strength in elderly men and women: the Age Gene/Environment Susceptibility Study—Reykjavik. Bone. 2012;50:743–8.CrossRefPubMed Lang TF, Sigurdsson S, Karlsdottir G, et al. Age-related loss of proximal femoral strength in elderly men and women: the Age Gene/Environment Susceptibility Study—Reykjavik. Bone. 2012;50:743–8.CrossRefPubMed
70.
Zurück zum Zitat Schileo E, Taddei F, Cristofolini L, Viceconti M. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech. 2008;41:356–67.CrossRefPubMed Schileo E, Taddei F, Cristofolini L, Viceconti M. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech. 2008;41:356–67.CrossRefPubMed
71.
Zurück zum Zitat Correa TA, Crossley KM, Kim HJ, Pandy MG. Contributions of individual muscles to hip joint contact force in normal walking. J Biomech. 2010;43:1618–22.CrossRefPubMed Correa TA, Crossley KM, Kim HJ, Pandy MG. Contributions of individual muscles to hip joint contact force in normal walking. J Biomech. 2010;43:1618–22.CrossRefPubMed
72.
Zurück zum Zitat Pandy MG. Computer modeling and simulation of human movement. Annu Rev Biomed Eng. 2001;3:245–73.CrossRefPubMed Pandy MG. Computer modeling and simulation of human movement. Annu Rev Biomed Eng. 2001;3:245–73.CrossRefPubMed
73.
Zurück zum Zitat Wesseling M, De Groote F, Meyer C, et al. Subject-specific musculoskeletal modelling in patients before and after total hip arthroplasty. Comput Methods Biomech Biomed Engin. 2016;19:1683–91.CrossRefPubMed Wesseling M, De Groote F, Meyer C, et al. Subject-specific musculoskeletal modelling in patients before and after total hip arthroplasty. Comput Methods Biomech Biomed Engin. 2016;19:1683–91.CrossRefPubMed
74.
Zurück zum Zitat Martelli S, Kersh ME, Schache AG, Pandy MG. Strain energy in the femoral neck during exercise. J Biomech. 2014;47:1784–91.CrossRefPubMed Martelli S, Kersh ME, Schache AG, Pandy MG. Strain energy in the femoral neck during exercise. J Biomech. 2014;47:1784–91.CrossRefPubMed
Metadaten
Titel
Physical Activity for Strengthening Fracture Prone Regions of the Proximal Femur
verfasst von
Robyn K. Fuchs
Mariana E. Kersh
Julio Carballido-Gamio
William R. Thompson
Joyce H. Keyak
Stuart J. Warden
Publikationsdatum
30.01.2017
Verlag
Springer US
Erschienen in
Current Osteoporosis Reports / Ausgabe 1/2017
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-017-0343-6

Weitere Artikel der Ausgabe 1/2017

Current Osteoporosis Reports 1/2017 Zur Ausgabe

Biomechanics (M Silva and K Jepsen, Section Editors)

Clinical Evaluation of Bone Strength and Fracture Risk

Skeletal Development (P Trainor and K Svoboda, Section Editors)

Connexin43 and the Intercellular Signaling Network Regulating Skeletal Remodeling

Kidney and Bone (S Moe and I Salusky, Section Editors)

The Role of TGFβ in Bone-Muscle Crosstalk

Bone and Diabetes (A Schwartz and P Vestergaard, section editors)

Is Diabetic Skeletal Fragility Associated with Microvascular Complications in Bone?

Craniofacial Skeleton (G Roberts, Section Editor)

Genetic Disorders of Dental Development: Tales from the Bony Crypt

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.