Skip to main content
Erschienen in: Brain Structure and Function 4/2017

29.09.2016 | Original Article

Physical exercise induces structural alterations in the hippocampal astrocytes: exploring the role of BDNF-TrkB signaling

verfasst von: Atoossa Fahimi, Mehmet Akif Baktir, Sarah Moghadam, Fatemeh S. Mojabi, Krithika Sumanth, M. Windy McNerney, Ravikumar Ponnusamy, Ahmad Salehi

Erschienen in: Brain Structure and Function | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

While it has been known that physical activity can improve cognitive function and protect against neurodegeneration, the underlying mechanisms for these protective effects are yet to be fully elucidated. There is a large body of evidence indicating that physical exercise improves neurogenesis and maintenance of neurons. Yet, its possible effects on glial cells remain poorly understood. Here, we tested whether physical exercise in mice alters the expression of trophic factor-related genes and the status of astrocytes in the dentate gyrus of the hippocampus. In addition to a significant increase in Bdnf mRNA and protein levels, we found that 4 weeks of treadmill and running wheel exercise in mice, led to (1) a significant increase in synaptic load in the dentate gyrus, (2) alterations in astrocytic morphology, and (3) orientation of astrocytic projections towards dentate granule cells. Importantly, these changes were possibly linked to increased TrkB receptor levels in astrocytes. Our study suggests that astrocytes actively respond and could indeed mediate the positive effects of physical exercise on the central nervous system and potentially counter degenerative processes during aging and neurodegenerative disorders.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Agudelo LZ et al (2014) Skeletal muscle PGC-1alpha1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 159(1):33–45PubMedCrossRef Agudelo LZ et al (2014) Skeletal muscle PGC-1alpha1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 159(1):33–45PubMedCrossRef
Zurück zum Zitat Armanini MP et al (1995) Truncated and catalytic isoforms of trkB are co-expressed in neurons of rat and mouse CNS. Eur J Neurosci 7(6):1403–1409PubMedCrossRef Armanini MP et al (1995) Truncated and catalytic isoforms of trkB are co-expressed in neurons of rat and mouse CNS. Eur J Neurosci 7(6):1403–1409PubMedCrossRef
Zurück zum Zitat Aroeira RI, Sebastiao AM, Valente CA (2015) BDNF, via truncated TrkB receptor, modulates GlyT1 and GlyT2 in astrocytes. Glia 63(12):2181–2197PubMedCrossRef Aroeira RI, Sebastiao AM, Valente CA (2015) BDNF, via truncated TrkB receptor, modulates GlyT1 and GlyT2 in astrocytes. Glia 63(12):2181–2197PubMedCrossRef
Zurück zum Zitat Bezzi P et al (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7(6):613–620PubMedCrossRef Bezzi P et al (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7(6):613–620PubMedCrossRef
Zurück zum Zitat Brockett AT, LaMarca EA, Gould E (2015) Physical exercise enhances cognitive flexibility as well as astrocytic and synaptic markers in the medial prefrontal cortex. PLoS One 10(5):e0124859PubMedPubMedCentralCrossRef Brockett AT, LaMarca EA, Gould E (2015) Physical exercise enhances cognitive flexibility as well as astrocytic and synaptic markers in the medial prefrontal cortex. PLoS One 10(5):e0124859PubMedPubMedCentralCrossRef
Zurück zum Zitat Chen YC et al (1998) Physical training modifies the age-related decrease of GAP-43 and synaptophysin in the hippocampal formation in C57BL/6J mouse. Brain Res 806(2):238–245PubMedCrossRef Chen YC et al (1998) Physical training modifies the age-related decrease of GAP-43 and synaptophysin in the hippocampal formation in C57BL/6J mouse. Brain Res 806(2):238–245PubMedCrossRef
Zurück zum Zitat Chowdhury TG et al (2014) Activity-based anorexia during adolescence disrupts normal development of the CA1 pyramidal cells in the ventral hippocampus of female rats. Hippocampus 24(12):1421–1429PubMedPubMedCentralCrossRef Chowdhury TG et al (2014) Activity-based anorexia during adolescence disrupts normal development of the CA1 pyramidal cells in the ventral hippocampus of female rats. Hippocampus 24(12):1421–1429PubMedPubMedCentralCrossRef
Zurück zum Zitat Coelho FG et al (2014) Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer’s disease. J Alzheimers Dis 39(2):401–408PubMed Coelho FG et al (2014) Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer’s disease. J Alzheimers Dis 39(2):401–408PubMed
Zurück zum Zitat Cotman CW, Berchtold NC, Christie LA (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30(9):464–472PubMedCrossRef Cotman CW, Berchtold NC, Christie LA (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30(9):464–472PubMedCrossRef
Zurück zum Zitat Cui W et al (2001) Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain. Glia 34(4):272–282PubMedCrossRef Cui W et al (2001) Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain. Glia 34(4):272–282PubMedCrossRef
Zurück zum Zitat Dang V et al (2014) Formoterol, a long-acting beta2 adrenergic agonist, improves cognitive function and promotes dendritic complexity in a mouse model of Down syndrome. Biol Psychiatry 75(3):179–188PubMedCrossRef Dang V et al (2014) Formoterol, a long-acting beta2 adrenergic agonist, improves cognitive function and promotes dendritic complexity in a mouse model of Down syndrome. Biol Psychiatry 75(3):179–188PubMedCrossRef
Zurück zum Zitat Das D et al (2015) Assessment of dendritic arborization in the dentate gyrus of the hippocampal region in mice. J Vis Exp. doi:10.3791/52371 Das D et al (2015) Assessment of dendritic arborization in the dentate gyrus of the hippocampal region in mice. J Vis Exp. doi:10.​3791/​52371
Zurück zum Zitat de Andrade LP et al (2013) Benefits of multimodal exercise intervention for postural control and frontal cognitive functions in individuals with Alzheimer’s disease: a controlled trial. J Am Geriatr Soc 61(11):1919–1926PubMedCrossRef de Andrade LP et al (2013) Benefits of multimodal exercise intervention for postural control and frontal cognitive functions in individuals with Alzheimer’s disease: a controlled trial. J Am Geriatr Soc 61(11):1919–1926PubMedCrossRef
Zurück zum Zitat Diniz DG et al (2010) Environmental impoverishment and aging alter object recognition, spatial learning, and dentate gyrus astrocytes. Eur J Neurosci 32(3):509–519PubMedCrossRef Diniz DG et al (2010) Environmental impoverishment and aging alter object recognition, spatial learning, and dentate gyrus astrocytes. Eur J Neurosci 32(3):509–519PubMedCrossRef
Zurück zum Zitat Erickson KI, Kramer AF (2009) Aerobic exercise effects on cognitive and neural plasticity in older adults. Br J Sports Med 43(1):22–24PubMedCrossRef Erickson KI, Kramer AF (2009) Aerobic exercise effects on cognitive and neural plasticity in older adults. Br J Sports Med 43(1):22–24PubMedCrossRef
Zurück zum Zitat Filous AR, Silver J (2016) Targeting astrocytes in CNS injury and disease: a translational research approach. Prog Neurobiol 144:173–187PubMedCrossRef Filous AR, Silver J (2016) Targeting astrocytes in CNS injury and disease: a translational research approach. Prog Neurobiol 144:173–187PubMedCrossRef
Zurück zum Zitat Gosselet F et al (2013) Amyloid-beta peptides, Alzheimer’s disease and the blood-brain barrier. Curr Alzheimer Res 10(10):1015–1033PubMedCrossRef Gosselet F et al (2013) Amyloid-beta peptides, Alzheimer’s disease and the blood-brain barrier. Curr Alzheimer Res 10(10):1015–1033PubMedCrossRef
Zurück zum Zitat Helgager J, Huang YZ, McNamara JO (2014) Brain-derived neurotrophic factor but not vesicular zinc promotes TrkB activation within mossy fibers of mouse hippocampus in vivo. J Comp Neurol 522(17):3885–3899PubMedPubMedCentralCrossRef Helgager J, Huang YZ, McNamara JO (2014) Brain-derived neurotrophic factor but not vesicular zinc promotes TrkB activation within mossy fibers of mouse hippocampus in vivo. J Comp Neurol 522(17):3885–3899PubMedPubMedCentralCrossRef
Zurück zum Zitat Hofer M et al (1990) Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J 9(8):2459–2464PubMedPubMedCentral Hofer M et al (1990) Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J 9(8):2459–2464PubMedPubMedCentral
Zurück zum Zitat Jeong YJ et al (2015) 1950 MHz electromagnetic fields ameliorate Abeta pathology in Alzheimer’s disease mice. Curr Alzheimer Res 12(5):481–492PubMedCrossRef Jeong YJ et al (2015) 1950 MHz electromagnetic fields ameliorate Abeta pathology in Alzheimer’s disease mice. Curr Alzheimer Res 12(5):481–492PubMedCrossRef
Zurück zum Zitat Kim SY et al (2004) Differential expression of phospholipase D isozymes in the hippocampus following kainic acid-induced seizures. J Neuropathol Exp Neurol 63(8):812–820PubMedCrossRef Kim SY et al (2004) Differential expression of phospholipase D isozymes in the hippocampus following kainic acid-induced seizures. J Neuropathol Exp Neurol 63(8):812–820PubMedCrossRef
Zurück zum Zitat Kim K et al (2015) Effects of treadmill exercise-intensity on short-term memory in the rats born of the lipopolysaccharide-exposed maternal rats. J Exerc Rehabil 11(6):296–302PubMedPubMedCentralCrossRef Kim K et al (2015) Effects of treadmill exercise-intensity on short-term memory in the rats born of the lipopolysaccharide-exposed maternal rats. J Exerc Rehabil 11(6):296–302PubMedPubMedCentralCrossRef
Zurück zum Zitat Kokaia Z et al (1995) Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage. Exp Neurol 136(1):73–88PubMedCrossRef Kokaia Z et al (1995) Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage. Exp Neurol 136(1):73–88PubMedCrossRef
Zurück zum Zitat Latimer CS et al (2011) Reversal of glial and neurovascular markers of unhealthy brain aging by exercise in middle-aged female mice. PLoS One 6(10):e26812PubMedPubMedCentralCrossRef Latimer CS et al (2011) Reversal of glial and neurovascular markers of unhealthy brain aging by exercise in middle-aged female mice. PLoS One 6(10):e26812PubMedPubMedCentralCrossRef
Zurück zum Zitat Leem YH et al (2011) Chronic exercise ameliorates the neuroinflammation in mice carrying NSE/htau23. Biochem Biophys Res Commun 406(3):359–365PubMedCrossRef Leem YH et al (2011) Chronic exercise ameliorates the neuroinflammation in mice carrying NSE/htau23. Biochem Biophys Res Commun 406(3):359–365PubMedCrossRef
Zurück zum Zitat LeMaster AM et al (1999) Overexpression of brain-derived neurotrophic factor enhances sensory innervation and selectively increases neuron number. J Neurosci 19(14):5919–5931PubMed LeMaster AM et al (1999) Overexpression of brain-derived neurotrophic factor enhances sensory innervation and selectively increases neuron number. J Neurosci 19(14):5919–5931PubMed
Zurück zum Zitat Liu N et al (2012) Intracerebral transplantation of bone marrow stromal cells ameliorates tissue plasminogen activator-induced brain damage after cerebral ischemia in mice detected by in vivo and ex vivo optical imaging. J Neurosci Res 90(11):2086–2093PubMedCrossRef Liu N et al (2012) Intracerebral transplantation of bone marrow stromal cells ameliorates tissue plasminogen activator-induced brain damage after cerebral ischemia in mice detected by in vivo and ex vivo optical imaging. J Neurosci Res 90(11):2086–2093PubMedCrossRef
Zurück zum Zitat Marlatt MW et al (2012) Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6J mice. Dev Neurobiol 72(6):943–952PubMedPubMedCentralCrossRef Marlatt MW et al (2012) Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6J mice. Dev Neurobiol 72(6):943–952PubMedPubMedCentralCrossRef
Zurück zum Zitat Matsuura Y et al (2013) The effect of Anti-NGF receptor (p75 Neurotrophin Receptor) antibodies on nociceptive behavior and activation of spinal microglia in the rat brachial plexus avulsion model. Spine (Phila Pa 1976) 38(6):E332–E338CrossRef Matsuura Y et al (2013) The effect of Anti-NGF receptor (p75 Neurotrophin Receptor) antibodies on nociceptive behavior and activation of spinal microglia in the rat brachial plexus avulsion model. Spine (Phila Pa 1976) 38(6):E332–E338CrossRef
Zurück zum Zitat Mestriner RG et al (2011) Skilled reaching training promotes astroglial changes and facilitated sensorimotor recovery after collagenase-induced intracerebral hemorrhage. Exp Neurol 227(1):53–61PubMedCrossRef Mestriner RG et al (2011) Skilled reaching training promotes astroglial changes and facilitated sensorimotor recovery after collagenase-induced intracerebral hemorrhage. Exp Neurol 227(1):53–61PubMedCrossRef
Zurück zum Zitat Miklic S, Juric DM, Carman-Krzan M (2004) Differences in the regulation of BDNF and NGF synthesis in cultured neonatal rat astrocytes. Int J Dev Neurosci 22(3):119–130PubMedCrossRef Miklic S, Juric DM, Carman-Krzan M (2004) Differences in the regulation of BDNF and NGF synthesis in cultured neonatal rat astrocytes. Int J Dev Neurosci 22(3):119–130PubMedCrossRef
Zurück zum Zitat Nascimento CM et al (2014) Physical exercise in MCI elderly promotes reduction of pro-inflammatory cytokines and improvements on cognition and BDNF peripheral levels. Curr Alzheimer Res 11(8):799–805PubMedCrossRef Nascimento CM et al (2014) Physical exercise in MCI elderly promotes reduction of pro-inflammatory cytokines and improvements on cognition and BDNF peripheral levels. Curr Alzheimer Res 11(8):799–805PubMedCrossRef
Zurück zum Zitat Nascimento CM et al (2015) Physical exercise improves peripheral BDNF levels and cognitive functions in mild cognitive impairment elderly with different bdnf Val66Met genotypes. J Alzheimers Dis 43(1):81–91PubMed Nascimento CM et al (2015) Physical exercise improves peripheral BDNF levels and cognitive functions in mild cognitive impairment elderly with different bdnf Val66Met genotypes. J Alzheimers Dis 43(1):81–91PubMed
Zurück zum Zitat Neeper SA et al (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726(1–2):49–56PubMedCrossRef Neeper SA et al (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726(1–2):49–56PubMedCrossRef
Zurück zum Zitat Nijs J et al (2015) Brain-derived neurotrophic factor as a driving force behind neuroplasticity in neuropathic and central sensitization pain: a new therapeutic target? Expert Opin Ther Targets 19(4):565–576PubMedCrossRef Nijs J et al (2015) Brain-derived neurotrophic factor as a driving force behind neuroplasticity in neuropathic and central sensitization pain: a new therapeutic target? Expert Opin Ther Targets 19(4):565–576PubMedCrossRef
Zurück zum Zitat Ohira K et al (2005) Differential expression of the truncated TrkB receptor, T1, in the primary motor and prefrontal cortices of the adult macaque monkey. Neurosci Lett 385(2):105–109PubMedCrossRef Ohira K et al (2005) Differential expression of the truncated TrkB receptor, T1, in the primary motor and prefrontal cortices of the adult macaque monkey. Neurosci Lett 385(2):105–109PubMedCrossRef
Zurück zum Zitat Pereira BC et al (2015) Eccentric exercise leads to glial activation but not apoptosis in mice spinal cords. Int J Sports Med 36(5):378–385PubMedCrossRef Pereira BC et al (2015) Eccentric exercise leads to glial activation but not apoptosis in mice spinal cords. Int J Sports Med 36(5):378–385PubMedCrossRef
Zurück zum Zitat Phillips C et al (2014) Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Front Cell Neurosci 8:170PubMedPubMedCentralCrossRef Phillips C et al (2014) Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Front Cell Neurosci 8:170PubMedPubMedCentralCrossRef
Zurück zum Zitat Phillips C et al (2015a) The link between physical activity and cognitive dysfunction in Alzheimer disease. Phys Ther 95(7):1046–1060PubMedCrossRef Phillips C et al (2015a) The link between physical activity and cognitive dysfunction in Alzheimer disease. Phys Ther 95(7):1046–1060PubMedCrossRef
Zurück zum Zitat Phillips C et al (2015b) Evolution of monoaminergic system degeneration in down syndrome and Alzheimer’s disease. In: Salehi A, Rafii M, Phillips C (eds) Recent advances in alzheimer research, (Volume 1), common pathogenic mechanisms between down syndrome and Alzheimer’s disease. Steps toward Therapy. Bentham Science Publisher, Sharjah Phillips C et al (2015b) Evolution of monoaminergic system degeneration in down syndrome and Alzheimer’s disease. In: Salehi A, Rafii M, Phillips C (eds) Recent advances in alzheimer research, (Volume 1), common pathogenic mechanisms between down syndrome and Alzheimer’s disease. Steps toward Therapy. Bentham Science Publisher, Sharjah
Zurück zum Zitat Pollock GS et al (2001) Effects of early visual experience and diurnal rhythms on BDNF mRNA and protein levels in the visual system, hippocampus, and cerebellum. J Neurosci 21(11):3923–3931PubMed Pollock GS et al (2001) Effects of early visual experience and diurnal rhythms on BDNF mRNA and protein levels in the visual system, hippocampus, and cerebellum. J Neurosci 21(11):3923–3931PubMed
Zurück zum Zitat Rodriguez JJ et al (2013) Enriched environment and physical activity reverse astrogliodegeneration in the hippocampus of AD transgenic mice. Cell Death Dis 4:e678PubMedPubMedCentralCrossRef Rodriguez JJ et al (2013) Enriched environment and physical activity reverse astrogliodegeneration in the hippocampus of AD transgenic mice. Cell Death Dis 4:e678PubMedPubMedCentralCrossRef
Zurück zum Zitat Rose CR et al (2003) Truncated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia cells. Nature 426(6962):74–78PubMedCrossRef Rose CR et al (2003) Truncated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia cells. Nature 426(6962):74–78PubMedCrossRef
Zurück zum Zitat Rossi S et al (2005) Rabbit monoclonal antibodies: a comparative study between a novel category of immunoreagents and the corresponding mouse monoclonal antibodies. Am J Clin Pathol 124(2):295–302PubMedCrossRef Rossi S et al (2005) Rabbit monoclonal antibodies: a comparative study between a novel category of immunoreagents and the corresponding mouse monoclonal antibodies. Am J Clin Pathol 124(2):295–302PubMedCrossRef
Zurück zum Zitat Salehi A et al (2006) Increased App expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51(1):29–42PubMedCrossRef Salehi A et al (2006) Increased App expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51(1):29–42PubMedCrossRef
Zurück zum Zitat Salehi A et al (2009) Restoration of norepinephrine-modulated contextual memory in a mouse model of Down syndrome. Sci Transl Med 1(7):7ra17PubMedCrossRef Salehi A et al (2009) Restoration of norepinephrine-modulated contextual memory in a mouse model of Down syndrome. Sci Transl Med 1(7):7ra17PubMedCrossRef
Zurück zum Zitat Salis AS (2013) Proactive and reactive effects of vigorous exercise on learning and vocabulary comprehension. Percept Mot Skills 116(3):918–928PubMedCrossRef Salis AS (2013) Proactive and reactive effects of vigorous exercise on learning and vocabulary comprehension. Percept Mot Skills 116(3):918–928PubMedCrossRef
Zurück zum Zitat Saur L et al (2014) Physical exercise increases GFAP expression and induces morphological changes in hippocampal astrocytes. Brain Struct Funct 219(1):293–302PubMedCrossRef Saur L et al (2014) Physical exercise increases GFAP expression and induces morphological changes in hippocampal astrocytes. Brain Struct Funct 219(1):293–302PubMedCrossRef
Zurück zum Zitat Schwartz JP, Nishiyama N (1994) Neurotrophic factor gene expression in astrocytes during development and following injury. Brain Res Bull 35(5–6):403–407PubMedCrossRef Schwartz JP, Nishiyama N (1994) Neurotrophic factor gene expression in astrocytes during development and following injury. Brain Res Bull 35(5–6):403–407PubMedCrossRef
Zurück zum Zitat Sepulveda-Falla D et al (2011) Deposition of hyperphosphorylated tau in cerebellum of PS1 E280A Alzheimer’s disease. Brain Pathol 21(4):452–463PubMedCrossRef Sepulveda-Falla D et al (2011) Deposition of hyperphosphorylated tau in cerebellum of PS1 E280A Alzheimer’s disease. Brain Pathol 21(4):452–463PubMedCrossRef
Zurück zum Zitat Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35PubMedCrossRef Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35PubMedCrossRef
Zurück zum Zitat Song S et al (2016) Granulocyte-colony stimulating factor promotes brain repair following traumatic brain injury by recruitment of microglia and increasing neurotrophic factor expression. Restor Neurol Neurosci 34(3):415–431PubMedCrossRef Song S et al (2016) Granulocyte-colony stimulating factor promotes brain repair following traumatic brain injury by recruitment of microglia and increasing neurotrophic factor expression. Restor Neurol Neurosci 34(3):415–431PubMedCrossRef
Zurück zum Zitat Steinberg M et al (2009) Evaluation of a home-based exercise program in the treatment of Alzheimer’s disease: the maximizing independence in dementia (MIND) study. Int J Geriatr Psychiatry 24(7):680–685PubMedPubMedCentralCrossRef Steinberg M et al (2009) Evaluation of a home-based exercise program in the treatment of Alzheimer’s disease: the maximizing independence in dementia (MIND) study. Int J Geriatr Psychiatry 24(7):680–685PubMedPubMedCentralCrossRef
Zurück zum Zitat Stranahan AM, Khalil D, Gould E (2007) Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus 17(11):1017–1022PubMedPubMedCentralCrossRef Stranahan AM, Khalil D, Gould E (2007) Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus 17(11):1017–1022PubMedPubMedCentralCrossRef
Zurück zum Zitat Tynan RJ et al (2013) Chronic stress-induced disruption of the astrocyte network is driven by structural atrophy and not loss of astrocytes. Acta Neuropathol 126(1):75–91PubMedCrossRef Tynan RJ et al (2013) Chronic stress-induced disruption of the astrocyte network is driven by structural atrophy and not loss of astrocytes. Acta Neuropathol 126(1):75–91PubMedCrossRef
Zurück zum Zitat van Praag H (2008) Neurogenesis and exercise: past and future directions. Neuromol Med 10(2):128–140CrossRef van Praag H (2008) Neurogenesis and exercise: past and future directions. Neuromol Med 10(2):128–140CrossRef
Zurück zum Zitat Vaynman S, Ying Z, Gomez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20(10):2580–2590PubMedCrossRef Vaynman S, Ying Z, Gomez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20(10):2580–2590PubMedCrossRef
Zurück zum Zitat Viola GG, Loss CM (2014) Letter to Editor about: “Physical exercise increases GFAP expression and induces morphological changes in hippocampal astrocytes”. Brain Struct Funct 219(4):1509–1510PubMedCrossRef Viola GG, Loss CM (2014) Letter to Editor about: “Physical exercise increases GFAP expression and induces morphological changes in hippocampal astrocytes”. Brain Struct Funct 219(4):1509–1510PubMedCrossRef
Zurück zum Zitat Voss MW et al (2013) Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav Immun 28:90–99PubMedCrossRef Voss MW et al (2013) Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav Immun 28:90–99PubMedCrossRef
Zurück zum Zitat Waterhouse EG, Xu B (2009) New insights into the role of brain-derived neurotrophic factor in synaptic plasticity. Mol Cell Neurosci 42(2):81–89PubMedPubMedCentralCrossRef Waterhouse EG, Xu B (2009) New insights into the role of brain-derived neurotrophic factor in synaptic plasticity. Mol Cell Neurosci 42(2):81–89PubMedPubMedCentralCrossRef
Zurück zum Zitat Zafra F et al (1992) Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. J Neurosci 12(12):4793–4799PubMed Zafra F et al (1992) Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. J Neurosci 12(12):4793–4799PubMed
Zurück zum Zitat Zhao C et al (2006) Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 26(1):3–11PubMedCrossRef Zhao C et al (2006) Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 26(1):3–11PubMedCrossRef
Metadaten
Titel
Physical exercise induces structural alterations in the hippocampal astrocytes: exploring the role of BDNF-TrkB signaling
verfasst von
Atoossa Fahimi
Mehmet Akif Baktir
Sarah Moghadam
Fatemeh S. Mojabi
Krithika Sumanth
M. Windy McNerney
Ravikumar Ponnusamy
Ahmad Salehi
Publikationsdatum
29.09.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 4/2017
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1308-8

Weitere Artikel der Ausgabe 4/2017

Brain Structure and Function 4/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Neu im Fachgebiet Neurologie

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.