Skip to main content
Erschienen in: European Journal of Nutrition 4/2018

20.03.2017 | Original Contribution

Physiological activities of the combination of fish oil and α-lipoic acid affecting hepatic lipogenesis and parameters related to oxidative stress in rats

verfasst von: Takashi Ide

Erschienen in: European Journal of Nutrition | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

We studied the combined effect of fish oil and α-lipoic acid on hepatic lipogenesis and fatty acid oxidation and parameters of oxidative stress in rats fed lipogenic diets high in sucrose. A control diet contained a saturated fat (palm oil) that gives high rate of hepatic lipogenesis.

Methods

Male Sprague–Dawley rats were fed diets supplemented with 0 or 2.5 g/kg α-lipoic acid and containing 0, 20, or 100 g/kg fish oil, for 21 days.

Results

α-Lipoic acid significantly reduced food intake during 0–8 days but not the later period of the experiment. Fish oil and α-lipoic acid decreased serum lipid concentrations and their combination further decreased the parameters in an additive fashion. The combination of fish oil and α-lipoic acid decreased the activity and mRNA levels of hepatic lipogenic enzymes in an additive fashion. Fish oil increased the parameters of hepatic fatty acid oxidation enzymes. α-Lipoic acid appeared to antagonize the stimulating effects of fish oil of fatty acid oxidation through reductions in the activity of some fatty acid oxidation enzymes. α-Lipoic acid attenuated fish oil-dependent increases in serum and liver malondialdehyde levels, and this compound also reduced the serum 8-hydroxy-2′-deoxyguanosine level. α-Lipoic acid affected various parameters related to the antioxidant system; fish oil also affected some of the parameters.

Conclusions

The combination of fish oil and α-lipoic acid effectively reduced serum lipid levels through the additive down-regulation of hepatic lipogenesis. α-Lipoic acid was effective in attenuating fish oil-mediated oxidative stress.
Literatur
1.
Zurück zum Zitat Ide T, Kobayashi H, Ashakumary L, Rouyer IA, Takahashi Y, Aoyama T, Hashimoto T, Mizugaki M (2000) Comparative effects of perilla and fish oils on the activity and gene expression of fatty acid oxidation enzymes in rat liver. Biochim Biophys Acta 1485:23–35. doi:10.1016/S1388-1981(00)00026-3 CrossRefPubMed Ide T, Kobayashi H, Ashakumary L, Rouyer IA, Takahashi Y, Aoyama T, Hashimoto T, Mizugaki M (2000) Comparative effects of perilla and fish oils on the activity and gene expression of fatty acid oxidation enzymes in rat liver. Biochim Biophys Acta 1485:23–35. doi:10.​1016/​S1388-1981(00)00026-3 CrossRefPubMed
2.
Zurück zum Zitat Ide T, Takahashi Y, Kushiro M, Tachibana M, Matsushima Y (2004) Effect of n-3 fatty acids on serum lipid levels and hepatic fatty acid metabolism in BALB/c.KOR-Apoe shl mice deficient in apolipoprotein E expression. J Nutr Biochem 15:169–178. doi:10.1016/j.jnutbio.2003.11.001 CrossRefPubMed Ide T, Takahashi Y, Kushiro M, Tachibana M, Matsushima Y (2004) Effect of n-3 fatty acids on serum lipid levels and hepatic fatty acid metabolism in BALB/c.KOR-Apoe shl mice deficient in apolipoprotein E expression. J Nutr Biochem 15:169–178. doi:10.​1016/​j.​jnutbio.​2003.​11.​001 CrossRefPubMed
3.
Zurück zum Zitat Ide T (2005) Interaction of fish oil and conjugated linoleic acid in affecting hepatic activity of lipogenic enzymes and gene expression in liver and adipose tissue. Diabetes 54:412–423CrossRefPubMed Ide T (2005) Interaction of fish oil and conjugated linoleic acid in affecting hepatic activity of lipogenic enzymes and gene expression in liver and adipose tissue. Diabetes 54:412–423CrossRefPubMed
8.
10.
Zurück zum Zitat Arambašić J, Mihailović M, Uskoković A, Dinić S, Grdović N, Marković J, Poznanović G, Bajec D, Vidaković M (2013) Alpha-lipoic acid upregulates antioxidant enzyme gene expression and enzymatic activity in diabetic rat kidneys through an O-GlcNAc-dependent mechanism. Eur J Nutr 52:1461–1473. doi:10.1007/s00394-012-0452-z CrossRefPubMed Arambašić J, Mihailović M, Uskoković A, Dinić S, Grdović N, Marković J, Poznanović G, Bajec D, Vidaković M (2013) Alpha-lipoic acid upregulates antioxidant enzyme gene expression and enzymatic activity in diabetic rat kidneys through an O-GlcNAc-dependent mechanism. Eur J Nutr 52:1461–1473. doi:10.​1007/​s00394-012-0452-z CrossRefPubMed
14.
Zurück zum Zitat Yi X, Maeda N (2006) α-Lipoic acid prevents the increase in atherosclerosis induced by diabetes in apolipoprotein E-deficient mice fed high-fat/low-cholesterol diet. Diabetes 55:2238–2244CrossRefPubMed Yi X, Maeda N (2006) α-Lipoic acid prevents the increase in atherosclerosis induced by diabetes in apolipoprotein E-deficient mice fed high-fat/low-cholesterol diet. Diabetes 55:2238–2244CrossRefPubMed
19.
Zurück zum Zitat Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951CrossRefPubMed Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951CrossRefPubMed
20.
Zurück zum Zitat Angel JF, Back DW (1981) Immediate and late effects of premature weaning of rats to diets containing starch or low levels of sucrose. J Nutr 111:1805–1815CrossRefPubMed Angel JF, Back DW (1981) Immediate and late effects of premature weaning of rats to diets containing starch or low levels of sucrose. J Nutr 111:1805–1815CrossRefPubMed
21.
Zurück zum Zitat Yan CC, Huxtable RJ (1995) Fluorimetric determination of monobromobimane and o-phthalaldehyde adducts of γ-glutamylcysteine and glutathione: application to assay of γ-glutamylcysteinyl synthetase activity and glutathione concentration in liver. J Chromatogr B Biomed Appl 672:217–224. doi:10.1016/0378-4347(95)00226-9 CrossRefPubMed Yan CC, Huxtable RJ (1995) Fluorimetric determination of monobromobimane and o-phthalaldehyde adducts of γ-glutamylcysteine and glutathione: application to assay of γ-glutamylcysteinyl synthetase activity and glutathione concentration in liver. J Chromatogr B Biomed Appl 672:217–224. doi:10.​1016/​0378-4347(95)00226-9 CrossRefPubMed
23.
Zurück zum Zitat Ide T, Okamatsu H, Sugano M (1978) Regulation by dietary fats of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in rat liver. J Nutr 108:601–612CrossRefPubMed Ide T, Okamatsu H, Sugano M (1978) Regulation by dietary fats of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in rat liver. J Nutr 108:601–612CrossRefPubMed
25.
Zurück zum Zitat Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–555CrossRefPubMed Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–555CrossRefPubMed
26.
Zurück zum Zitat Khoschsorur GA, Winklhofer-Roob BM, Rabl H, Auer Th, Peng Z, Schaur RJ (2000) Evaluation of a sensitive HPLC method for the determination of malondialdehyde, and application of the method to different biological materials. Chromatographia 52:181–184. doi:10.1007/BF02490453 CrossRef Khoschsorur GA, Winklhofer-Roob BM, Rabl H, Auer Th, Peng Z, Schaur RJ (2000) Evaluation of a sensitive HPLC method for the determination of malondialdehyde, and application of the method to different biological materials. Chromatographia 52:181–184. doi:10.​1007/​BF02490453 CrossRef
31.
Zurück zum Zitat Loeber G, Infante AA, Maurer-Fogy I, Krystek E, Dworkin MB (1991) Human NAD+-dependent mitochondrial malic enzyme. cDNA cloning, primary structure, and expression in Escherichia coli. J Biol Chem 266:3016–3021PubMed Loeber G, Infante AA, Maurer-Fogy I, Krystek E, Dworkin MB (1991) Human NAD+-dependent mitochondrial malic enzyme. cDNA cloning, primary structure, and expression in Escherichia coli. J Biol Chem 266:3016–3021PubMed
33.
Zurück zum Zitat Kim HJ, Takahashi M, Ezaki O (1999) Fish oil feeding decreases mature sterol regulatory element-binding protein 1 (SREBP-1) by down-regulation of SREBP-1c mRNA in mouse liver. A possible mechanism for down-regulation of lipogenic enzyme mRNAs. J Biol Chem 274:25892–25898. doi:10.1074/jbc.274.36.25892 CrossRefPubMed Kim HJ, Takahashi M, Ezaki O (1999) Fish oil feeding decreases mature sterol regulatory element-binding protein 1 (SREBP-1) by down-regulation of SREBP-1c mRNA in mouse liver. A possible mechanism for down-regulation of lipogenic enzyme mRNAs. J Biol Chem 274:25892–25898. doi:10.​1074/​jbc.​274.​36.​25892 CrossRefPubMed
34.
Zurück zum Zitat Zehner ZE, Joshi VC, Wakil SJ (1977) Regulation of fatty acid synthetase in perinatal chicks. Identification of polysomes synthesizing fatty acid synthetase. J Biol Chem 252:7015–7022PubMed Zehner ZE, Joshi VC, Wakil SJ (1977) Regulation of fatty acid synthetase in perinatal chicks. Identification of polysomes synthesizing fatty acid synthetase. J Biol Chem 252:7015–7022PubMed
35.
Zurück zum Zitat Shimano H, Yahagi N, Amemiya-Kudo M, Hasty AH, Osuga J, Tamura Y, Shionoiri F, Iizuka Y, Ohashi K, Harada K, Gotoda T, Ishibashi S, Yamada N (1999) Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J Biol Chem 274:35832–35839. doi:10.1074/jbc.274.50.35832 CrossRefPubMed Shimano H, Yahagi N, Amemiya-Kudo M, Hasty AH, Osuga J, Tamura Y, Shionoiri F, Iizuka Y, Ohashi K, Harada K, Gotoda T, Ishibashi S, Yamada N (1999) Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J Biol Chem 274:35832–35839. doi:10.​1074/​jbc.​274.​50.​35832 CrossRefPubMed
36.
37.
Zurück zum Zitat Ren B, Thelen AP, Peters JM, Gonzalez FJ, Jump DB (1997) Polyunsaturated fatty acid suppression of hepatic fatty acid synthase and S14 gene expression does not require peroxisome proliferator-activated receptor α. J Biol Chem 272:26827–26832. doi:10.1074/jbc.272.43.26827 CrossRefPubMed Ren B, Thelen AP, Peters JM, Gonzalez FJ, Jump DB (1997) Polyunsaturated fatty acid suppression of hepatic fatty acid synthase and S14 gene expression does not require peroxisome proliferator-activated receptor α. J Biol Chem 272:26827–26832. doi:10.​1074/​jbc.​272.​43.​26827 CrossRefPubMed
38.
Zurück zum Zitat Louet JF, Chatelain F, Decaux JF, Park EA, Kohl C, Pineau T, Girard J, Pegorier JP (2001) Long-chain fatty acids regulate liver carnitine palmitoyltransferase I gene (L-CPT I) expression through a peroxisome-proliferator-activated receptor α (PPARα)-independent pathway. Biochem J 354(Pt 1):189–197. doi:10.1042/bj3540189 CrossRefPubMedPubMedCentral Louet JF, Chatelain F, Decaux JF, Park EA, Kohl C, Pineau T, Girard J, Pegorier JP (2001) Long-chain fatty acids regulate liver carnitine palmitoyltransferase I gene (L-CPT I) expression through a peroxisome-proliferator-activated receptor α (PPARα)-independent pathway. Biochem J 354(Pt 1):189–197. doi:10.​1042/​bj3540189 CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Yamazaki N (2004) Identification of muscle-type carnitine palmitoyltransferase I and characterization of its atypical gene structure. Biol Pharm Bull 27:1707–1716CrossRefPubMed Yamazaki N (2004) Identification of muscle-type carnitine palmitoyltransferase I and characterization of its atypical gene structure. Biol Pharm Bull 27:1707–1716CrossRefPubMed
40.
Zurück zum Zitat Hunt MC, Lindquist PJ, Peters JM, Gonzalez FJ, Diczfalusy U, Alexson SE (2000) Involvement of the peroxisome proliferator-activated receptor α in regulating long-chain acyl-CoA thioesterases. J Lipid Res 41:814–823PubMed Hunt MC, Lindquist PJ, Peters JM, Gonzalez FJ, Diczfalusy U, Alexson SE (2000) Involvement of the peroxisome proliferator-activated receptor α in regulating long-chain acyl-CoA thioesterases. J Lipid Res 41:814–823PubMed
43.
Zurück zum Zitat Suh JH, Shenvi SV, Dixon BM, Liu H, Jaiswal AK, Liu RM, Hagen TM (2004) Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci USA 101:3381–3386. doi:10.1073/pnas.0400282101 CrossRefPubMed Suh JH, Shenvi SV, Dixon BM, Liu H, Jaiswal AK, Liu RM, Hagen TM (2004) Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci USA 101:3381–3386. doi:10.​1073/​pnas.​0400282101 CrossRefPubMed
45.
Zurück zum Zitat Kinnunen S, Oksala N, Hyyppä S, Sen CK, Radak Z, Laaksonen DE, Szabó B, Jakus J, Atalay M (2009) α-Lipoic acid modulates thiol antioxidant defenses and attenuates exercise-induced oxidative stress in standard bred trotters. Free Radic Res 43:697–705. doi:10.1080/10715760903037673 CrossRefPubMed Kinnunen S, Oksala N, Hyyppä S, Sen CK, Radak Z, Laaksonen DE, Szabó B, Jakus J, Atalay M (2009) α-Lipoic acid modulates thiol antioxidant defenses and attenuates exercise-induced oxidative stress in standard bred trotters. Free Radic Res 43:697–705. doi:10.​1080/​1071576090303767​3 CrossRefPubMed
46.
Zurück zum Zitat Arab K, Rossary A, Flourié F, Tourneur Y, Steghens JP (2006) Docosahexaenoic acid enhances the antioxidant response of human fibroblasts by upregulating gamma-glutamyl-cysteinyl ligase and glutathione reductase. Br J Nutr 95:18–26. doi:10.1079/BJN20051626 CrossRef Arab K, Rossary A, Flourié F, Tourneur Y, Steghens JP (2006) Docosahexaenoic acid enhances the antioxidant response of human fibroblasts by upregulating gamma-glutamyl-cysteinyl ligase and glutathione reductase. Br J Nutr 95:18–26. doi:10.​1079/​BJN20051626 CrossRef
47.
Zurück zum Zitat Lee HJ, Han J, Jang Y, Kim SJ, Park JH, Seo KS, Jeong S, Shin S, Lim K, Heo JY, Kweon GR (2015) Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis. Biochem Biophys Res Commun 457:95–100. doi:10.1016/j.bbrc.2014.12.085 CrossRefPubMed Lee HJ, Han J, Jang Y, Kim SJ, Park JH, Seo KS, Jeong S, Shin S, Lim K, Heo JY, Kweon GR (2015) Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis. Biochem Biophys Res Commun 457:95–100. doi:10.​1016/​j.​bbrc.​2014.​12.​085 CrossRefPubMed
48.
Zurück zum Zitat Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD (2015) Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med 88(Pt B):108–146. doi:10.1016/j.freeradbiomed.CrossRefPubMedPubMedCentral Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD (2015) Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med 88(Pt B):108–146. doi:10.​1016/​j.​freeradbiomed.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Yang Y, Li W, Liu Y, Sun Y, Li Y, Yao Q, Li J, Zhang Q, Gao Y, Gao L, Zhao J (2014) Alpha-lipoic acid improves high-fat diet-induced hepatic steatosis by modulating the transcription factors SREBP-1, FoxO1 and Nrf2 via the SIRT1/LKB1/AMPKpathway. J Nutr Biochem 25:1207–1217. doi:10.1016/j.jnutbio.2014.06.001 CrossRefPubMed Yang Y, Li W, Liu Y, Sun Y, Li Y, Yao Q, Li J, Zhang Q, Gao Y, Gao L, Zhao J (2014) Alpha-lipoic acid improves high-fat diet-induced hepatic steatosis by modulating the transcription factors SREBP-1, FoxO1 and Nrf2 via the SIRT1/LKB1/AMPKpathway. J Nutr Biochem 25:1207–1217. doi:10.​1016/​j.​jnutbio.​2014.​06.​001 CrossRefPubMed
52.
Zurück zum Zitat Yates MS, Tran QT, Dolan PM, Osburn WO, Shin S, McCulloch CC, Silkworth JB, Taguchi K, Yamamoto M, Williams CR, Liby KT, Sporn MB, Sutter TR, Kensler TW (2009) Genetic versus chemoprotective activation of Nrf2 signaling: overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice. Carcinogenesis 30:1024–1031. doi:10.1093/carcin/bgp100 CrossRefPubMedPubMedCentral Yates MS, Tran QT, Dolan PM, Osburn WO, Shin S, McCulloch CC, Silkworth JB, Taguchi K, Yamamoto M, Williams CR, Liby KT, Sporn MB, Sutter TR, Kensler TW (2009) Genetic versus chemoprotective activation of Nrf2 signaling: overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice. Carcinogenesis 30:1024–1031. doi:10.​1093/​carcin/​bgp100 CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Ide T, Ontko JA (1981) Increased secretion of very low density lipoprotein triglyceride following inhibition of long chain fatty acid oxidation in isolated rat liver. J Biol Chem 256:10247–10255PubMed Ide T, Ontko JA (1981) Increased secretion of very low density lipoprotein triglyceride following inhibition of long chain fatty acid oxidation in isolated rat liver. J Biol Chem 256:10247–10255PubMed
Metadaten
Titel
Physiological activities of the combination of fish oil and α-lipoic acid affecting hepatic lipogenesis and parameters related to oxidative stress in rats
verfasst von
Takashi Ide
Publikationsdatum
20.03.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nutrition / Ausgabe 4/2018
Print ISSN: 1436-6207
Elektronische ISSN: 1436-6215
DOI
https://doi.org/10.1007/s00394-017-1440-0

Weitere Artikel der Ausgabe 4/2018

European Journal of Nutrition 4/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.