Skip to main content
Erschienen in: Journal of Clinical Monitoring and Computing 5/2021

20.08.2020 | Original Research

Physiological effects of two driving pressure-based methods to set positive end-expiratory pressure during one lung ventilation

verfasst von: Savino Spadaro, Salvatore Grasso, Dan Stieper Karbing, Giuseppe Santoro, Giorgio Cavallesco, Pio Maniscalco, Francesca Murgolo, Rosa Di Mussi, Riccardo Ragazzi, Stephen Edward Rees, Carlo Alberto Volta, Alberto Fogagnolo

Erschienen in: Journal of Clinical Monitoring and Computing | Ausgabe 5/2021

Einloggen, um Zugang zu erhalten

Abstract

During one-lung ventilation (OLV), titrating the positive end-expiratory pressure (PEEP) to target a low driving pressure (∆P) could reduce postoperative pulmonary complications. However, it is unclear how to conduct PEEP titration: by stepwise increase starting from zero PEEP (PEEPINCREMENTAL) or by stepwise decrease after a lung recruiting manoeuvre (PEEPDECREMENTAL). In this randomized trial, we compared the physiological effects of these two PEEP titration strategies on respiratory mechanics, ventilation/perfusion mismatch and gas exchange. Patients undergoing video-assisted thoracoscopic surgery in OLV were randomly assigned to a PEEPINCREMENTAL or PEEPDECREMENTAL strategy to match the lowest ∆P. In the PEEPINCREMENTAL group, PEEP was stepwise titrated from ZEEP up to 16 cm H2O, whereas in the PEEPDECREMENTAL group PEEP was decrementally titrated, starting from 16 cm H2O, immediately after a lung recruiting manoeuvre. Respiratory mechanics, ventilation/perfusion mismatch and blood gas analyses were recorded at baseline, after PEEP titration and at the end of surgery. Sixty patients were included in the study. After PEEP titration, shunt decreased similarly in both groups, from 50 [39–55]% to 35 [28–42]% in the PEEPINCREMENTAL and from 45 [37–58]% to 33 [25–45]% in the PEEPDECREMENTAL group (both p < 0.001 vs baseline). The resulting ∆P, however, was lower in the PEEPDECREMENTAL than in the PEEPINCREMENTAL group (8 [7–11] vs 10 [9–11] cm H2O; p = 0.03). In the PEEPDECREMENTAL group the PaO2/ FIO2 ratio increased significantly after intervention (from 140 [99–176] to 186 [152–243], p < 0.001). Both the PEEPINCREMENTAL and the PEEPDECREMENTAL strategies were able to decrease intraoperative shunt, but only PEEPDECREMENTAL improved oxygenation and lowered intraoperative ΔP.
Clinical trial number NCT03635281; August 2018; “retrospectively registered”
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Spadaro S, Karbing DS, Mauri T, et al. Effect of positive end-expiratory pressure on pulmonary shunt and dynamic compliance during abdominal surgery. Br J Anaesth. 2016;116(6):855–61.CrossRef Spadaro S, Karbing DS, Mauri T, et al. Effect of positive end-expiratory pressure on pulmonary shunt and dynamic compliance during abdominal surgery. Br J Anaesth. 2016;116(6):855–61.CrossRef
2.
Zurück zum Zitat Spadaro S, Grasso S, Karbing DS, et al. Physiologic evaluation of ventilation perfusion mismatch and respiratory mechanics at different positive end-expiratory pressure in patients undergoing protective one-lung ventilation. Anesthesiology. 2018;128(3):531–8.CrossRef Spadaro S, Grasso S, Karbing DS, et al. Physiologic evaluation of ventilation perfusion mismatch and respiratory mechanics at different positive end-expiratory pressure in patients undergoing protective one-lung ventilation. Anesthesiology. 2018;128(3):531–8.CrossRef
3.
Zurück zum Zitat Young CC, Harris EM, Vacchiano C, et al. Lung-protective ventilation for the surgical patient: international expert panel-based consensus recommendations. Br J Anaesth. 2019;123(6):898–913.CrossRef Young CC, Harris EM, Vacchiano C, et al. Lung-protective ventilation for the surgical patient: international expert panel-based consensus recommendations. Br J Anaesth. 2019;123(6):898–913.CrossRef
4.
Zurück zum Zitat Park M, Ahn HJ, Kim JA, et al. Driving pressure during thoracic surgery: a randomized clinical trial. Anesthesiology. 2019;130(3):385–93.CrossRef Park M, Ahn HJ, Kim JA, et al. Driving pressure during thoracic surgery: a randomized clinical trial. Anesthesiology. 2019;130(3):385–93.CrossRef
5.
Zurück zum Zitat Blank RS, Colquhoun DA, Durieux ME, et al. Management of one-lung ventilation: impact of tidal volume on complications after thoracic surgery. Anesthesiology. 2016;124(6):1286–95.CrossRef Blank RS, Colquhoun DA, Durieux ME, et al. Management of one-lung ventilation: impact of tidal volume on complications after thoracic surgery. Anesthesiology. 2016;124(6):1286–95.CrossRef
6.
Zurück zum Zitat Neto AS, Hemmes SN, Barbas CS, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4(4):272–80.CrossRef Neto AS, Hemmes SN, Barbas CS, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4(4):272–80.CrossRef
7.
Zurück zum Zitat Ferrando C, Mugarra A, Gutierrez A, et al. Setting individualized positive end-expiratory pressure level with a positive end-expiratory pressure decrement trial after a recruitment maneuver improves oxygenation and lung mechanics during one-lung ventilation. Anesth Analg. 2014;118(3):657–65.CrossRef Ferrando C, Mugarra A, Gutierrez A, et al. Setting individualized positive end-expiratory pressure level with a positive end-expiratory pressure decrement trial after a recruitment maneuver improves oxygenation and lung mechanics during one-lung ventilation. Anesth Analg. 2014;118(3):657–65.CrossRef
8.
Zurück zum Zitat Rauseo M, Mirabella L, Grasso S, et al. Peep titration based on the open lung approach during one lung ventilation in thoracic surgery: a physiological study. BMC Anesthesiol. 2018;18(1):156.CrossRef Rauseo M, Mirabella L, Grasso S, et al. Peep titration based on the open lung approach during one lung ventilation in thoracic surgery: a physiological study. BMC Anesthesiol. 2018;18(1):156.CrossRef
9.
Zurück zum Zitat Girgis K, Hamed H, Khater Y, Kacmarek RA. decremental PEEP trial identifies the PEEP level that maintains oxygenation after lung recruitment. Respir Care. 2006;51(10):1132–9.PubMed Girgis K, Hamed H, Khater Y, Kacmarek RA. decremental PEEP trial identifies the PEEP level that maintains oxygenation after lung recruitment. Respir Care. 2006;51(10):1132–9.PubMed
10.
Zurück zum Zitat Gernoth C, Wagner G, Pelosi P, Luecke T. Respiratory and haemodynamic changes during decremental open lung positive end-expiratory pressure titration in patients with acute respiratory distress syndrome. Crit Care. 2009;13(2):R59.CrossRef Gernoth C, Wagner G, Pelosi P, Luecke T. Respiratory and haemodynamic changes during decremental open lung positive end-expiratory pressure titration in patients with acute respiratory distress syndrome. Crit Care. 2009;13(2):R59.CrossRef
11.
Zurück zum Zitat Batchelor TJP, Rasburn NJ, Abdelnour-Berchtold E, et al. Guidelines for enhanced recovery after lung surgery: recommendations of the Enhanced Recovery After Surgery (ERAS®). Soc Eur Soc Thorac Surg (ESTS). 2019;55(1):91–115. Batchelor TJP, Rasburn NJ, Abdelnour-Berchtold E, et al. Guidelines for enhanced recovery after lung surgery: recommendations of the Enhanced Recovery After Surgery (ERAS®). Soc Eur Soc Thorac Surg (ESTS). 2019;55(1):91–115.
12.
Zurück zum Zitat Kiss T, Wittenstein J, Becker C, et al. Protective ventilation with high versus low positive end-expiratory pressure during one-lung ventilation for thoracic surgery (PROTHOR): study protocol for a randomized controlled trial. Trials. 2019;20(1):213.CrossRef Kiss T, Wittenstein J, Becker C, et al. Protective ventilation with high versus low positive end-expiratory pressure during one-lung ventilation for thoracic surgery (PROTHOR): study protocol for a randomized controlled trial. Trials. 2019;20(1):213.CrossRef
13.
Zurück zum Zitat Villagra A, Ochagavia A, Vatua S, et al. Recruitment maneuvers during lung protective ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002;165:165–70.CrossRef Villagra A, Ochagavia A, Vatua S, et al. Recruitment maneuvers during lung protective ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002;165:165–70.CrossRef
14.
Zurück zum Zitat Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567–75.CrossRef Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567–75.CrossRef
15.
Zurück zum Zitat Spadaro S, Caramori G, Rizzuto C, et al. Expiratory flow limitation as a risk factor for pulmonary complications after major abdominal surgery. Anesth Analg. 2017;124(2):524–30.CrossRef Spadaro S, Caramori G, Rizzuto C, et al. Expiratory flow limitation as a risk factor for pulmonary complications after major abdominal surgery. Anesth Analg. 2017;124(2):524–30.CrossRef
16.
Zurück zum Zitat Rees SE, Kjærgaard S, Thorgaard P, Malczynski J, Toft E, Andreassen S. The Automatic Lung Parameter Estimator (ALPE) system: non-invasive estimation of pulmonary gas exchange parameters in 10–15 minutes. J Clin Monit Comput. 2002;17:43–52.CrossRef Rees SE, Kjærgaard S, Thorgaard P, Malczynski J, Toft E, Andreassen S. The Automatic Lung Parameter Estimator (ALPE) system: non-invasive estimation of pulmonary gas exchange parameters in 10–15 minutes. J Clin Monit Comput. 2002;17:43–52.CrossRef
17.
Zurück zum Zitat Karbing DS, Kjærgaard S, Andreassen S, Espersen K, Rees SE. Minimal model quantification of pulmonary gas exchange in intensive care patients. Med Eng Phys. 2011;33:240–8.CrossRef Karbing DS, Kjærgaard S, Andreassen S, Espersen K, Rees SE. Minimal model quantification of pulmonary gas exchange in intensive care patients. Med Eng Phys. 2011;33:240–8.CrossRef
18.
Zurück zum Zitat Kjaergaard S, Rees S, Malczynski J, Nielsen JA, Thorgaard P, Toft E, Andreassen S. Non-invasive estimation of shunt and ventilation-perfusion mismatch. Intensive Care Med. 2003;29(5):727–34.CrossRef Kjaergaard S, Rees S, Malczynski J, Nielsen JA, Thorgaard P, Toft E, Andreassen S. Non-invasive estimation of shunt and ventilation-perfusion mismatch. Intensive Care Med. 2003;29(5):727–34.CrossRef
19.
Zurück zum Zitat Kjaergaard S, Rees SE, Grønlund J, et al. Hypoxaemia after cardiac surgery: clinical application of a model of pulmonary gas exchange. Eur J Anaesthesiol. 2004;21(4):296–301.CrossRef Kjaergaard S, Rees SE, Grønlund J, et al. Hypoxaemia after cardiac surgery: clinical application of a model of pulmonary gas exchange. Eur J Anaesthesiol. 2004;21(4):296–301.CrossRef
20.
Zurück zum Zitat Karbing DS, Kjaergaard S, Smith BW, et al. Variation in the PaO2/ FIO2 ratio with FIO2: mathematical and experimental description, and clinical relevance. Crit Care. 2007;11(6):R118.CrossRef Karbing DS, Kjaergaard S, Smith BW, et al. Variation in the PaO2/ FIO2 ratio with FIO2: mathematical and experimental description, and clinical relevance. Crit Care. 2007;11(6):R118.CrossRef
21.
Zurück zum Zitat Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in Intensive Care Units in 50 countries. JAMA. 2016;315(8):788–800.CrossRef Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in Intensive Care Units in 50 countries. JAMA. 2016;315(8):788–800.CrossRef
22.
Zurück zum Zitat Tusman G, Böhm SH, Sipmann FS, Maisch S. Lung recruitment improves the efficiency of ventilation and gas exchange during one-lung ventilation anesthesia. Anesth Analg. 2004;98(6):1604–9.CrossRef Tusman G, Böhm SH, Sipmann FS, Maisch S. Lung recruitment improves the efficiency of ventilation and gas exchange during one-lung ventilation anesthesia. Anesth Analg. 2004;98(6):1604–9.CrossRef
23.
Zurück zum Zitat Pereira SM, Tucci MR, Morais CCA, et al. Individual positive end-expiratory pressure settings optimize intraoperative mechanical ventilation and reduce postoperative atelectasis. Anesthesiology. 2018;129(6):1070–81.CrossRef Pereira SM, Tucci MR, Morais CCA, et al. Individual positive end-expiratory pressure settings optimize intraoperative mechanical ventilation and reduce postoperative atelectasis. Anesthesiology. 2018;129(6):1070–81.CrossRef
24.
Zurück zum Zitat Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55.CrossRef Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55.CrossRef
25.
Zurück zum Zitat Cinnella G, Grasso S, Natale C, et al. Physiological effects of a lung-recruiting strategy applied during one-lung ventilation. Acta Anaesthesiol Scand. 2008;52:766–75.CrossRef Cinnella G, Grasso S, Natale C, et al. Physiological effects of a lung-recruiting strategy applied during one-lung ventilation. Acta Anaesthesiol Scand. 2008;52:766–75.CrossRef
26.
Zurück zum Zitat Garutti I, Martinez G, Cruz P, Piñeiro P, Olmedilla L, de la Gala F. The impact of lung recruitment on hemodynamics during one-lung ventilation. J Cardiothorac Vasc Anesth. 2009;23(4):506–8.CrossRef Garutti I, Martinez G, Cruz P, Piñeiro P, Olmedilla L, de la Gala F. The impact of lung recruitment on hemodynamics during one-lung ventilation. J Cardiothorac Vasc Anesth. 2009;23(4):506–8.CrossRef
27.
Zurück zum Zitat Cipulli F, Vasques F, Duscio E, Romitti F, Quintel M, Gattinoni L. Atelectrauma or volutrauma: the dilemma. J Thorac Dis. 2018;10(3):1258–64.CrossRef Cipulli F, Vasques F, Duscio E, Romitti F, Quintel M, Gattinoni L. Atelectrauma or volutrauma: the dilemma. J Thorac Dis. 2018;10(3):1258–64.CrossRef
28.
Zurück zum Zitat Kidane B, Choi S, Fortin D, et al. Use of lung-protective strategies during one-lung ventilation surgery: a multi-institutional survey. Ann Transl Med. 2018;6(13):269.CrossRef Kidane B, Choi S, Fortin D, et al. Use of lung-protective strategies during one-lung ventilation surgery: a multi-institutional survey. Ann Transl Med. 2018;6(13):269.CrossRef
29.
Zurück zum Zitat Cressoni M, Gotti M, Chiurazzi C, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016;124(5):1100–8.CrossRef Cressoni M, Gotti M, Chiurazzi C, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016;124(5):1100–8.CrossRef
30.
Zurück zum Zitat Carramiñana A, Ferrando C, Unzueta M, et al. Rationale and study design for an individualized perioperative open lung ventilatory strategy in patients on one-lung ventilation (iPROVE-OLV). J Cardiothorac Vasc Anesth. 2019;33(9):2492–502.CrossRef Carramiñana A, Ferrando C, Unzueta M, et al. Rationale and study design for an individualized perioperative open lung ventilatory strategy in patients on one-lung ventilation (iPROVE-OLV). J Cardiothorac Vasc Anesth. 2019;33(9):2492–502.CrossRef
Metadaten
Titel
Physiological effects of two driving pressure-based methods to set positive end-expiratory pressure during one lung ventilation
verfasst von
Savino Spadaro
Salvatore Grasso
Dan Stieper Karbing
Giuseppe Santoro
Giorgio Cavallesco
Pio Maniscalco
Francesca Murgolo
Rosa Di Mussi
Riccardo Ragazzi
Stephen Edward Rees
Carlo Alberto Volta
Alberto Fogagnolo
Publikationsdatum
20.08.2020
Verlag
Springer Netherlands
Erschienen in
Journal of Clinical Monitoring and Computing / Ausgabe 5/2021
Print ISSN: 1387-1307
Elektronische ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-020-00582-z

Weitere Artikel der Ausgabe 5/2021

Journal of Clinical Monitoring and Computing 5/2021 Zur Ausgabe

Commentary

IONM protocols

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.