Skip to main content
Erschienen in: Inflammation 3/2016

12.03.2016 | ORIGINAL ARTICLE

Piperine Augments the Protective Effect of Curcumin Against Lipopolysaccharide-Induced Neurobehavioral and Neurochemical Deficits in Mice

verfasst von: Ashok Jangra, Mohit Kwatra, Tavleen Singh, Rajat Pant, Pawan Kushwah, Yogita Sharma, Babita Saroha, Ashok Kumar Datusalia, Babul Kumar Bezbaruah

Erschienen in: Inflammation | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

The aim of the present study was to investigate the protective effects of curcumin alone and in combination with piperine against lipopolysaccharide (LPS)-induced neurobehavioral and neurochemical deficits in the mice hippocampus. Mice were treated with curcumin (100, 200, and 400 mg/kg, p.o.) and piperine (20 mg/kg, p.o.) for 7 days followed by LPS (0.83 mg/kg, i.p.) administration. Animals exhibited anxiety and depressive-like phenotype after 3 and 24 h of LPS exposure, respectively. LPS administration increased the oxido-nitrosative stress as evident by elevated levels of malondialdehyde, nitrite, and depletion of glutathione level in the hippocampus. Furthermore, we found raised level of pro-inflammatory cytokines (IL-1β and TNF-α) in the hippocampus of LPS-treated mice. Pretreatment with curcumin alleviated LPS-induced neurobehavioral and neurochemical deficits. Furthermore, co-administration of curcumin with piperine significantly potentiated the neuroprotective effect of curcumin. These results demonstrate that piperine enhanced the neuroprotective effect of curcumin against LPS-induced neurobehavioral and neurochemical deficits.
Literatur
1.
Zurück zum Zitat Jangra, A., M.M. Lukhi, K. Sulakhiya, et al. 2014. Protective effect of mangiferin against lipopolysaccharide-induced depressive and anxiety-like behaviour in mice. European Journal of Pharmacology 740: 337–345.CrossRefPubMed Jangra, A., M.M. Lukhi, K. Sulakhiya, et al. 2014. Protective effect of mangiferin against lipopolysaccharide-induced depressive and anxiety-like behaviour in mice. European Journal of Pharmacology 740: 337–345.CrossRefPubMed
3.
Zurück zum Zitat Hurley, L.L., and Y. Tizabi. 2013. Neuroinflammation, neurodegeneration, and depression. Neurotoxicology Research 23: 131–144.CrossRef Hurley, L.L., and Y. Tizabi. 2013. Neuroinflammation, neurodegeneration, and depression. Neurotoxicology Research 23: 131–144.CrossRef
4.
Zurück zum Zitat Uher, R., O. Mors, M. Rietschel, et al. 2011. Early and delayed onset of response to antidepressants in individual trajectories of change during treatment of major depression: a secondary analysis of data from the Genome-Based Therapeutic Drugs for Depression (GENDEP) study. Journal of Clinical Psychiatry 72: 1478–1484.CrossRefPubMed Uher, R., O. Mors, M. Rietschel, et al. 2011. Early and delayed onset of response to antidepressants in individual trajectories of change during treatment of major depression: a secondary analysis of data from the Genome-Based Therapeutic Drugs for Depression (GENDEP) study. Journal of Clinical Psychiatry 72: 1478–1484.CrossRefPubMed
5.
Zurück zum Zitat Sriram, C.S., A. Jangra, S.S. Gurjar, et al. 2015. Poly (ADP-ribose) polymerase-1 inhibitor, 3-aminobenzamide pretreatment ameliorates lipopolysaccharide-induced neurobehavioral and neurochemical anomalies in mice. Pharmacology Biochemistry Behavior 133: 83–91.CrossRef Sriram, C.S., A. Jangra, S.S. Gurjar, et al. 2015. Poly (ADP-ribose) polymerase-1 inhibitor, 3-aminobenzamide pretreatment ameliorates lipopolysaccharide-induced neurobehavioral and neurochemical anomalies in mice. Pharmacology Biochemistry Behavior 133: 83–91.CrossRef
6.
Zurück zum Zitat Manji, H.K., W.C. Drevets, and D.S. Charney. 2001. The cellular neurobiology of depression. Nature Medicine 7: 541–547.CrossRefPubMed Manji, H.K., W.C. Drevets, and D.S. Charney. 2001. The cellular neurobiology of depression. Nature Medicine 7: 541–547.CrossRefPubMed
7.
Zurück zum Zitat Maes, M., R. Yirmyia, J. Noraberg, et al. 2009. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metabolic Brain Disease 24: 27–53.CrossRefPubMed Maes, M., R. Yirmyia, J. Noraberg, et al. 2009. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metabolic Brain Disease 24: 27–53.CrossRefPubMed
9.
Zurück zum Zitat Leonard, B., and M. Maes. 2012. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neuroscience & Biobehavioral Reviews 36: 764–785.CrossRef Leonard, B., and M. Maes. 2012. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neuroscience & Biobehavioral Reviews 36: 764–785.CrossRef
10.
Zurück zum Zitat Liu, Y., R.C. Ho, and A. Mak. 2012. Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. Journal of Affective Disorders 139: 230–239.CrossRefPubMed Liu, Y., R.C. Ho, and A. Mak. 2012. Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. Journal of Affective Disorders 139: 230–239.CrossRefPubMed
11.
Zurück zum Zitat Leonard, B.E., and A. Myint. 2006. Inflammation and depression: is there a causal connection with dementia? Neurotoxicology Research 10: 149–60.CrossRef Leonard, B.E., and A. Myint. 2006. Inflammation and depression: is there a causal connection with dementia? Neurotoxicology Research 10: 149–60.CrossRef
12.
13.
Zurück zum Zitat Song, C., and H. Wang. 2011. Cytokines mediated inflammation and decreased neurogenesis in animal models of depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry 35: 760–768.CrossRef Song, C., and H. Wang. 2011. Cytokines mediated inflammation and decreased neurogenesis in animal models of depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry 35: 760–768.CrossRef
14.
Zurück zum Zitat Godbout, J.P., J. Chen, J. Abraham, et al. 2005. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB Journal 19: 1329–1331.PubMed Godbout, J.P., J. Chen, J. Abraham, et al. 2005. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB Journal 19: 1329–1331.PubMed
15.
Zurück zum Zitat Huang, Y., C.J. Henry, R. Dantzer, et al. 2007. Exaggerated sickness behavior and brain proinflammatory cytokine expression in aged mice in response to intracerebroventricular lipopolysaccharide. Neurobiology of Aging 29: 1744–1753.CrossRefPubMedPubMedCentral Huang, Y., C.J. Henry, R. Dantzer, et al. 2007. Exaggerated sickness behavior and brain proinflammatory cytokine expression in aged mice in response to intracerebroventricular lipopolysaccharide. Neurobiology of Aging 29: 1744–1753.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Sugino, K., K. Dohi, K. Yamada, et al. 1987. The role of lipid peroxidation in endotoxin-induced hepatic damage and the protective effect of antioxidants. Surgery 101: 746–752.PubMed Sugino, K., K. Dohi, K. Yamada, et al. 1987. The role of lipid peroxidation in endotoxin-induced hepatic damage and the protective effect of antioxidants. Surgery 101: 746–752.PubMed
17.
Zurück zum Zitat Guan, Z., and J. Fang. 2006. Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain Behavior and Immunity 20: 64–71.CrossRef Guan, Z., and J. Fang. 2006. Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain Behavior and Immunity 20: 64–71.CrossRef
18.
Zurück zum Zitat Singh, S., S. Jamwal, and P. Kumar. 2015. Piperine enhances the protective effect of curcumin against 3-NP induced neurotoxicity: possible neurotransmitters modulation mechanism. Neurochemical Research 40: 1758–1766.CrossRefPubMed Singh, S., S. Jamwal, and P. Kumar. 2015. Piperine enhances the protective effect of curcumin against 3-NP induced neurotoxicity: possible neurotransmitters modulation mechanism. Neurochemical Research 40: 1758–1766.CrossRefPubMed
19.
Zurück zum Zitat Noorafshan, A., and S. Ashkani-Esfahani. 2013. A review of therapeutic effects of curcumin. Current Pharmaceutical Design 19: 2032–2046.PubMed Noorafshan, A., and S. Ashkani-Esfahani. 2013. A review of therapeutic effects of curcumin. Current Pharmaceutical Design 19: 2032–2046.PubMed
20.
Zurück zum Zitat Srimal, R.C., and B.N. Dhawan. 1973. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. Journal of Pharmacy and Pharmacology 25: 447–452.CrossRefPubMed Srimal, R.C., and B.N. Dhawan. 1973. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. Journal of Pharmacy and Pharmacology 25: 447–452.CrossRefPubMed
21.
Zurück zum Zitat Kiso, Y., Y. Suzuki, N. Watanabe, et al. 1983. Antihepatotoxic principles of Curcuma longa rhizomes. Planta Medica 49: 185–187.CrossRefPubMed Kiso, Y., Y. Suzuki, N. Watanabe, et al. 1983. Antihepatotoxic principles of Curcuma longa rhizomes. Planta Medica 49: 185–187.CrossRefPubMed
22.
Zurück zum Zitat Ruby, A.J., G. Kuttan, K.D. Babu, et al. 1995. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Letter. 94: 79–83.CrossRef Ruby, A.J., G. Kuttan, K.D. Babu, et al. 1995. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Letter. 94: 79–83.CrossRef
23.
Zurück zum Zitat Venkatesan, N., D. Punithavathi, and V. Arumugam. 2000. Curcumin prevents adriamycin nephrotoxicity in rats. British Journal of Pharmacology 129: 231–234.CrossRefPubMedPubMedCentral Venkatesan, N., D. Punithavathi, and V. Arumugam. 2000. Curcumin prevents adriamycin nephrotoxicity in rats. British Journal of Pharmacology 129: 231–234.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Calabrese, V., T.E. Bates, C. Mancuso, et al. 2008. Curcumin and the cellular stress response in free radical-related diseases. Molecular Nutrition & Food Research 52: 1062–1073.CrossRef Calabrese, V., T.E. Bates, C. Mancuso, et al. 2008. Curcumin and the cellular stress response in free radical-related diseases. Molecular Nutrition & Food Research 52: 1062–1073.CrossRef
25.
Zurück zum Zitat De, R., P. Kundu, S. Swarnakar, et al. 2009. Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrobial Agents and Chemotherapy 53: 1592–1597.CrossRefPubMedPubMedCentral De, R., P. Kundu, S. Swarnakar, et al. 2009. Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrobial Agents and Chemotherapy 53: 1592–1597.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Nafisi, S., M. Adelzadeh, Z. Norouzi, et al. 2009. Curcumin binding to DNA and RNA. DNA Cell Biology 28: 201–208.CrossRefPubMed Nafisi, S., M. Adelzadeh, Z. Norouzi, et al. 2009. Curcumin binding to DNA and RNA. DNA Cell Biology 28: 201–208.CrossRefPubMed
27.
Zurück zum Zitat Xu, Y., D. Lin, S. Li, et al. 2009. Curcumin reverses impaired cognition and neuronal plasticity induced by chronic stress. Neuropharmacology 57: 463–71.CrossRefPubMed Xu, Y., D. Lin, S. Li, et al. 2009. Curcumin reverses impaired cognition and neuronal plasticity induced by chronic stress. Neuropharmacology 57: 463–71.CrossRefPubMed
28.
Zurück zum Zitat Mancuso, C., R. Siciliano, E. Barone, et al. 2012. Natural substances and Alzheimer’s disease: from preclinical studies to evidence based medicine. Biochimica et Biophysica Acta 1822: 616–624.CrossRefPubMed Mancuso, C., R. Siciliano, E. Barone, et al. 2012. Natural substances and Alzheimer’s disease: from preclinical studies to evidence based medicine. Biochimica et Biophysica Acta 1822: 616–624.CrossRefPubMed
29.
Zurück zum Zitat Kumar, A., S. Dogra, and A. Prakash. 2009. Protective effect of curcumin (Curcuma longa), against aluminium toxicity: Possible behavioral and biochemical alterations in rats. Behavioural Brain Research 205: 384–390.CrossRefPubMed Kumar, A., S. Dogra, and A. Prakash. 2009. Protective effect of curcumin (Curcuma longa), against aluminium toxicity: Possible behavioral and biochemical alterations in rats. Behavioural Brain Research 205: 384–390.CrossRefPubMed
30.
Zurück zum Zitat Pattanaik, S., D. Hota, and S. Prabhakar. 2009. Pharmacokinetic interaction of single dose of piperine with steady-state carbamazepine in epilepsy patients. Phytotherapy Research 23: 1281–1286.CrossRefPubMed Pattanaik, S., D. Hota, and S. Prabhakar. 2009. Pharmacokinetic interaction of single dose of piperine with steady-state carbamazepine in epilepsy patients. Phytotherapy Research 23: 1281–1286.CrossRefPubMed
31.
Zurück zum Zitat Rinwa, P., and A. Kumar. 2012. Piperine potentiates the protective effects of curcumin against chronic unpredictable stress-induced cognitive impairment and oxidative damage in mice. Brain Research 1488: 38–50.CrossRefPubMed Rinwa, P., and A. Kumar. 2012. Piperine potentiates the protective effects of curcumin against chronic unpredictable stress-induced cognitive impairment and oxidative damage in mice. Brain Research 1488: 38–50.CrossRefPubMed
32.
Zurück zum Zitat Espejo, E.F. 1997. Effects of weekly or daily exposure to the elevated plus-maze in male mice. Behavioral Brain Research 87: 233–238.CrossRef Espejo, E.F. 1997. Effects of weekly or daily exposure to the elevated plus-maze in male mice. Behavioral Brain Research 87: 233–238.CrossRef
33.
Zurück zum Zitat Bassi, G.S., A. Kanashiro, F.M. Santin, et al. 2012. Lipopolysaccharide-induced sickness behaviour evaluated in different models of anxiety and innate fear in rats. Basic & Clinical Pharmacology & Toxicology 110: 359–369.CrossRef Bassi, G.S., A. Kanashiro, F.M. Santin, et al. 2012. Lipopolysaccharide-induced sickness behaviour evaluated in different models of anxiety and innate fear in rats. Basic & Clinical Pharmacology & Toxicology 110: 359–369.CrossRef
34.
Zurück zum Zitat Lacosta, S., Z. Merali, and H. Anisman. 1999. Behavioral and neurochemical consequences of lipopolysaccharide in mice: anxiogenic-like effects. Brain Research 818: 291–303.CrossRefPubMed Lacosta, S., Z. Merali, and H. Anisman. 1999. Behavioral and neurochemical consequences of lipopolysaccharide in mice: anxiogenic-like effects. Brain Research 818: 291–303.CrossRefPubMed
35.
Zurück zum Zitat Steru, L., R. Chermat, B. Thierry, et al. 1985. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85: 367–370.CrossRef Steru, L., R. Chermat, B. Thierry, et al. 1985. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85: 367–370.CrossRef
36.
Zurück zum Zitat Porsolt, R., A. Bertin, and M. Jalfre. 1977. Behavioral despair in mice: a primary screening test for antidepressants. Archives Internationales de Pharmacodynamie et de Thérapie 229: 327–336.PubMed Porsolt, R., A. Bertin, and M. Jalfre. 1977. Behavioral despair in mice: a primary screening test for antidepressants. Archives Internationales de Pharmacodynamie et de Thérapie 229: 327–336.PubMed
37.
Zurück zum Zitat Jangra, A., A.K. Datusalia, S. Khandwe, et al. 2013. Amelioration of diabetes-induced neurobehavioral and neurochemical changes by melatonin and nicotinamide: implication of oxidative stress-PARP pathway. Pharmacology Biochemistry Behavior 114–115: 43–51.CrossRef Jangra, A., A.K. Datusalia, S. Khandwe, et al. 2013. Amelioration of diabetes-induced neurobehavioral and neurochemical changes by melatonin and nicotinamide: implication of oxidative stress-PARP pathway. Pharmacology Biochemistry Behavior 114–115: 43–51.CrossRef
38.
Zurück zum Zitat Beutler, E., O. Duron, and B.M. Kelly. 1963. Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine 61: 882–888.PubMed Beutler, E., O. Duron, and B.M. Kelly. 1963. Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine 61: 882–888.PubMed
39.
Zurück zum Zitat Lowry, O.H., N.J. Rosebrough, A.L. Farr, et al. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265–275.PubMed Lowry, O.H., N.J. Rosebrough, A.L. Farr, et al. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265–275.PubMed
40.
Zurück zum Zitat Green, L.C., D.A. Wagner, J. Glogowski, et al. 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical Biochemistry 126: 131–138.CrossRefPubMed Green, L.C., D.A. Wagner, J. Glogowski, et al. 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical Biochemistry 126: 131–138.CrossRefPubMed
41.
Zurück zum Zitat Maes, M. 1995. Evidence for an immune response in major depression: a review and hypothesis. Progress in Neuro-Psychopharmacology & Biological Psychiatry 19: 11–38.CrossRef Maes, M. 1995. Evidence for an immune response in major depression: a review and hypothesis. Progress in Neuro-Psychopharmacology & Biological Psychiatry 19: 11–38.CrossRef
42.
Zurück zum Zitat Dunbar, P., J. Hill, T. Neale, et al. 1992. Neopterin measurement provides evidence of altered cell-mediated immunity in patients with depression, but not with schizophrenia. Psychological Medicine 22: 1051–1057.CrossRefPubMed Dunbar, P., J. Hill, T. Neale, et al. 1992. Neopterin measurement provides evidence of altered cell-mediated immunity in patients with depression, but not with schizophrenia. Psychological Medicine 22: 1051–1057.CrossRefPubMed
43.
Zurück zum Zitat Hestad, K.A., S. Tønseth, C.D. Støen, et al. 2003. Raised plasma levels of tumor necrosis factor [alpha] in patients with depression: normalization during electroconvulsive therapy. Journal ECT 19: 183–188.CrossRef Hestad, K.A., S. Tønseth, C.D. Støen, et al. 2003. Raised plasma levels of tumor necrosis factor [alpha] in patients with depression: normalization during electroconvulsive therapy. Journal ECT 19: 183–188.CrossRef
44.
Zurück zum Zitat Moylan, S., M. Maes, N.R. Wray, et al. 2012. The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Molecular Psychiatry 18: 595–606.CrossRefPubMed Moylan, S., M. Maes, N.R. Wray, et al. 2012. The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Molecular Psychiatry 18: 595–606.CrossRefPubMed
45.
Zurück zum Zitat Swiergiel, A.H., and A.J. Dunn. 2007. Effects of interleukin-1β and lipopolysaccharide on behavior of mice in the elevated plus-maze and open field tests. Pharmacology Biochemistry Behavior 86: 651–659.CrossRef Swiergiel, A.H., and A.J. Dunn. 2007. Effects of interleukin-1β and lipopolysaccharide on behavior of mice in the elevated plus-maze and open field tests. Pharmacology Biochemistry Behavior 86: 651–659.CrossRef
46.
Zurück zum Zitat Biesmans, S., T.F. Meert, J.A. Bouwknecht, et al. 2013. Systemic immune activation leads to neuroinflammation and sickness behavior in mice. Mediators of inflammation 2013:2013:271359. Biesmans, S., T.F. Meert, J.A. Bouwknecht, et al. 2013. Systemic immune activation leads to neuroinflammation and sickness behavior in mice. Mediators of inflammation 2013:2013:271359.
47.
Zurück zum Zitat Sriram, C.S., A. Jangra, S.S. Gurjar, et al. 2016. Edaravone abrogates LPS-induced behavioral anomalies, neuroinflammation and PARP-1. Physiology Behavior. 154: 135–144.CrossRefPubMed Sriram, C.S., A. Jangra, S.S. Gurjar, et al. 2016. Edaravone abrogates LPS-induced behavioral anomalies, neuroinflammation and PARP-1. Physiology Behavior. 154: 135–144.CrossRefPubMed
48.
Zurück zum Zitat Sulakhiya, K., G.P. Keshavlal, B.B. Bezbaruah, et al. 2016. Lipopolysaccharide induced anxiety- and depressive-like behaviour in mice are prevented by chronic pre-treatment of esculetin. Neuroscience Letters 611: 106–111.CrossRefPubMed Sulakhiya, K., G.P. Keshavlal, B.B. Bezbaruah, et al. 2016. Lipopolysaccharide induced anxiety- and depressive-like behaviour in mice are prevented by chronic pre-treatment of esculetin. Neuroscience Letters 611: 106–111.CrossRefPubMed
49.
Zurück zum Zitat Lawson, M.A., J.M. Parrott, R.H. McCusker, et al. 2013. Intracerebroventricular administration of lipopolysaccharide induces indoleamine-2,3-dioxygenase-dependent depression-like behaviors. Journal of Neuroinflammation 10: 87.CrossRefPubMedPubMedCentral Lawson, M.A., J.M. Parrott, R.H. McCusker, et al. 2013. Intracerebroventricular administration of lipopolysaccharide induces indoleamine-2,3-dioxygenase-dependent depression-like behaviors. Journal of Neuroinflammation 10: 87.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Dantzer, R., J.C. O’Connor, G.G. Freund, et al. 2008. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Review of Neuroscience 9: 46–56.CrossRef Dantzer, R., J.C. O’Connor, G.G. Freund, et al. 2008. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Review of Neuroscience 9: 46–56.CrossRef
51.
Zurück zum Zitat O’Connor, J.C., M.A. Lawson, C. André, et al. 2009. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Molecular Psychiatry 14: 511–522.CrossRefPubMedPubMedCentral O’Connor, J.C., M.A. Lawson, C. André, et al. 2009. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Molecular Psychiatry 14: 511–522.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Walker, A.K., D.P. Budac, S. Bisulco, et al. 2013. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Neuropsychopharmacology 38: 1609–1616.CrossRefPubMedPubMedCentral Walker, A.K., D.P. Budac, S. Bisulco, et al. 2013. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Neuropsychopharmacology 38: 1609–1616.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Berkenbosch, F., J. van Oers, A. del Rey, et al. 1987. Corticotropin-releasing factor producing neurons in the rat activated by interleukin-1. Science 238: 524–526.CrossRefPubMed Berkenbosch, F., J. van Oers, A. del Rey, et al. 1987. Corticotropin-releasing factor producing neurons in the rat activated by interleukin-1. Science 238: 524–526.CrossRefPubMed
54.
Zurück zum Zitat Reichenberg, A., T. Kraus, M. Haack, et al. 2002. Endotoxin-induced changes in food consumption in healthy volunteers are associated with TNF-alpha and IL-6 secretion. Psychoneuroendocrinology 27: 945–956.CrossRefPubMed Reichenberg, A., T. Kraus, M. Haack, et al. 2002. Endotoxin-induced changes in food consumption in healthy volunteers are associated with TNF-alpha and IL-6 secretion. Psychoneuroendocrinology 27: 945–956.CrossRefPubMed
55.
Zurück zum Zitat Sulakhiya, K., P. Kumar, A. Jangra, et al. 2014. Honokiol abrogates lipopolysaccharide-induced depressive like behavior by impeding neuroinflammation and oxido-nitrosative stress in mice. European Journal of Pharmacolology 744: 124–131.CrossRef Sulakhiya, K., P. Kumar, A. Jangra, et al. 2014. Honokiol abrogates lipopolysaccharide-induced depressive like behavior by impeding neuroinflammation and oxido-nitrosative stress in mice. European Journal of Pharmacolology 744: 124–131.CrossRef
56.
Zurück zum Zitat Jiang, H., Z. Wang, Y. Wang, et al. 2013. Antidepressant-like effects of curcumin in chronic mild stress of rats: involvement of its anti-inflammatory action. Progress in Neuro-Psychopharmacology & Biological Psychiatry 47: 33–39.CrossRef Jiang, H., Z. Wang, Y. Wang, et al. 2013. Antidepressant-like effects of curcumin in chronic mild stress of rats: involvement of its anti-inflammatory action. Progress in Neuro-Psychopharmacology & Biological Psychiatry 47: 33–39.CrossRef
57.
Zurück zum Zitat Rinwa, P., A. Kumar, and S. Garg. 2013. Suppression of neuroinflammatory and apoptotic signaling cascade by curcumin alone and in combination with piperine in rat model of olfactory bulbectomy induced depression. PLoS One 8, e61052.CrossRefPubMedPubMedCentral Rinwa, P., A. Kumar, and S. Garg. 2013. Suppression of neuroinflammatory and apoptotic signaling cascade by curcumin alone and in combination with piperine in rat model of olfactory bulbectomy induced depression. PLoS One 8, e61052.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Sharma, O.P. 1976. Antioxidant activity of curcumin and related compounds. Biochemical Pharmacology 25: 1811–1812.CrossRefPubMed Sharma, O.P. 1976. Antioxidant activity of curcumin and related compounds. Biochemical Pharmacology 25: 1811–1812.CrossRefPubMed
59.
Zurück zum Zitat Sidhu, G.S., A.K. Singh, D. Thaloor, et al. 1998. Enhancement of wound healing by curcumin in animals. Wound Repair and Regeneration 6: 167–177.CrossRefPubMed Sidhu, G.S., A.K. Singh, D. Thaloor, et al. 1998. Enhancement of wound healing by curcumin in animals. Wound Repair and Regeneration 6: 167–177.CrossRefPubMed
60.
Zurück zum Zitat Negi, P.S., G.K. Jayaprakasha, R. Jagan Mohan, et al. 1999. Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture. Journal of Agricultural and Food Chemistry 47: 4297–4300.CrossRefPubMed Negi, P.S., G.K. Jayaprakasha, R. Jagan Mohan, et al. 1999. Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture. Journal of Agricultural and Food Chemistry 47: 4297–4300.CrossRefPubMed
61.
Zurück zum Zitat Mukerjee, A., and J.K. Vishwanatha. 2009. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Research 29: 3867–3875.PubMed Mukerjee, A., and J.K. Vishwanatha. 2009. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Research 29: 3867–3875.PubMed
62.
Zurück zum Zitat Shaikh, J., D.D. Ankola, V. Beniwal, et al. 2009. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. European Journal Pharmaceutical Science 37: 223–230.CrossRef Shaikh, J., D.D. Ankola, V. Beniwal, et al. 2009. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. European Journal Pharmaceutical Science 37: 223–230.CrossRef
63.
Zurück zum Zitat Takahashi, M., S. Uechi, K. Takara, et al. 2009. Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. Journal of Agricultural and Food Chemistry 57: 9141–9146.CrossRefPubMed Takahashi, M., S. Uechi, K. Takara, et al. 2009. Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. Journal of Agricultural and Food Chemistry 57: 9141–9146.CrossRefPubMed
64.
Zurück zum Zitat Klippstein, R., J.T. Wang, R.I. El-Gogary, et al. 2015. Passively targeted curcumin-loaded PEGylated PLGA nanocapsules for colon cancer therapy in vivo. Small 11: 4704–4722.CrossRefPubMedPubMedCentral Klippstein, R., J.T. Wang, R.I. El-Gogary, et al. 2015. Passively targeted curcumin-loaded PEGylated PLGA nanocapsules for colon cancer therapy in vivo. Small 11: 4704–4722.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Anand, P., A.B. Kunnumakkara, R.A. Newman, et al. 2007. Bioavailability of curcumin: problems and promises. Molecular Pharmacology 4: 807–818.CrossRef Anand, P., A.B. Kunnumakkara, R.A. Newman, et al. 2007. Bioavailability of curcumin: problems and promises. Molecular Pharmacology 4: 807–818.CrossRef
66.
Zurück zum Zitat Kesarwani, K., and R. Gupta. 2013. Bioavailability enhancers of herbal origin: an overview. Asian Pacific Journal of Tropical Biomedicine 3: 253–266.CrossRefPubMedPubMedCentral Kesarwani, K., and R. Gupta. 2013. Bioavailability enhancers of herbal origin: an overview. Asian Pacific Journal of Tropical Biomedicine 3: 253–266.CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Rinwa, P., and A. Kumar. 2013. Quercetin along with piperine prevents cognitive dysfunction, oxidative stress and neuro-inflammation associated with mouse model of chronic unpredictable stress. Archives of Pharmacal Research 2013: 2013. Rinwa, P., and A. Kumar. 2013. Quercetin along with piperine prevents cognitive dysfunction, oxidative stress and neuro-inflammation associated with mouse model of chronic unpredictable stress. Archives of Pharmacal Research 2013: 2013.
68.
Zurück zum Zitat Atal, C.K., R.K. Dubey, and J.J. Singh. 1985. Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism. Journal of Pharmacology and Experimental Therapeutics 232: 258–262.PubMed Atal, C.K., R.K. Dubey, and J.J. Singh. 1985. Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism. Journal of Pharmacology and Experimental Therapeutics 232: 258–262.PubMed
69.
Zurück zum Zitat Prasad, S., A.K. Tyagi, and B.B. Aggarwal. 2014. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Research and Treatment 46: 2–18.CrossRefPubMedPubMedCentral Prasad, S., A.K. Tyagi, and B.B. Aggarwal. 2014. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Research and Treatment 46: 2–18.CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat Clementi, E., G.C. Brown, M. Feelisch, et al. 1998. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proceedings of the National Academy of Sciences 95: 7631–7636.CrossRef Clementi, E., G.C. Brown, M. Feelisch, et al. 1998. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proceedings of the National Academy of Sciences 95: 7631–7636.CrossRef
71.
Zurück zum Zitat Jezek, P., and L. Hlavata. 2005. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. International Journal of Biochemistry & Cell Biology 37: 2478–2503.CrossRef Jezek, P., and L. Hlavata. 2005. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. International Journal of Biochemistry & Cell Biology 37: 2478–2503.CrossRef
72.
Zurück zum Zitat Lijuan, B., X. Zhang, L. Xiaohong, et al. 2015. Somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia. Molecular Medicine Report 12: 1002–1008. Lijuan, B., X. Zhang, L. Xiaohong, et al. 2015. Somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia. Molecular Medicine Report 12: 1002–1008.
73.
Zurück zum Zitat Miller, A.H., V. Maletic, and C.L. Raison. 2009. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biological psychiatry 65: 732–741.CrossRefPubMedPubMedCentral Miller, A.H., V. Maletic, and C.L. Raison. 2009. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biological psychiatry 65: 732–741.CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Betancur, C., J. Borrell, and C. Guaza. 1995. Cytokine regulation of corticosteroid receptors in the rat hippocampus: effects of interleukin-1, interleukin-6, tumor necrosis factor and Lipopolysaccharide. Neuroendocrinology 62: 47–54.CrossRefPubMed Betancur, C., J. Borrell, and C. Guaza. 1995. Cytokine regulation of corticosteroid receptors in the rat hippocampus: effects of interleukin-1, interleukin-6, tumor necrosis factor and Lipopolysaccharide. Neuroendocrinology 62: 47–54.CrossRefPubMed
75.
Zurück zum Zitat Reincke, M., B. Allolio, G. Würth, et al. 1993. The hypothalamic-pituitary-adrenal axis in critical illness: response to dexamethasone and corticotropin-releasing hormone. Journal of Clinical Endocrinology & Metabolism 77: 151–156. Reincke, M., B. Allolio, G. Würth, et al. 1993. The hypothalamic-pituitary-adrenal axis in critical illness: response to dexamethasone and corticotropin-releasing hormone. Journal of Clinical Endocrinology & Metabolism 77: 151–156.
76.
Zurück zum Zitat Beishuizen, A., and L.G. Thijs. 2003. Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. Journal of Endotoxin Research 9: 3–24.PubMed Beishuizen, A., and L.G. Thijs. 2003. Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. Journal of Endotoxin Research 9: 3–24.PubMed
77.
Zurück zum Zitat Erkut, Z.A., E. Endert, I. Huitinga, et al. 2002. Cortisol is increased in postmortem cerebrospinal fluid of multiple sclerosis patients: relationship with cytokines and sepsis. Multiple Sclerosis 8: 229–236.CrossRefPubMed Erkut, Z.A., E. Endert, I. Huitinga, et al. 2002. Cortisol is increased in postmortem cerebrospinal fluid of multiple sclerosis patients: relationship with cytokines and sepsis. Multiple Sclerosis 8: 229–236.CrossRefPubMed
78.
Zurück zum Zitat Cubała, W.J., and J. Landowski. 2005. Serotoninergic system and limbic-hypothalamic-pituitary-adrenal axis (LHPA axis) in depression. Psychiatria polska 40: 415–430. Cubała, W.J., and J. Landowski. 2005. Serotoninergic system and limbic-hypothalamic-pituitary-adrenal axis (LHPA axis) in depression. Psychiatria polska 40: 415–430.
79.
Zurück zum Zitat Sen, S., R. Duman, and G. Sanacora. 2008. Serum BDNF, depression and anti-depressant medications: meta-analyses and implications. Biological Psychiatry 64: 527–532.CrossRefPubMedPubMedCentral Sen, S., R. Duman, and G. Sanacora. 2008. Serum BDNF, depression and anti-depressant medications: meta-analyses and implications. Biological Psychiatry 64: 527–532.CrossRefPubMedPubMedCentral
80.
Zurück zum Zitat Basterzi, A.D., K. Yazici, E. Aslan, et al. 2009. Effects of fluoxetine and venlafaxine on serum brain derived neurotrophic factor levels in depressed patients. Progress in Neuro-Psychopharmacology & Biological Psychiatry 33: 281–285.CrossRef Basterzi, A.D., K. Yazici, E. Aslan, et al. 2009. Effects of fluoxetine and venlafaxine on serum brain derived neurotrophic factor levels in depressed patients. Progress in Neuro-Psychopharmacology & Biological Psychiatry 33: 281–285.CrossRef
81.
Zurück zum Zitat Varambally, S., G.H. Naveen, M.G. Rao, et al. 2013. Low serum brain derived neurotrophic factor in non-suicidal out-patients with depression: relation to depression scores. Indian Journal of Psychiatry 55(Suppl 3): S397–S399.CrossRefPubMedPubMedCentral Varambally, S., G.H. Naveen, M.G. Rao, et al. 2013. Low serum brain derived neurotrophic factor in non-suicidal out-patients with depression: relation to depression scores. Indian Journal of Psychiatry 55(Suppl 3): S397–S399.CrossRefPubMedPubMedCentral
82.
Zurück zum Zitat Xu, Y., B.S. Ku, L. Tie, et al. 2006. Curcumin reverses the effects of chronic stress on behavior, the HPA axis. BDNF expression and phosphorylation of CREB. Brain Research. 1122: 56–64.PubMed Xu, Y., B.S. Ku, L. Tie, et al. 2006. Curcumin reverses the effects of chronic stress on behavior, the HPA axis. BDNF expression and phosphorylation of CREB. Brain Research. 1122: 56–64.PubMed
83.
Zurück zum Zitat Li, S., C. Wang, M. Wang, et al. 2007. Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sciences 15: 1373–1381.CrossRef Li, S., C. Wang, M. Wang, et al. 2007. Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sciences 15: 1373–1381.CrossRef
84.
Zurück zum Zitat Jacobsen, J.P., and A. Mørk. 2006. Chronic corticosterone decreases brain-derived neurotrophic factor (BDNF) mRNA and protein in the hippocampus, but not in the frontal cortex of the rat. Brain Research 1110: 221–225.CrossRefPubMed Jacobsen, J.P., and A. Mørk. 2006. Chronic corticosterone decreases brain-derived neurotrophic factor (BDNF) mRNA and protein in the hippocampus, but not in the frontal cortex of the rat. Brain Research 1110: 221–225.CrossRefPubMed
85.
Zurück zum Zitat Huang, Z., X.M. Zhong, Z.Y. Li, et al. 2011. Curcumin reverses corticosterone-induced depressive-like behavior and decrease in brain BDNF levels in rats. Neuroscience Letters 493: 145–148.CrossRefPubMed Huang, Z., X.M. Zhong, Z.Y. Li, et al. 2011. Curcumin reverses corticosterone-induced depressive-like behavior and decrease in brain BDNF levels in rats. Neuroscience Letters 493: 145–148.CrossRefPubMed
86.
Zurück zum Zitat Jangra, A., S. Dwivedi, C.S. Sriram, et al. 2015. Honokiol abrogates chronic restraint stress-induced cognitive impairment and depressive-like behaviour by blocking endoplasmic reticulum stress in the hippocampus of mice. European Journal of Pharmacology 770: 25–32.CrossRefPubMed Jangra, A., S. Dwivedi, C.S. Sriram, et al. 2015. Honokiol abrogates chronic restraint stress-induced cognitive impairment and depressive-like behaviour by blocking endoplasmic reticulum stress in the hippocampus of mice. European Journal of Pharmacology 770: 25–32.CrossRefPubMed
87.
Zurück zum Zitat Jangra, A., C.S. Sriram, S. Dwivedi, et al. 2016. Sodium Phenylbutyrate and Edaravone Abrogate Chronic Restraint Stress-Induced Behavioral Deficits: Implication of Oxido-Nitrosative, Endoplasmic Reticulum Stress Cascade, and Neuroinflammation. Cellular and Molecular Neurobiology. doi:10.1007/s10571-016-0344-5. Jangra, A., C.S. Sriram, S. Dwivedi, et al. 2016. Sodium Phenylbutyrate and Edaravone Abrogate Chronic Restraint Stress-Induced Behavioral Deficits: Implication of Oxido-Nitrosative, Endoplasmic Reticulum Stress Cascade, and Neuroinflammation. Cellular and Molecular Neurobiology. doi:10.​1007/​s10571-016-0344-5.
Metadaten
Titel
Piperine Augments the Protective Effect of Curcumin Against Lipopolysaccharide-Induced Neurobehavioral and Neurochemical Deficits in Mice
verfasst von
Ashok Jangra
Mohit Kwatra
Tavleen Singh
Rajat Pant
Pawan Kushwah
Yogita Sharma
Babita Saroha
Ashok Kumar Datusalia
Babul Kumar Bezbaruah
Publikationsdatum
12.03.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2016
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0332-4

Weitere Artikel der Ausgabe 3/2016

Inflammation 3/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.