Skip to main content
Erschienen in: Inflammation 5/2014

01.10.2014

Platelet Factor 4 Inhibits IL-17/Stat3 Pathway via Upregulation of SOCS3 Expression in Melanoma

verfasst von: Shanshan Fang, Bo Liu, Qiushi Sun, Juan Zhao, Huixiong Qi, Quan Li

Erschienen in: Inflammation | Ausgabe 5/2014

Einloggen, um Zugang zu erhalten

Abstract

Platelet factor 4 (PF4) was the first discovered CXC chemokine and is found in platelet granules at very high concentration. Now, it is becoming increasingly evident that PF4 actively participates in inflammation and immune response. Recent paper demonstrated that PF4 limits the development and response of the Th17 cells and assisted in regulatory T cell development in transplantation. But, the immunoregulatory role of PF4 in tumor has little known and needs to be further investigated. In our current study, wild-type mice are inoculated with melanoma cell line B16-F10 (1 × 106/mouse) and treated with PF4. PF4 inhibits B16 tumor growth and decreases γδ cell infiltration. The expression of interleukin (IL)-17, IL-6, and p-signal transducer and activator of transcription-3 (Stat3) was markedly decreased with treatment of PF4 compared with control in vivo and in vitro. And, the suppressed tumor growth induced by PF4 is abolished by additional treatment of recombinant mouse IL (rmIL)-17. PF4 also induces suppressor of cytokine signaling 3 (SOCS3) upregulations, and PF4 fails to suppress expression of p-Stat3, IL-17, and IL-6 in cells transfected with SOCS3 short interfering RNA (siRNA). In conclusion, PF4 inhibits IL-17/Stat3 pathway via upregulation of SOCS3 expression and may contribute to suppressing tumor growth in murine models of melanoma.
Literatur
1.
Zurück zum Zitat Lambert, M.P., L. Rauova, M. Bailey, M.C. Sola-Visner, M.A. Kowalska, and M. Poncz. 2007. Platelet factor 4 is a negative autocrine in vivo regulator of megakaryopoiesis: Clinical and therapeutic implications. Blood 110: 1153–1160.PubMedCrossRefPubMedCentral Lambert, M.P., L. Rauova, M. Bailey, M.C. Sola-Visner, M.A. Kowalska, and M. Poncz. 2007. Platelet factor 4 is a negative autocrine in vivo regulator of megakaryopoiesis: Clinical and therapeutic implications. Blood 110: 1153–1160.PubMedCrossRefPubMedCentral
2.
Zurück zum Zitat Arepally, G.M., S. Kamei, K.S. Park, K. Kamei, Z.Q. Li, W. Liu, D.L. Siegel, W. Kisiel, D.B. Cines, and M. Poncz. 2000. Characterization of a murine monoclonal antibody that mimics heparin-induced thrombocytopenia antibodies. Blood 95: 1533–1540.PubMed Arepally, G.M., S. Kamei, K.S. Park, K. Kamei, Z.Q. Li, W. Liu, D.L. Siegel, W. Kisiel, D.B. Cines, and M. Poncz. 2000. Characterization of a murine monoclonal antibody that mimics heparin-induced thrombocytopenia antibodies. Blood 95: 1533–1540.PubMed
3.
Zurück zum Zitat Ziporen, L., Z.Q. Li, K.S. Park, P. Sabnekar, W.Y. Liu, G. Arepally, Y. Shoenfeld, T. Kieber-Emmons, D.B. Cines, and M. Poncz. 1998. Defining an antigenic epitope on platelet factor 4 associated with heparin-induced thrombocytopenia. Blood 92: 3250–3259.PubMed Ziporen, L., Z.Q. Li, K.S. Park, P. Sabnekar, W.Y. Liu, G. Arepally, Y. Shoenfeld, T. Kieber-Emmons, D.B. Cines, and M. Poncz. 1998. Defining an antigenic epitope on platelet factor 4 associated with heparin-induced thrombocytopenia. Blood 92: 3250–3259.PubMed
4.
Zurück zum Zitat Eslin, D.E., C. Zhang, K.J. Samuels, L. Rauova, L. Zhai, S. Niewiarowski, D.B. Cines, M. Poncz, and M.A. Kowalska. 2004. Transgenic mice studies demonstrate a role for platelet factor 4 in thrombosis: Dissociation between anticoagulant and antithrombotic effect of heparin. Blood 104: 3173–3180.PubMedCrossRef Eslin, D.E., C. Zhang, K.J. Samuels, L. Rauova, L. Zhai, S. Niewiarowski, D.B. Cines, M. Poncz, and M.A. Kowalska. 2004. Transgenic mice studies demonstrate a role for platelet factor 4 in thrombosis: Dissociation between anticoagulant and antithrombotic effect of heparin. Blood 104: 3173–3180.PubMedCrossRef
5.
Zurück zum Zitat Aziz, K.A., J.C. Cawley, and M. Zuzel. 1995. Platelets prime PMN via released PF4: Mechanism of priming and synergy with GM-CSF. British Journal of Haematology 91: 846–853.PubMedCrossRef Aziz, K.A., J.C. Cawley, and M. Zuzel. 1995. Platelets prime PMN via released PF4: Mechanism of priming and synergy with GM-CSF. British Journal of Haematology 91: 846–853.PubMedCrossRef
6.
Zurück zum Zitat Engstad, C.S., K. Lia, O. Rekdal, J.O. Olsen, and B. Osterud. 1995. A novel biological effect of platelet factor 4 (PF4): Enhancement of LPS-induced tissue factor activity in monocytes. Journal of Leukocyte Biology 58: 575–581.PubMed Engstad, C.S., K. Lia, O. Rekdal, J.O. Olsen, and B. Osterud. 1995. A novel biological effect of platelet factor 4 (PF4): Enhancement of LPS-induced tissue factor activity in monocytes. Journal of Leukocyte Biology 58: 575–581.PubMed
7.
Zurück zum Zitat Sharpe, R.J., H.R. Byers, C.F. Scott, S.I. Bauer, and T.E. Maione. 1990. Growth inhibition of murine melanoma and human colon carcinoma by recombinant human platelet factor 4. Journal of the National Cancer Institute 82: 848–853.PubMedCrossRef Sharpe, R.J., H.R. Byers, C.F. Scott, S.I. Bauer, and T.E. Maione. 1990. Growth inhibition of murine melanoma and human colon carcinoma by recombinant human platelet factor 4. Journal of the National Cancer Institute 82: 848–853.PubMedCrossRef
8.
Zurück zum Zitat Maione, T.E., G.S. Gray, A.J. Hunt, and R.J. Sharpe. 1991. Inhibition of tumor growth in mice by an analogue of platelet factor 4 that lacks affinity for heparin and retains potent angiostatic activity. Cancer Research 51: 2077–2083.PubMed Maione, T.E., G.S. Gray, A.J. Hunt, and R.J. Sharpe. 1991. Inhibition of tumor growth in mice by an analogue of platelet factor 4 that lacks affinity for heparin and retains potent angiostatic activity. Cancer Research 51: 2077–2083.PubMed
9.
Zurück zum Zitat Kolber, D.L., T.L. Knisely, and T.E. Maione. 1995. Inhibition of development of murine melanoma lung metastases by systemic administration of recombinant platelet factor 4. Journal of the National Cancer Institute 87: 304–309.PubMedCrossRef Kolber, D.L., T.L. Knisely, and T.E. Maione. 1995. Inhibition of development of murine melanoma lung metastases by systemic administration of recombinant platelet factor 4. Journal of the National Cancer Institute 87: 304–309.PubMedCrossRef
10.
Zurück zum Zitat Srivastava, K., I.A. Cockburn, A. Swaim, L.E. Thompson, A. Tripathi, C.A. Fletcher, E.M. Shirk, H. Sun, M.A. Kowalska, K. Fox-Talbot, et al. 2008. Platelet factor 4 mediates inflammation in experimental cerebral malaria. Cell Host & Microbe 4: 179–187.CrossRef Srivastava, K., I.A. Cockburn, A. Swaim, L.E. Thompson, A. Tripathi, C.A. Fletcher, E.M. Shirk, H. Sun, M.A. Kowalska, K. Fox-Talbot, et al. 2008. Platelet factor 4 mediates inflammation in experimental cerebral malaria. Cell Host & Microbe 4: 179–187.CrossRef
11.
Zurück zum Zitat Liu, C.Y., M. Battaglia, S.H. Lee, Q.H. Sun, R.H. Aster, and G.P. Visentin. 2005. Platelet factor 4 differentially modulates CD4 + CD25+ (regulatory) versus CD4 + CD25- (nonregulatory) T cells. Journal of Immunology 174: 2680–2686.CrossRef Liu, C.Y., M. Battaglia, S.H. Lee, Q.H. Sun, R.H. Aster, and G.P. Visentin. 2005. Platelet factor 4 differentially modulates CD4 + CD25+ (regulatory) versus CD4 + CD25- (nonregulatory) T cells. Journal of Immunology 174: 2680–2686.CrossRef
12.
Zurück zum Zitat Shi, G., D.J. Field, K.A. Ko, S. Ture, K. Srivastava, S. Levy, M.A. Kowalska, M. Poncz, D.J. Fowell, and C.N. Morrell. 2014. Platelet factor 4 limits Th17 differentiation and cardiac allograft rejection. Journal of Clinical Investigation 124: 543–552.PubMedCrossRefPubMedCentral Shi, G., D.J. Field, K.A. Ko, S. Ture, K. Srivastava, S. Levy, M.A. Kowalska, M. Poncz, D.J. Fowell, and C.N. Morrell. 2014. Platelet factor 4 limits Th17 differentiation and cardiac allograft rejection. Journal of Clinical Investigation 124: 543–552.PubMedCrossRefPubMedCentral
13.
Zurück zum Zitat Kim, H.K., H. Zhang, H. Li, T.T. Wu, S. Swisher, D. He, L. Wu, J. Xu, C.A. Elmets, M. Athar, et al. 2008. Slit2 inhibits growth and metastasis of fibrosarcoma and squamous cell carcinoma. Neoplasia 10: 1411–1420.PubMedCrossRefPubMedCentral Kim, H.K., H. Zhang, H. Li, T.T. Wu, S. Swisher, D. He, L. Wu, J. Xu, C.A. Elmets, M. Athar, et al. 2008. Slit2 inhibits growth and metastasis of fibrosarcoma and squamous cell carcinoma. Neoplasia 10: 1411–1420.PubMedCrossRefPubMedCentral
14.
Zurück zum Zitat Liang, P., S.H. Cheng, C.K. Cheng, K.M. Lau, S.Y. Lin, E.Y. Chow, N.P. Chan, R.K. Ip, R.S. Wong, and M.H. Ng. 2013. Platelet factor 4 induces cell apoptosis by inhibition of STAT3 via up-regulation of SOCS3 expression in multiple myeloma. Haematologica 98: 288–295.PubMedCrossRefPubMedCentral Liang, P., S.H. Cheng, C.K. Cheng, K.M. Lau, S.Y. Lin, E.Y. Chow, N.P. Chan, R.K. Ip, R.S. Wong, and M.H. Ng. 2013. Platelet factor 4 induces cell apoptosis by inhibition of STAT3 via up-regulation of SOCS3 expression in multiple myeloma. Haematologica 98: 288–295.PubMedCrossRefPubMedCentral
15.
Zurück zum Zitat He, D., H. Li, N. Yusuf, C.A. Elmets, J. Li, J.D. Mountz, and H. Xu. 2010. IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells. Journal of Immunology 184: 2281–2288.CrossRef He, D., H. Li, N. Yusuf, C.A. Elmets, J. Li, J.D. Mountz, and H. Xu. 2010. IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells. Journal of Immunology 184: 2281–2288.CrossRef
16.
Zurück zum Zitat Tang, Q., J. Li, H. Zhu, P. Li, Z. Zou, and Y. Xiao. 2013. Hmgb1-IL-23-IL-17-IL-6-Stat3 axis promotes tumor growth in murine models of melanoma. Mediators of Inflammation 2013: 713859.PubMedPubMedCentral Tang, Q., J. Li, H. Zhu, P. Li, Z. Zou, and Y. Xiao. 2013. Hmgb1-IL-23-IL-17-IL-6-Stat3 axis promotes tumor growth in murine models of melanoma. Mediators of Inflammation 2013: 713859.PubMedPubMedCentral
17.
Zurück zum Zitat Wormald, S., and D.J. Hilton. 2004. Inhibitors of cytokine signal transduction. Journal of Biological Chemistry 279: 821–824.PubMedCrossRef Wormald, S., and D.J. Hilton. 2004. Inhibitors of cytokine signal transduction. Journal of Biological Chemistry 279: 821–824.PubMedCrossRef
18.
Zurück zum Zitat Pandey, M.K., B. Sung, and B.B. Aggarwal. 2010. Betulinic acid suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase SHP-1 in human multiple myeloma cells. International Journal of Cancer 127: 282–292. Pandey, M.K., B. Sung, and B.B. Aggarwal. 2010. Betulinic acid suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase SHP-1 in human multiple myeloma cells. International Journal of Cancer 127: 282–292.
20.
Zurück zum Zitat He, D., L. Wu, H.K. Kim, H. Li, C.A. Elmets, and H. Xu. 2006. CD8+ IL-17-producing T cells are important in effector functions for the elicitation of contact hypersensitivity responses. Journal of Immunology 177: 6852–6858.CrossRef He, D., L. Wu, H.K. Kim, H. Li, C.A. Elmets, and H. Xu. 2006. CD8+ IL-17-producing T cells are important in effector functions for the elicitation of contact hypersensitivity responses. Journal of Immunology 177: 6852–6858.CrossRef
21.
Zurück zum Zitat Kolls, J.K., and A. Linden. 2004. Interleukin-17 family members and inflammation. Immunity 21: 467–476.PubMedCrossRef Kolls, J.K., and A. Linden. 2004. Interleukin-17 family members and inflammation. Immunity 21: 467–476.PubMedCrossRef
22.
Zurück zum Zitat Martin-Orozco, N., P. Muranski, Y. Chung, X.O. Yang, T. Yamazaki, S. Lu, P. Hwu, N.P. Restifo, W.W. Overwijk, and C. Dong. 2009. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31: 787–798.PubMedCrossRefPubMedCentral Martin-Orozco, N., P. Muranski, Y. Chung, X.O. Yang, T. Yamazaki, S. Lu, P. Hwu, N.P. Restifo, W.W. Overwijk, and C. Dong. 2009. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31: 787–798.PubMedCrossRefPubMedCentral
23.
Zurück zum Zitat Wakita, D., K. Sumida, Y. Iwakura, H. Nishikawa, T. Ohkuri, K. Chamoto, H. Kitamura, and T. Nishimura. 2010. Tumor-infiltrating IL-17-producing gammadelta T cells support the progression of tumor by promoting angiogenesis. European Journal of Immunology 40: 1927–1937.PubMedCrossRef Wakita, D., K. Sumida, Y. Iwakura, H. Nishikawa, T. Ohkuri, K. Chamoto, H. Kitamura, and T. Nishimura. 2010. Tumor-infiltrating IL-17-producing gammadelta T cells support the progression of tumor by promoting angiogenesis. European Journal of Immunology 40: 1927–1937.PubMedCrossRef
24.
25.
Zurück zum Zitat Catlett-Falcone, R., T.H. Landowski, M.M. Oshiro, J. Turkson, A. Levitzki, R. Savino, G. Ciliberto, L. Moscinski, J.L. Fernandez-Luna, G. Nunez, et al. 1999. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10: 105–115.PubMedCrossRef Catlett-Falcone, R., T.H. Landowski, M.M. Oshiro, J. Turkson, A. Levitzki, R. Savino, G. Ciliberto, L. Moscinski, J.L. Fernandez-Luna, G. Nunez, et al. 1999. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10: 105–115.PubMedCrossRef
26.
Zurück zum Zitat Rebouissou, S., M. Amessou, G. Couchy, K. Poussin, S. Imbeaud, C. Pilati, T. Izard, C. Balabaud, P. Bioulac-Sage, and J. Zucman-Rossi. 2009. Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature 457: 200–204.PubMedCrossRefPubMedCentral Rebouissou, S., M. Amessou, G. Couchy, K. Poussin, S. Imbeaud, C. Pilati, T. Izard, C. Balabaud, P. Bioulac-Sage, and J. Zucman-Rossi. 2009. Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature 457: 200–204.PubMedCrossRefPubMedCentral
27.
Zurück zum Zitat Yu, H., and R. Jove. 2004. The STATs of cancer—new molecular targets come of age. Nature Reviews Cancer 4: 97–105.PubMedCrossRef Yu, H., and R. Jove. 2004. The STATs of cancer—new molecular targets come of age. Nature Reviews Cancer 4: 97–105.PubMedCrossRef
28.
Zurück zum Zitat Wang, L., T. Yi, M. Kortylewski, D.M. Pardoll, D. Zeng, and H. Yu. 2009. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. Journal of Experimental Medicine 206: 1457–1464.PubMedCrossRefPubMedCentral Wang, L., T. Yi, M. Kortylewski, D.M. Pardoll, D. Zeng, and H. Yu. 2009. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. Journal of Experimental Medicine 206: 1457–1464.PubMedCrossRefPubMedCentral
29.
Zurück zum Zitat Endo, T.A., M. Masuhara, M. Yokouchi, R. Suzuki, H. Sakamoto, K. Mitsui, A. Matsumoto, S. Tanimura, M. Ohtsubo, H. Misawa, et al. 1997. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387: 921–924.PubMedCrossRef Endo, T.A., M. Masuhara, M. Yokouchi, R. Suzuki, H. Sakamoto, K. Mitsui, A. Matsumoto, S. Tanimura, M. Ohtsubo, H. Misawa, et al. 1997. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387: 921–924.PubMedCrossRef
30.
Zurück zum Zitat Yoshimura, A., T. Naka, and M. Kubo. 2007. SOCS proteins, cytokine signalling and immune regulation. Nature Reviews Immunology 7: 454–465.PubMedCrossRef Yoshimura, A., T. Naka, and M. Kubo. 2007. SOCS proteins, cytokine signalling and immune regulation. Nature Reviews Immunology 7: 454–465.PubMedCrossRef
Metadaten
Titel
Platelet Factor 4 Inhibits IL-17/Stat3 Pathway via Upregulation of SOCS3 Expression in Melanoma
verfasst von
Shanshan Fang
Bo Liu
Qiushi Sun
Juan Zhao
Huixiong Qi
Quan Li
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2014
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-9903-4

Weitere Artikel der Ausgabe 5/2014

Inflammation 5/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.