Skip to main content
Erschienen in: Journal of Medical Systems 4/2011

01.08.2011 | Original Paper

Polarization Sensitive Subcutaneous and Muscular Imaging Based on Common Path Optical Coherence Tomography Using Near Infrared Source

verfasst von: Jae-Ho Han, Jin U. Kang, Chul Gyu Song

Erschienen in: Journal of Medical Systems | Ausgabe 4/2011

Einloggen, um Zugang zu erhalten

Abstract

In this paper, we describe a polarization sensitive (PS) subcutaneous and muscular imaging system based on common path optical coherence tomography (CP-OCT) using a near infrared source. The axial and lateral resolutions of the PS-OCT system are 9 and 6 μm, respectively. The main goal of this work is to build a high-resolution and minimally invasive optical imager for examining various kinds of cutaneous substructures with intrinsic or form birefringence. The internal structural information is extracted by the real-time signal analysis (Fourier Transform) of the modulated spectral intensity depending on the beam and tissue birefringence. The preliminary results using fresh beef longissimus muscle and in vivo Rattus norvegicus (rat) show that it is possible to visualize the birefringence effect of the tissue collagen fibers in the samples in order to achieve superior image contrast and sensitivity for the detection of hidden dermal structures. Compared to conventional CP-OCT, the proposed PS-OCT system provides depth-resolved images, which reflect the tissue birefringence.
Literatur
1.
Zurück zum Zitat Singer, A. J., and Clark, R. A., Cutaneous wound healing. N. Engl. J. Med. 341:738–746, 1999.CrossRef Singer, A. J., and Clark, R. A., Cutaneous wound healing. N. Engl. J. Med. 341:738–746, 1999.CrossRef
2.
Zurück zum Zitat Wang, Z., Pan, H., Yuan, Z., Liu, J., Chen, W., and Pan, Y., Assessment of dermal wound repair after collagen implantation with optical coherence tomography. Tissue Eng. C. 14:35–45, 2008.CrossRef Wang, Z., Pan, H., Yuan, Z., Liu, J., Chen, W., and Pan, Y., Assessment of dermal wound repair after collagen implantation with optical coherence tomography. Tissue Eng. C. 14:35–45, 2008.CrossRef
3.
Zurück zum Zitat Sakai, S., Yamanari, M., Miyazawa, A., Matsumoto, M., Nakagawa, N., Sugawara, T., Kawabata, K., Yatagai, T., and Yasuno, Y., In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin. J. Invest. Dermatol. 128:1641–1647, 2008.CrossRef Sakai, S., Yamanari, M., Miyazawa, A., Matsumoto, M., Nakagawa, N., Sugawara, T., Kawabata, K., Yatagai, T., and Yasuno, Y., In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin. J. Invest. Dermatol. 128:1641–1647, 2008.CrossRef
4.
Zurück zum Zitat Fujimoto, J. G., Optical coherence tomography for ultrahigh resolution in vivo imaging. Nature Biotechnol. 21:1361–1367, 2003.CrossRef Fujimoto, J. G., Optical coherence tomography for ultrahigh resolution in vivo imaging. Nature Biotechnol. 21:1361–1367, 2003.CrossRef
5.
Zurück zum Zitat Gambichler, T., Moussa, G., Sand, M., Sand, D., Altmeyer, P., and Hoffmann, K., Applications of optical coherence tomography in dermatology. J. Dermatol. Sci. 40:85–94, 2005.CrossRef Gambichler, T., Moussa, G., Sand, M., Sand, D., Altmeyer, P., and Hoffmann, K., Applications of optical coherence tomography in dermatology. J. Dermatol. Sci. 40:85–94, 2005.CrossRef
6.
Zurück zum Zitat Cobb, M. J., Chen, Y., Underwood, R. A., Usui, M. L., Olerud, J., and Li, X., Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography. J. Biomed. Opt. 11:064002, 2006.CrossRef Cobb, M. J., Chen, Y., Underwood, R. A., Usui, M. L., Olerud, J., and Li, X., Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography. J. Biomed. Opt. 11:064002, 2006.CrossRef
7.
Zurück zum Zitat Yamanari, M., Makita, S., Madjarova, V. D., Yatagai, T., and Yasuno, Y., Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method. Opt. Express. 14:6502–6515, 2006.CrossRef Yamanari, M., Makita, S., Madjarova, V. D., Yatagai, T., and Yasuno, Y., Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method. Opt. Express. 14:6502–6515, 2006.CrossRef
8.
Zurück zum Zitat Weissman, J., Hancewicz, T., and Kaplan, P., Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis. Opt. Express. 12:5760–5769, 2004.CrossRef Weissman, J., Hancewicz, T., and Kaplan, P., Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis. Opt. Express. 12:5760–5769, 2004.CrossRef
9.
Zurück zum Zitat Gambichler, T., Matip, R., Moussa, G., Altmeyer, P., and Hoffmann, K., In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site. J. Dermatol. Sci. 44:145–152, 2006.CrossRef Gambichler, T., Matip, R., Moussa, G., Altmeyer, P., and Hoffmann, K., In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site. J. Dermatol. Sci. 44:145–152, 2006.CrossRef
10.
Zurück zum Zitat Vakhtin, A. B., Kane, D. J., Wood, W. R., and Peterson, K. A., ‘Common-path interferometer for frequency-domain optical coherence tomography. Appl. Opt. 42:6953–6958, 2003.CrossRef Vakhtin, A. B., Kane, D. J., Wood, W. R., and Peterson, K. A., ‘Common-path interferometer for frequency-domain optical coherence tomography. Appl. Opt. 42:6953–6958, 2003.CrossRef
11.
Zurück zum Zitat Li, X., Han, J. -H., Liu, X., and Kang, J. U., Signal-to-noise ration analysis of all-fiber common-path optical coherence tomography. Appl. Opt. 47:4833–4840, 2008.CrossRef Li, X., Han, J. -H., Liu, X., and Kang, J. U., Signal-to-noise ration analysis of all-fiber common-path optical coherence tomography. Appl. Opt. 47:4833–4840, 2008.CrossRef
12.
Zurück zum Zitat Tan, K. M., Mazilu, M., Chow, T. H., Lee, W. M., Taguchi, K., Ng, B. K., Sibbett, W., Herrington, C. S., Brown, C. T. A., and Dholakia, K., In-fiber common-path optical coherence tomography using a conical-tip fiber. Opt. Express. 17:2375–2384, 2009.CrossRef Tan, K. M., Mazilu, M., Chow, T. H., Lee, W. M., Taguchi, K., Ng, B. K., Sibbett, W., Herrington, C. S., Brown, C. T. A., and Dholakia, K., In-fiber common-path optical coherence tomography using a conical-tip fiber. Opt. Express. 17:2375–2384, 2009.CrossRef
13.
Zurück zum Zitat Liu, X., Li, X., Kim, D. -H., Ilev, I., and Kang, J. U., Fiber-optic fourier-domain common-path OCT. Chin. Opt. Lett. 6:899–901, 2008.CrossRef Liu, X., Li, X., Kim, D. -H., Ilev, I., and Kang, J. U., Fiber-optic fourier-domain common-path OCT. Chin. Opt. Lett. 6:899–901, 2008.CrossRef
14.
Zurück zum Zitat Derickson, D., Fiber Optic Test and Measurement. Prentice Hall, Upper Saddle River, NJ, 1998. Derickson, D., Fiber Optic Test and Measurement. Prentice Hall, Upper Saddle River, NJ, 1998.
15.
Zurück zum Zitat Zhang, K., Han, J. -H., and Kang, J. U., All-fiber common-path fourier-domain optical coherence microscopy for 3D in vivo endoscopic subcellular imaging. Conference on Lasers and Electro-Optics (CLEO), JWA74, Baltimore, MD, 2009. Zhang, K., Han, J. -H., and Kang, J. U., All-fiber common-path fourier-domain optical coherence microscopy for 3D in vivo endoscopic subcellular imaging. Conference on Lasers and Electro-Optics (CLEO), JWA74, Baltimore, MD, 2009.
Metadaten
Titel
Polarization Sensitive Subcutaneous and Muscular Imaging Based on Common Path Optical Coherence Tomography Using Near Infrared Source
verfasst von
Jae-Ho Han
Jin U. Kang
Chul Gyu Song
Publikationsdatum
01.08.2011
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 4/2011
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-009-9388-0

Weitere Artikel der Ausgabe 4/2011

Journal of Medical Systems 4/2011 Zur Ausgabe