Skip to main content
Erschienen in: BMC Medicine 1/2016

Open Access 01.12.2016 | Commentary

Policing of gut microbiota by the adaptive immune system

verfasst von: Laurent Dollé, Hao Q. Tran, Lucie Etienne-Mesmin, Benoit Chassaing

Erschienen in: BMC Medicine | Ausgabe 1/2016

Abstract

The intestinal microbiota is a large and diverse microbial community that inhabits the intestine, containing about 100 trillion bacteria of 500-1000 distinct species that, collectively, provide benefits to the host. The human gut microbiota composition is determined by a myriad of factors, among them genetic and environmental, including diet and medication. The microbiota contributes to nutrient absorption and maturation of the immune system. As reciprocity, the host immune system plays a central role in shaping the composition and localization of the intestinal microbiota. Secretory immunoglobulins A (sIgAs), component of the adaptive immune system, are important player in the protection of epithelium, and are known to have an important impact on the regulation of microbiota composition. A recent study published in Immunity by Fransen and colleagues aimed to mechanistically decipher the interrelationship between sIgA and microbiota diversity/composition. This commentary will discuss these important new findings, as well as how future therapies can ultimately benefit from such discovery.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

LD, HQT, LEM and BC wrote the manuscript. All authors read and approved the final manuscript.
Abkürzungen
AID
Activation-induced cytidine deaminase
CD
Crohn’s disease
DSS
Dextran sodium sulfate
IBD
Inflammatory bowel disease
IgA
Immunoglobulin A
LPS
Lipopolysaccharide
NLRC4
Nod-like receptor C4
RAG1
Recombination-activating protein 1
SFB
Segmented filamentous bacteria
TLR
Tool-like receptor
UC
Ulcerative colitis

Background

The gut host defense system comprises an array of mechanisms to keep the microbiota in check, maintaining an orderly beneficial relationship with the intestinal microbiota [1]. These mechanisms include the presence of multi-layered mucus structures, secretion of anti-microbial peptides and the secretion of sIgA. Additionally, the mucosal immune system has several means to sample and evaluate potential danger of microbiota-derived antigens, allowing production of specific antibodies to bacterial antigens that might compromise the host. Adaptive immunity in general, and sIgA in particular, is known to play a key role in microbiota composition. Here, we will discuss recent findings describing how IgAs population has an impact on microbiota diversity, and how they may provide therapeutic insights into diseases associated with dysbiosis [2].

Immunoglobulin A-mediated modulation of the intestinal microbiota

A key intestinal strategy to generate immune protection in a non-inflammatory manner is the production of IgA [35], which is schematically illustrated in Fig. 1. One of the main role played by IgA is the promotion of immune exclusion by entrapping dietary antigens and microorganisms in the mucus, or down-regulating the expression of pro-inflammatory bacterial epitopes on commensal bacteria, such as flagellin [6]. IgA population in the gut is central for the selection and the maintenance of the intestinal microbiota [7, 8].
The main observation showing the importance of immunoglobulin in microbiota composition regulation was made with animals lacking such Ig production. Microbiota analysis of RAG1-/- mice (which have no adaptive immune system owing to the lack of V(D)J recombination-activating protein 1 (RAG1)) revealed profound alterations in their microbiota composition [9]. Moreover, it was observed that the restoration of normal IgA levels in AID (activation-induced cytidine deaminase) deficient mice, which normally lack IgAs, is sufficient to restore a normal microbiota composition [7, 10, 11]. Another important observation showing that intestinal IgA help to shape the intestinal microbiota is the recent finding that cessation of breast-feeding to either formula or food drives the maturation of the infant gut microbiome, indicating that the important amount of IgA secreted in mother’s milk seems to play a central role in the regulation of microbiota composition [12]. Mounting evidence clearly reveals that bacterial species colonizing the gut differ in their ability to stimulate the post-natal maturation of the gut system, with a good example being segmented filamentous bacteria (SFB) which are potent stimuli of IgA responses and strong inducers of Peyer’s patches development [13, 14].

Polyreactive IgA diversity controls microbiota composition and diversity

Fransen and collaborators recently demonstrated that the abundance and repertoire diversity of innate IgAs (also referred to as polyreactive due to their ability to bind multiple antigens) play a central role in regulating the diversity of the intestinal microbiota [2, 15]. The authors observed that C57BL/6 and BALB/c mice differ drastically in their IgA abundance and repertoire richness, which associate with profound differences in their microbiota composition. While BALB/c mice have a high abundance and diversity of IgAs, C57BL/6 mice harbor a poor IgA repertoire correlating with a decreased microbiota diversity. Even under germfree conditions (germfree animals are devoid of any microorganisms), C57BL/6 and BALB/c mice differ in polyreactive IgA, revealing a genetic component of IgA production. Importantly, those polyreactive IgA were found by the authors to determinate the capacity of the strain of mice to diversify the microbiota. Delving deeper into the mechanisms of such interrelationship between polyreactive IgA and microbiota diversity, the authors demonstrated that polyreactive IgAs are required to trigger IgA response toward members of the intestinal microbiota, through a coating that favor bacterial penetration into Peyer’s patches [2]. Those findings further demonstrate that microbiota diversity is both genetically and environmentally driven, mechanistically supporting earlier observations [16].
However, it is important to note that low IgA diversity is not the exclusive discrepancy found between these 2 mice strains. Among other differences, C57BL/6 mice have a normal Th1 response while BALB/c mice are deficient in Th1 signaling, which could also have an important impact on the phenotypes described in this study. One important point that still needs to be addressed is whether the decreased microbiota diversity observed in C57BL/6 mice, as a result of low IgA diversity, is associated with an increased pro-inflammatory potential/harmfulness. The investigations of whether the altered microbiota associated with low intestinal IgA predispose mice of subsequent challenges still need to be conducted.

Immunoglobulin-based therapy for microbiota composition alteration and restoration?

It is important to note that, in the study by Fransen and colleagues, co-housing or fecal transplantation had little effect on both IgA production and microbiota composition, highlighting the stability of the intestinal microbiota in an individual, with a central role played by IgA repertoire [2]. The defined repertoire of IgAs controls the colonization and composition of the microbiota and will lead to the restoration of the original microbiota following alteration. Consequently, such findings suggest that modulation of IgA repertoire could lead to a more drastic and stable alteration in the intestinal microbiota compared to, for example, fecal transplantation. Moreover, it has been observed that mice bred in different facilities harbor a distinct microbiota that further determines the levels of secretory IgA. This study demonstrates that transfer of a microbiota from an IgA-low mice, by co-housing or fecal transplantation, can lower fecal IgA levels in IgA-high mice [17]. This study also shows that IgA-low mice are more susceptible to challenges such as Dextran Sulfate Sodium (DSS)-induced colitis, and that such susceptibility can be transferred to IgA-high mice by fecal transplantation and are driven by fecal IgA differences via a mechanism involving the ability of bacteria from IgA-low mice to degrade sIgA [17]. Altogether, those findings highlight the close relationship occurring between sIgA repertoire and the microbiota, with a key role played in the maintenance of intestinal homeostasis.
A common feature of colitis-associated microbiota are increased levels of bioactive flagellin and lipopolysaccharide (LPS), which can activate Toll-like receptor 5 (TLR5), NOD-like Receptor 4 (NLRC4) inflammasome, and TLR4 [1820]. Approaches to manipulate the microbiota to make it inherently less pro-inflammatory (i.e. reduce levels of innate immune activators) may ultimately provide a novel approach to prevent and/or treat Inflammatory Bowel Disease (IBD). Published observations demonstrating that the level of microbiota flagellin expression inversely correlates with levels of fecal anti-flagellin antibodies suggests that the adaptive immune system possess the ability to alter the microbiota to make it less pro-inflammatory (Fig. 1) [21, 22]. Indeed, in a study published in Cell Host and Microbes in 2013, it was demonstrated that TLR5-/- mice harbor a reduced level of flagellin specific IgA [21]. Importantly, the intestinal microbiota of those TLR5-/- animals was found to express significantly higher amounts of bioactive flagellin, supporting an impact of intestinal IgA in suppressing levels of flagellin, likely by putting flagellated bacteria at a competitive disadvantage within a complex microbial community.
In addition, recent findings made by flow-cytometric sorting suggest that IgA may mark commensal and pathobionts according to the extent of their individual coating [23]. This study by Palm and colleagues show that IgA coating selectively marks known disease-driving members of the mouse and human intestinal microbiota that can impact disease susceptibility and/or severity [23]. Transfer of fecal IgA-coated from cohorts of Kwashiorkor undernourished children into germ free mice triggers a diet-dependent enteropathy with intestinal inflammation and dysfunction, but could be prevented by administering two IgA-targeted bacterial species from a healthy microbiota (Clostridium scindens, Akkermansia muciniphila) [24]. A targeted elimination or replacement of disease-driving members of the intestinal microbiota could be a first step in the development of personalized, microbiota reshaping therapies.

Conclusions

Based on this appealing work by Rescigno and colleagues, we can hypothesis that selected manipulation of the immune system has the potential to alter gut microbiota composition to make it inherently less pro-inflammatory (i.e. more diverse and with a reduced level of innate immune activators), reducing susceptibility to and/or severity of intestinal inflammation development. IgA may be used as a target to shape the intestinal bacterial community in order to maintain a beneficial relationship between the host and the microbiota.

Acknowledgments

BC is a recipient of the Research Fellowship award from the Crohn’s and Colitis Foundation of America (CCFA). LD is funded by the Interuniversity Attraction Poles (IAP) - phase VII - contract P7/47 (Federal Science Policy –BELSPO). We thank Andrew T. Gewirtz for critical comments on the manuscript.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

LD, HQT, LEM and BC wrote the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10(3):159–69.CrossRefPubMed Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10(3):159–69.CrossRefPubMed
2.
Zurück zum Zitat Fransen F, Zagato E, Mazzini E, Fosso B, Manzari C, El Aidy S, et al. BALB/c and C57BL/6 Mice Differ in Polyreactive IgA Abundance, which Impacts the Generation of Antigen-Specific IgA and Microbiota Diversity. Immunity. 2015;43(3):527–40.CrossRefPubMed Fransen F, Zagato E, Mazzini E, Fosso B, Manzari C, El Aidy S, et al. BALB/c and C57BL/6 Mice Differ in Polyreactive IgA Abundance, which Impacts the Generation of Antigen-Specific IgA and Microbiota Diversity. Immunity. 2015;43(3):527–40.CrossRefPubMed
4.
Zurück zum Zitat Kiyono H, Fukuyama S. NALT- versus Peyer’s-patch-mediated mucosal immunity. Nat Rev Immunol. 2004;4(9):699–710.CrossRefPubMed Kiyono H, Fukuyama S. NALT- versus Peyer’s-patch-mediated mucosal immunity. Nat Rev Immunol. 2004;4(9):699–710.CrossRefPubMed
5.
Zurück zum Zitat Rios D, Wood MB, Li J, Chassaing B, Gewirtz AT, Williams IR. Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria. Mucosal Immunol. 2015; DOI: 10.1038/mi.2015.121. Rios D, Wood MB, Li J, Chassaing B, Gewirtz AT, Williams IR. Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria. Mucosal Immunol. 2015; DOI: 10.​1038/​mi.​2015.​121.
7.
Zurück zum Zitat Fagarasan S, Muramatsu M, Suzuki K, Nagaoka H, Hiai H, Honjo T. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science. 2002;298(5597):1424–7.CrossRefPubMed Fagarasan S, Muramatsu M, Suzuki K, Nagaoka H, Hiai H, Honjo T. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science. 2002;298(5597):1424–7.CrossRefPubMed
8.
Zurück zum Zitat Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;2(5):328–39.CrossRefPubMed Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;2(5):328–39.CrossRefPubMed
9.
Zurück zum Zitat Zhang H, Sparks JB, Karyala SV, Settlage R, Luo XM. Host adaptive immunity alters gut microbiota. ISME J. 2015;9(3):770–81.CrossRefPubMed Zhang H, Sparks JB, Karyala SV, Settlage R, Luo XM. Host adaptive immunity alters gut microbiota. ISME J. 2015;9(3):770–81.CrossRefPubMed
10.
Zurück zum Zitat Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T, et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci U S A. 2004;101(7):1981–6.PubMedCentralCrossRefPubMed Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T, et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci U S A. 2004;101(7):1981–6.PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Kato LM, Kawamoto S, Maruya M, Fagarasan S. Gut TFH and IgA: key players for regulation of bacterial communities and immune homeostasis. Immunol Cell Biol. 2014;92(1):49–56.CrossRefPubMed Kato LM, Kawamoto S, Maruya M, Fagarasan S. Gut TFH and IgA: key players for regulation of bacterial communities and immune homeostasis. Immunol Cell Biol. 2014;92(1):49–56.CrossRefPubMed
12.
Zurück zum Zitat Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe. 2015;17(5):690–703.CrossRefPubMed Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe. 2015;17(5):690–703.CrossRefPubMed
13.
Zurück zum Zitat Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.PubMedCentralCrossRefPubMed Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.PubMedCentralCrossRefPubMed
14.
Zurück zum Zitat Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31(4):677–89.CrossRefPubMed Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31(4):677–89.CrossRefPubMed
15.
Zurück zum Zitat Wijburg OL, Uren TK, Simpfendorfer K, Johansen FE, Brandtzaeg P, Strugnell RA. Innate secretory antibodies protect against natural Salmonella typhimurium infection. J Exp Med. 2006;203(1):21–6.PubMedCentralCrossRefPubMed Wijburg OL, Uren TK, Simpfendorfer K, Johansen FE, Brandtzaeg P, Strugnell RA. Innate secretory antibodies protect against natural Salmonella typhimurium infection. J Exp Med. 2006;203(1):21–6.PubMedCentralCrossRefPubMed
16.
17.
Zurück zum Zitat Moon C, Baldridge MT, Wallace MA, Burnham CA, Virgin HW, Stappenbeck TS. Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation. Nature. 2015;521(7550):90–3.PubMedCentralCrossRefPubMed Moon C, Baldridge MT, Wallace MA, Burnham CA, Virgin HW, Stappenbeck TS. Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation. Nature. 2015;521(7550):90–3.PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Chassaing B, Koren O, Carvalho FA, Ley RE, Gewirtz AT. AIEC pathobiont instigates chronic colitis in susceptible hosts by altering microbiota composition. Gut. 2014;63(7):1069–80.PubMedCentralCrossRefPubMed Chassaing B, Koren O, Carvalho FA, Ley RE, Gewirtz AT. AIEC pathobiont instigates chronic colitis in susceptible hosts by altering microbiota composition. Gut. 2014;63(7):1069–80.PubMedCentralCrossRefPubMed
19.
Zurück zum Zitat Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92–6.CrossRefPubMed Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92–6.CrossRefPubMed
20.
Zurück zum Zitat Chassaing B, Ley RE, Gewirtz AT. Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. Gastroenterology. 2014;147(6):1363–77. e1317.PubMedCentralCrossRefPubMed Chassaing B, Ley RE, Gewirtz AT. Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. Gastroenterology. 2014;147(6):1363–77. e1317.PubMedCentralCrossRefPubMed
21.
Zurück zum Zitat Cullender TC, Chassaing B, Janzon A, Kumar K, Muller CE, Werner JJ, et al. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe. 2013;14(5):571–81.PubMedCentralCrossRefPubMed Cullender TC, Chassaing B, Janzon A, Kumar K, Muller CE, Werner JJ, et al. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe. 2013;14(5):571–81.PubMedCentralCrossRefPubMed
22.
Zurück zum Zitat Sitaraman SV, Klapproth JM, Moore 3rd DA, Landers C, Targan S, Williams IR, et al. Elevated flagellin-specific immunoglobulins in Crohn’s disease. Am J Physiol Gastrointest Liver Physiol. 2005;288(2):G403–6.CrossRefPubMed Sitaraman SV, Klapproth JM, Moore 3rd DA, Landers C, Targan S, Williams IR, et al. Elevated flagellin-specific immunoglobulins in Crohn’s disease. Am J Physiol Gastrointest Liver Physiol. 2005;288(2):G403–6.CrossRefPubMed
23.
Zurück zum Zitat Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158(5):1000–10.PubMedCentralCrossRefPubMed Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158(5):1000–10.PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Kau AL, Planer JD, Liu J, Rao S, Yatsunenko T, Trehan I, et al. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci Transl Med. 2015;7(276):276ra224.CrossRef Kau AL, Planer JD, Liu J, Rao S, Yatsunenko T, Trehan I, et al. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci Transl Med. 2015;7(276):276ra224.CrossRef
Metadaten
Titel
Policing of gut microbiota by the adaptive immune system
verfasst von
Laurent Dollé
Hao Q. Tran
Lucie Etienne-Mesmin
Benoit Chassaing
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
BMC Medicine / Ausgabe 1/2016
Elektronische ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-016-0573-y

Weitere Artikel der Ausgabe 1/2016

BMC Medicine 1/2016 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 24 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.