Skip to main content
main-content

01.12.2018 | Research article | Ausgabe 1/2018 Open Access

BMC Complementary and Alternative Medicine 1/2018

Poly herbal formulation with anti-elastase and anti-oxidant properties for skin anti-aging

Zeitschrift:
BMC Complementary and Alternative Medicine > Ausgabe 1/2018
Autoren:
Induja Kalyana Sundaram, Deepika Deeptirekha Sarangi, Vignesh Sundararajan, Shinomol George, Sahabudeen Sheik Mohideen
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12906-018-2097-9) contains supplementary material, which is available to authorized users.

Abstract

Background

Skin forms an important part of human innate immune system. Wrinkles, thinning and roughening of skin are some of the symptoms that affect the skin as it ages. Reactive oxygen species induced oxidative stress plays a major role in skin aging by modulating the elastase enzyme level in the skin. Extrinsic factors that affect skin aging such as UV radiation can also cause malignant melanoma. Here we selected four medicinal plant materials, namely, leaves of Nyctanthes arbor-tristis, unripe and ripe Aegle marmelos fruit pulp and the terminal meristem of Musa paradisiaca flower and investigated their anti-aging properties and cytotoxicity in vitro individually as well as in a poly herbal formulation containing the four plant extracts in different ratios.

Methods

The phytochemical contents of the plant extracts were investigated for radical scavenging activity and total reducing power. Based upon its anti-oxidant properties, a poly herbal formulation containing leaves of Nyctanthes arbor-tristis, unripe and ripe fruit pulp of Aegle marmelos, and the terminal meristem of Musa paradisiaca flower in the ratio 6:2:1:1 (Poly Herbal Formulation 1) and 1:1:1:1 (Poly Herbal Formulation 2), respectively were formulated.

Result

It has been observed that the Poly Herbal Formulation 1 was more potent than Poly Herbal Formulation 2 due to better anti-oxidant and anti-elastase activities in NIH3T3 fibroblast cells. In addition Poly Herbal formulation 1 also had better anti-cancer activity in human malignant melanoma cells.

Conclusion

Based on these results these beneficial plant extracts were identified for its potential application as an anti-aging agent in skin creams as well as an anti-proliferation compound against cancer cells.
Zusatzmaterial
Additional file 1: Table S1. DPPH radical scavenging activity of plants extracts and quercetin. The supplementary file compares the DPPH radical scavenging activity of different methanolic plant extracts in terms of its percentage of inhibition and IC50 values. Quercetin was used as a standard to compare the efficacy of the plant extracts. Table S2. DPPH radical scavenging activity of poly herbal formulations. The supplementary file compares the DPPH radical scavenging activity of poly herbal formulations in terms of its percentage of inhibition and IC50 values. TableS3. Total reducing power of methanolic plant extracts. The supplementary file compares the ability of plant extracts to reduce ferric iron to ferrous iron, using vitamin C as a standard to calculate the reducing power of the extracts equivalent to vitamin C. Table S4. reducing power of poly herbal formulations. The supplementary file compares the ability of poly herbal formulations to reduce ferric iron to ferrous iron, using vitamin C as a standard to calculate the reducing power of the extracts equivalent to vitamin C. Table S5. Elastase inhibition capacity. The supplementary file compares the elastase inhibition capacity of plant extracts and PHF1 with copper sulfate as standard. Table S6. Nitric oxide scavenging capacity. The supplementary file compares the nitric oxide scavenging capacity of plant extracts and poly herbal formulations with curcumin as standard. Table S7. In vitro inhibitory capacity of poly herbal formulations. The supplementary file enlists the percentage of cells inhibited by poly herbal formulations at different concentrations against NIH3T3 fibroblast cells and A375 malignant melanoma cells (PDF 727 kb)
12906_2018_2097_MOESM1_ESM.pdf
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2018

BMC Complementary and Alternative Medicine 1/2018 Zur Ausgabe