Skip to main content

01.12.2019 | Methodology | Ausgabe 1/2019 Open Access

Journal of Translational Medicine 1/2019

Polyethylene glycol improves current methods for circulating extracellular vesicle-derived DNA isolation

Journal of Translational Medicine > Ausgabe 1/2019
N. García-Romero, R. Madurga, G. Rackov, I. Palacín-Aliana, R. Núñez-Torres, A. Asensi-Puig, J. Carrión-Navarro, S. Esteban-Rubio, H. Peinado, A. González-Neira, V. González-Rumayor, C. Belda-Iniesta, A. Ayuso-Sacido
Wichtige Hinweise
N. García-Romero, R. Madurga and G. Rackov collaborated equally in this manuscript



Extracellular vesicles (EVs) are small membrane-bound vesicles which play an important role in cell-to-cell communication. Their molecular cargo analysis is presented as a new source for biomarker detection, and it might provide an alternative to traditional solid biopsies. However, the most effective approach for EV isolation is not yet well established.


Here, we study the efficiency of the most common EV isolation methods-ultracentrifugation, Polyethlyene glycol and two commercial kits, Exoquick® and PureExo®. We isolated circulating EVs from the bloodstream of healthy donors, characterized the size and yield of EVs and analyzed their protein profiles and concentration. Moreover, we have used for the first time Digital-PCR to identify and detect specific gDNA sequences, which has several implications for diagnostic and monitoring many types of diseases.


Our findings present Polyethylene glycol precipitation as the most feasible and less cost-consuming EV isolation technique.
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2019

Journal of Translational Medicine 1/2019 Zur Ausgabe