Skip to main content
main-content
Erschienen in: Der Gynäkologe 10/2021

Open Access 08.07.2021 | Polyzystisches Ovarialsyndrom | Leitthema

Mikrobiom und Stoffwechsel beim polyzystischen Ovarialsyndrom (PCOS)

verfasst von: Prof. Dr. med. Wolfgang R. Heizmann, Prof. Dr. Christoph Keck

Erschienen in: Der Gynäkologe | Ausgabe 10/2021

Zusammenfassung

Das Syndrom der polyzystischen Ovarien (PCOS) gehört zu den häufigen Hormonstörungen bei Frauen in der fertilen Lebensphase. Die Ätiologie ist bis heute nicht bekannt, allerdings konnte in den letzten Jahren das Verständnis der pathophysiologischen Zusammenhänge deutlich verbessert werden. Neben endokrinologischen und metabolischen Aspekten findet der Zusammenhang zwischen PCOS und Darmmikrobiom zunehmende Beachtung. Es konnte gezeigt werden, dass das Darmmikrobiom von Frauen mit PCOS sich signifikant vom Mikrobiom nichtbetroffener Frauen unterscheidet. Daraus lassen sich therapeutische Konsequenzen ableiten, welche die Behandlung von PCOS-Patientinnen in Zukunft maßgeblich beeinflussen könnten.
Hinweise

Redaktion

B. Sonntag, Hamburg
G. Emons, Göttingen
QR-Code scannen & Beitrag online lesen

Hintergrund

Zur Diagnose des PCOS (polyzystisches Ovarsyndrom) werden neben den Definitionen der NIH (National Institutes of Health) oder der AES (Androgen Excess Society) meist die sog. Rotterdam-Kriterien der ESHRE (European Society of Human Reproduction and Embryology) herangezogen [1]. Danach sollen mindestens 2 der 3 unten aufgeführten Kriterien vorhanden sein:
  • Oligo‑/Amenorrhö,
  • Hyperandrogenämie/Hyperandrogenismus,
  • typisches sonographisches Bild der Ovarien bei Erwachsenen.
Das PCOS ist eine der häufigsten Erkrankungen im reproduktiven Alter. Die weltweite Prävalenz liegt – in Abhängigkeit von den diagnostischen Kriterien – zwischen 5 und 12 % (Tab. 1).
Tab. 1
Weltweite Prävalenz des PCOS [2]
Kaukasierinnen
Asiatinnen
Hispanierinnen
Afroamerikanerinnen
6,5–8,7 % nach NIH-Kriterien
2,2 % nach NIH-Kriterien
6,0 % nach NIH-Kriterien
3,4–8,8 % nach NIH-Kriterien
10,2 % nach AES-Kriterien
5,6–6,3 % nach Rotterdam-Kriterien 2003
6,6 % nach Rotterdam-Kriterien 2003
11,9 % nach Rotterdam-Kriterien 2003
PCOS polyzystisches Ovarsyndrom, NIH National Institutes of Health (USA), AES Androgen Excess Society, Rotterdam-Kriterien 2003 European Society of Human Reproduction and Embryology
Aufgrund der hohen Varianz des Phänotyps kommt es häufig zu einer verzögerten Diagnose; bis zu 70 % der betroffenen Frauen bleiben undiagnostiziert.
Je nachdem welche Symptome im Vordergrund stehen, gibt es klinisch unterschiedliche Erscheinungsformen des PCOS. Für viele Frauen führt vor allem die Hyperandrogenämie/der Hyperandrogenismus zu erheblichem Leidensdruck. Als Hyperandrogenämie wird eine vermehrte Bildung und Sekretion männlicher Hormone bei der Frau bezeichnet. Unter Hyperandrogenismus versteht man die klinischen Symptome (Hirsutismus [Ferriman-Gallwey-Score ≥ 8], Akne, Effluvium bzw. androgenetische Alopezie) bei verstärkter Androgenwirkung [3]. Grundsätzlich ist ein Hyperandrogenismus auch bei normalen Androgenspiegeln möglich, sofern es trotz normwertiger Androgen-Serumkonzentration zu den entsprechenden Symptomen kommt.
Vor allem der Hyperandrogenismus führt zu erheblichem Leidensdruck
Hyperandrogenämie bzw. Hyperandrogenismus betreffen bis zu 78 % aller Patientinnen mit PCOS [4]. Die Erfassung der biochemischen Veränderungen und auch der klinischen Symptome ist mitunter schwierig, da zum einen die Bestimmungsmethoden zur Androgenmessung variieren, zum anderen aber auch Ethnizität, Gewicht und Alter einen Einfluss auf die Ausprägung der Symptomatik haben [5, 6].
Zur Messung des freien Testosterons steht bislang kein guter Assay zur Verfügung. Daher wird üblicherweise zusätzlich zur Bestimmung des Gesamttestosterons auch der Spiegel des Sexualhormon bindenden Globulins (SHBG) ermittelt, um daraus den Anteil des freien Testosterons ableiten zu können, den freien Androgenindex: FAI = 100 × (Gesamttestosteron/SHBG) [7]. Im IdealfalI sollte die biochemische Diagnostik mittels Flüssigchromatographie mit Massenspektrometriekopplung („liquid chromatography/mass spectrometry“, LC/MS) als hochwertigem Analysesystem erfolgen [6]. Dies wird in der Praxis aufgrund der höheren Kosten und der geringen Verfügbarkeit jedoch nur sehr selten umgesetzt.

Kardiovaskuläre und metabolische Risikofaktoren

Neben den oben genannten Symptomen lassen sich bei vielen Frauen mit PCOS kardiovaskuläre oder metabolische Risikofaktoren nachweisen. Die internationale Leitlinie empfiehlt daher, bei allen PCOS-Patientinnen kardiovaskuläre Risikofaktoren abzuklären (z. B. BMI [Body-Mass-Index], Hüftumfang, Blutdruckmessung; Tab. 2). Bei Übergewicht bzw. Adipositas wird zusätzlich auch ein Nüchternlipidprofil empfohlen [6].
Tab. 2
Erfassung kardiovaskulärer und metabolischer Risikofaktoren
 
LoE/EG
Übergewicht/Adipositas (BMI, Hüftumfang, Kontrolle 6–12 Monate)
++++
Nikotinkonsum, Dyslipidämie, arterielle Hypertonie, gestörte Glukosetoleranz/Insulinresistenz, Bewegungsmangel
++++
Alle Übergewichtigen oder Adipösen: Nüchternlipidprofil (HDL, LDL, Cholesterin, Triglyzeride)
++++
Mindestens jährliche Blutdruckmessung aller Frauen mit PCOS
++++
Prävalenz von GDM, gestörter Glukosetoleranz und DM erhöht, auch bei Schlanken, abhängig von der Ethnizität
++++
oGTT, Nüchternglukose oder HbA1c sollten allen Frauen mit PCOS initial als Screening angeboten werden
++++
Präkonzeptionell 75g oGTT, wenn nicht erfolgt <20. SSW
++++
BMI Body-Mass-Index, DM Diabetes mellitus, GDM Gestationsdiabetes, HDL „high-density lipoproteins“, LDL „low-density lipoproteins“, LoE/EG „level of evidence“/Empfehlungsgrad, oGTT oraler Glukosetoleranztest, PCOS polyzystisches Ovarsyndrom, SSW Schwangerschaftswoche(n)
Auch die Bestimmung des HoMA-IR-Indexes kann bei PCOS hilfreich sein
Unabhängig vom BMI haben Frauen mit PCOS ein erhöhtes Risiko für die Entwicklung einer Insulinresistenz mit gestörter Glukosetoleranz, Typ 2 Diabetes mellitus sowie – im Falle einer Schwangerschaft – Gestationsdiabetes [8].
Die Testverfahren zum Nachweis einer Insulinresistenz weisen in der routinemäßigen Anwendung methodische Unschärfen auf. Bislang wird empfohlen, als Screening die Messung der Nüchternglukose und des HbA1c zu veranlassen [6]. Zudem soll ein oraler Glukosetoleranztest (75-g-oGTT) durchgeführt werden. Bei Frauen mit PCOS kann auch die Bestimmung des HoMA-IR(Homeostatic Model Assessment for Insulin Resistance)-Indexes hilfreich sein [9].
Im Falle einer Schwangerschaft sollte der oGTT noch vor der 20. Schwangerschaftswoche erfolgen, sofern zuvor kein oGTT durchgeführt wurde.

Ätiologie des PCOS

Die Ursache des PCOS ist bis heute nicht endgültig geklärt. Es gibt Hypothesen zu den pathophysiologischen Mechanismen, die zur Ausprägung des PCOS beitragen, ebenso wurden die endokrinen Veränderungen beim PCOS umfassend diskutiert. Aus der Mikrobiomforschung ergeben sich nun völlig neue Ansätze zum Verständnis der Pathophysiologie des PCOS.
Mit der Entwicklung moderner Sequenziertechniken (Next Generation Sequencing, NGS) kann die mikrobielle Besiedlung eines Habitats umfassend analysiert werden. Damit ließen in den letzten Jahren fundamental neue Erkenntnisse zur Bedeutung des Mikrobioms für die Entstehung chronischer Erkrankungen gewinnen.
Aus der Mikrobiomforschung ergeben sich neue Ansätze zum Verständnis der Pathophysiologie des PCOS
Die bisherigen Erkenntnisse zum Zusammenhang zwischen dem Darmmikrobiom und der Entstehung des PCOS sollen im Folgenden dargestellt werden.

Das Mikrobiom

Das Mikrobiom bezeichnet die Gesamtheit aller Mikroorganismen, die ein Lebewesen natürlicherweise – ohne Auslösung von Krankheitssymptomen – besiedeln. Der Mensch besitzt etwa 3 × 1013 Körperzellen und beherbergt 3,8 × 1013 bis 1014 Bakterien, davon die Mehrzahl im Darm (ca. 1011/g Faeces; [10, 11]). Das metabolische Potenzial der Bakterien entspricht dem der Leber. Nach heutigem Kenntnisstand enthält die Gesamtheit dieser Bakterien deutlich mehr Gene als der Mensch (ca. 9 vs. 23.000 Mio.; [12]). Neben Bakterien sind Viren einschließlich Bakteriophagen sowie Pilze natürliche Besiedler des Menschen.
Es gibt Autoren, die das Mikrobiom des Menschen als eigenes „Organ“ betrachten, dessen Organismen in einem bestimmten Gleichgewicht zueinander stehen [13]. Solange diese Homöostase aufrechterhalten wird, dient dies der Gesundheit des Menschen. Eine Verschiebung des Gleichgewichts führt zu entsprechenden Krankheitszuständen, die sich sowohl als akute als auch als chronische Erkrankung manifestieren können.

Zusammenhang zwischen Darmmikrobiom und PCOS

Tremellen und Pearce [14] wiesen erstmals auf einen möglichen Zusammenhang zwischen dem Auftreten eines PCOS und Veränderungen in der Darmflora hin. Die Autoren postulierten, dass Veränderungen des intestinalen Mikrobioms zur Auflockerung der „tight junctions“ der Epithelzellen des Darms führen. Dadurch kommt es zum Einstrom von Lipopolysacchariden (LPS, Endotoxin) der Zellwand von Proteobakterien (Gram-negative Bakterien, wie z. B. Escherichia coli) mit nachfolgender Aktivierung des Immunsystems und zur Entwicklung einer niederschwelligen Inflammation mit erhöhten TNF‑α und CRP(C-reaktives Protein)-Spiegeln [15, 16]. Dies kann in weiterer Folge zur Entwicklung einer Insulinresistenz mit chronisch erhöhten Insulinspiegeln führen. Erhöhte Insulinspiegel werden als ein wesentlicher Pathomechanismus bei der Entwicklung einer Hyperandrogenämie angesehen.
Erhöhte Insulinspiegel sind ein Pathomechanismus bei der Entwicklung einer Hyperandrogenämie
Das intestinale Mikrobiom ist bei Frauen und Männern in der Zusammensetzung unterschiedlich [17, 18]. Bei Männern korrelieren die relativen Anteile von Acinetobacter, Dorea, Ruminococcus und Megamonas signifikant mit dem Testosteronspiegel, während bei Frauen die relativen Anteile von Slackia und Butyricimonas mit dem Östradiolspiegel in Zusammenhang stehen [19]. Frauen ohne PCOS unterscheiden sich von Männern beispielsweise in den relativen Anteilen bestimmter Bakterienarten wie Catenibacterium (Korrelation mit Inflammation) und Kandleria (Korrelation mit dem Androgenspiegel), wohingegen Frauen mit PCOS ähnliche Anteile von Keimen in der Darmflora wie Männer aufweisen [20].
Prinzipiell hat die Darmschleimhaut bei Frauen im Vergleich zu Männern eine dickere Mukusschicht, was mit einer verbesserten Darmbarriere einhergeht. Damit verbunden sind ein verminderter Einstrom von Endotoxinen und eine geringere inflammatorische Antwort des Immunsystems. Dies führt wiederum zu einer erhöhten Glukosetoleranz sowie zum Schutz vor kardiovaskulären Erkrankungen und zu einer tendenziell verzögerten Entwicklung eines Typ 2 Diabetes mellitus [21] – Erkrankungen, die in einem engen pathophysiologischen Zusammenhang mit der Entwicklung des PCOS stehen. Bei Frauen mit PCOS sind die Zonulinkonzentrationen im Serum erhöht, dies weist auf eine Störung der „tight junctions“ („leaky gut“) hin. Dadurch kommt es zum Einstrom von LPS und zur Entwicklung einer Insulinresistenz [22].

Verminderte Diversität des Mikrobioms bei PCOS

Zur Beschreibung der Diversität des Mikrobioms wird der Shannon-Index (α-Diversität) herangezogen. Er beschreibt die „Vielfalt“ der Mikroorganismen in einem Habitat. Im Vergleich zu Frauen ohne Adipositas und ohne PCOS ist bei Frauen mit PCOS und Adipositas der Shannon-Index, d. h. die Artenvielfalt der Darmflora, signifikant reduziert (p < 0,01). Dabei fällt auf, dass die relativen Anteile von Bacteroides, Escherichia, Blautia, Parabacteroides, Weissella und Granulicatella erhöht sind, während andere Arten mit positiven Auswirkungen für die Steuerung des Stoffwechsels (Akkermansia, Alistipes, Coprococcus, Ruminococcus) in deutlich reduzierter Zahl nachweisbar sind [23].
Diese verminderte α‑Diversität beim PCOS korreliert signifikant (p < 0,05) mit einem erhöhten Testosteronspiegel [24]. Ein erhöhter Testosteronspiegel wiederum korreliert positiv mit den Serumspiegeln von hs-CRP („high sensitivity CRP“) und LBP (Lipopolysaccharid-bindendes Protein als Marker eines Endotoxineinstroms; [16]). Daraus resultiert eine „silent inflammation“ (Abb. 1).
Eine verminderte α‑Diversität im Darmmikrobiom korrelierte mit einem erhöhten Testosteronspiegel
Diese chronisch inflammatorische Reaktion ist neben erhöhten Testosteronspiegeln auch durch verminderte Östrogenspiegel sowie eine reduzierte Bildung kurzkettiger Fettsäuren („short-chain fatty acids“, SCFA), wie etwa Butyrat, durch intestinale Bakterienarten bei Frauen mit PCOS erklärbar [25]. Durch einen Mangel an Butyrat sinkt die Produktion von IL-10 (Interleukin-10) durch Treg-Zellen (regulatorische T‑Zellen) was dazu führt, dass vermehrt proinflammatorische Interleukine, z. B. IL-17A, durch Th17-Zellen (T-Helferzellen) freigesetzt werden [2628]. Diese erhöhten IL-17A-Spiegel korrelieren positiv mit der Konzentration von Trimethylamin-N-Oxid (TMAO) im Blut [29].

Insulinresistenz und Androgene

In Zusammenhang mit dem PCOS ist die Entwicklung einer Insulinresistenz mit erhöhten Insulinspiegeln von Bedeutung. Chronisch erhöhte Insulin- und IGF-1-Spiegel („insulin like growth factor 1“) steigern die Androgensynthese.
Darüber hinaus stimuliert TNF-α in vitro die Proliferation von Thekazellen mit LH(luteinisierendes Hormon)-abhängiger Produktion von Androstendion und Testosteron [30]. Gleichzeitig vermindert Insulin die Synthese von SHBG in der Leber, woraus eine Zunahme der bioverfügbaren Androgene resultiert [30].

Gallensäurenstoffwechsel

Bei Frauen mit PCOS finden sich hohe Anteile von Bacteroides vulgatus bei gleichzeitig verminderten Konzentrationen an sekundären Gallensäuren (Tauro- bzw. Glycin-Desoxycholsäure) im Darm. Sekundäre Gallensäuren binden an den nukleären Farnesoid-X-Faktor (FXR) sowie an den membrangebundenen „Takeda G‑protein coupled receptor 5“ (TGR5) der L‑Zellen des Darms. Damit steuern sie zusammen mit SCFA die Freisetzung von GLP‑1 („glucagon-like peptide 1“; [31]).
Der Mangel an sekundären Gallensäuren trägt damit zur Entwicklung eines Typ 2 Diabetes mellitus bei.

Rolle des Trimethylamin-N-Oxid (TMAO)

TMAO entsteht in der Leber aus Trimethylamin (TMA), ein Molekül, das im Kolon durch Abbau beispielsweise von Carnitin durch Bakterien entsteht [3235]. Insbesondere Bakterienarten wie Escherichia coli, Klebsiella species (spp.), Citrobacter spp., Enterobacter spp. und andere Bakterienarten, deren Zellwand hohe Anteile an Lipopolysacchariden (Endotoxin) aufweisen, sind daran beteiligt [36, 37].
Erhöhte TMAO-Spiegel korrelieren mit einer gesteigerten Thrombozytenaggregation, Erkrankungen des Herz-Kreislauf-Systems über atherosklerotische Veränderungen der Blutgefäße, Typ 2 Diabetes mellitus und Einschränkungen der Nierenfunktion [3235, 38]. Bei Frauen mit PCOS werden höhere Serumspiegel TMAO, sowie eine positive Korrelation zwischen TMAO und Testosteron gefunden [29, 39]. TMAO-Spiegel beeinflussen somit beim PCOS nicht nur die Risiken für kardiovaskuläre Erkrankungen und Typ 2 Diabetes mellitus, sondern auch die Höhe der Testosteronkonzentration.
Die Höhe der TMAO-Konzentrationen ist u. a. von der Ernährungsform abhängig: ein hoher Anteil an Cholin, Carnitin und Betain, gesättigten Fettsäuren (33–42 % der zugeführten Energie) sowie Getränke mit hohem Gehalt an Fructose („Western diet“) führen zu relativ hohen TMAO-Spiegeln. Dies verändert im Vergleich zu einer ballaststoffreichen Ernährungsform die Zusammensetzung der Darmflora dahingehend, dass die Anteile an Proteobakterien stark zunehmen, also Arten, die sowohl TMA produzieren als auch Endotoxin freisetzen [40].

Therapieoptionen

Aus dem oben Gesagten ergibt sich ein komplexer Zusammenhang zwischen dem intestinalen Mikrobiom und dem PCOS. Diese Erkenntnisse tragen zum Verständnis der pathophysiologischen Zusammenhänge bei. Gleichzeitig eröffnet dies interessante Therapiemöglichkeiten. Neben den bekannten Optionen zur endokrinologischen Intervention (Gabe von Antiandrogenen, Zyklusregulation durch kombinierte orale Kontrazeptiva [KOK], ovarielle Stimulation mit Letrozol etc.) besteht die Möglichkeit der therapeutischen Intervention zum Beispiel durch Veränderung des Ernährungs- und Lebensstils mit nachfolgender Gewichtsreduktion.

Gewichtsreduktion

Es besteht ein positiver Zusammenhang zwischen dem Anteil an Körperfett und chronisch inflammatorischen Prozessen [41, 42]. Rezente Studien zeigen, dass durch Gewichtsabnahme die Darmwandpermeabilität signifikant abnimmt, begleitet von einer Senkung des Nüchternblutzuckers und einem Rückgang von Entzündungsparametern (IL‑6) [43]. Gleichzeitig mit der Gewichtsreduktion erhöhen sich die relativen Anteile von Akkermansia muciniphila, einer Bakterienart, der eine wichtige Rolle bei der Steuerung der Durchlässigkeit der Darmwand sowie des Glukosestoffwechsels zukommt [44]. Je niedriger der Anteil an A. muciniphila im intestinalen Mikrobiom ist, desto höher ist die Durchlässigkeit mit Einstrom von Endotoxin und nachfolgender Induktion einer niederschwelligen chronischen Inflammation. Die durch Gewichtsreduktion erzielte Zunahme des Anteils von A. muciniphila führt somit zur Abnahme der Darmwandpermeabilität und damit zu einer Verminderung des Einstroms von Endotoxinen in den Kreislauf [45].
Gleichzeitig korreliert A. muciniphila positiv mit der Anzahl der L‑Zellen mit Produktion von GLP‑1, das neben anderen Eigenschaften einen entscheidenden Einfluss auf den Glukosestoffwechsel hat [46].
Bei Frauen mit PCOS sind die Serumkonzentrationen von GLP‑1 auch durch erhöhte Spiegel von Dipeptidylpetidase‑4 (Abbau von GLP-1) typischerweise erniedrigt. Erste Daten weisen darauf hin, dass die Gabe von GLP‑1 bei Frauen mit PCOS zu einer Verbesserung der Zyklizität und damit auch der Fertilität führt [47, 48].
Eine Restriktion der Nahrungsaufnahme auf den Zeitraum zwischen 8 und 16 Uhr (Intervallfasten) über 6 Wochen bei übergewichtigen Frauen mit PCOS kann zu einer signifikanten Reduktion des BMI, des hs-CRP, des HoMA-Index und des Gesamttestosterons sowie zu einer Zunahme des SHBGs führen [49].

Metformin

Metformin, ein Biguanidderivat, wird seit vielen Jahren in der Therapie des Typ 2 Diabetes mellitus, aber auch bei Frauen mit PCOS und Insulinresistenz eingesetzt (CAVE „off-label-use“; [50]).
Die Wirksamkeit von Metformin ist nur bei oraler Gabe gegeben. Metformin führt im Kolon zu einer positiven Veränderung des Mikrobioms, z. B. zu einer Zunahme des Anteils von A. muciniphila [5153]. Darüber hinaus wird durch Metformin der Abbau von GLP‑1 inhibiert. Zusätzlich werden die hepatische Glukoneogenese sowie das hepatische Fettgewebe reduziert.
Im Mausmodell resultiert die Gabe von Metformin in einem signifikanten Abfall des Testosteronspiegels sowie einem Rückgang des Endotoxinspiegels. Gleichzeitig zeigen sich auch Veränderungen des intestinalen Mikrobioms mit Abnahme der Anteile von Proteobakterien (Endotoxin) und der Zunahme von Bifidobakterien [54]. Bei Frauen mit PCOS und Übergewicht resultiert nach den Ergebnissen einer Metaanalyse die Einnahme von Metformin in einer Verminderung des BMI, des Taillenumfangs, der FSH(follikelstimulierendes Hormon)- und LH-Spiegel, des Testosterons sowie des LDL(„low-density lipoproteins“)-Cholesterins [55].
Klinisch verbessern sich durch Metformin die Zyklizität sowie die Ovulationsrate. Ebenso ist das Ansprechen auf eine ovarielle Stimulation (bei Kinderwunsch) besser [56, 57]. Darüber hinaus lässt sich durch Metformingabe das Risiko zur Entwicklung eines ovariellen Überstimulationssyndroms im Zusammenhang mit einer ovariellen Stimulation deutlich reduzieren.

Ballaststoffe

Die Ernährung bei Frauen mit PCOS spielt in der Therapie eine entscheidende Rolle. Untersuchungen bei Ratten weisen auf den negativen Einfluss einer Ernährung mit hohen Anteilen raffinierter Kohlenhydrate auf den Reproduktionstrakt mit der Entwicklung PCOS-ähnlicher Veränderungen hin [58].
Tatsächlich scheint nach einer Metaanalyse eine Diät mit einem niedrigen glykämischen Index bei PCOS von Vorteil zu sein: Absenkung des HoMA-Indexes, Verminderung der Nüchternblutglukose, des Gesamtcholesterins, des LDL-Cholesterins sowie der Triglyzeride, Reduktion des Taillenumfangs sowie des Gesamttestosterons (alle p < 0,05; [59]).
In der „praktischen Anwendung“ lässt sich nachweisen, dass beispielsweise im Vergleich zu einem Abendessen mit Weißbrot der Verzehr von Vollkornbrot mit einer signifikanten Zunahme des GLP-1-Spiegels korreliert [60]. Ebenso führt die Umstellung der Ernährungsform auf eine mediterrane Diät (kaltgepresstes Olivenöl, Hülsenfrüchte, Nüsse, Vollkornprodukte, Gemüse und Früchte, Fisch, mäßiger Genuss von Rotwein und Verminderung des Fleischkonsums) bei Frauen mit PCOS zu einer Reduktion des CRP-Spiegels sowie des HoMA-Indexes [61, 62].

Probiotika

Bei Frauen mit PCOS führt die Gabe eines Probiotikums mit dem Stamm Bifidobacterium lactis V9 zu erhöhten Konzentrationen von SCFA sowie zu einer Steigerung der Freisetzung von PYY (Peptid YY) und Ghrelin, welche über die Darm-Hirn-Achse in einer Abnahme von LH sowie des LH/FSH-Quotienten resultiert [25].
Positive Wirkungen eines weiteren Probiotikums aus verschiedenen Bakterienstämmen (Lactobacillus acidophilus, L. reuteri, L. fermentum, Bifidobacterium bifidum) plus 200 µg/Tag Selen waren bei Gabe über 12 Wochen im Vergleich zur Kontrollgruppe zu sehen: eine signifikante Verbesserung des Hirsutismus sowie eine signifikante Abnahme von hs-CRP- und Testosteronspiegeln [63].
Es handelt sich hierbei sicherlich um vorläufige Daten, jedoch lassen die Studienergebnisse erkennen, dass es durch Veränderung des Darmmikrobioms möglich erscheint, einen klinisch bedeutsamen Einfluss auf endokrine Prozesse zu nehmen, die zur Entstehung und Ausprägung des PCOS beitragen.

Präbiotika und andere Nahrungsergänzungsmittel

Im Tierversuch mit PCOS-Ratten reduziert Berberin eine Insulinresistenz und senkt den Testosteronspiegel [64]. In einer Metaanalyse von klinischen Studien scheint Berberin einer Metformingabe bei der Verminderung einer Insulinresistenz, der Verbesserung einer Dyslipidämie sowie der Senkung des Testosteronspiegels ebenbürtig zu sein [65].
Auch die Gabe von 2 × 500mg/Tag Quercetin bei PCOS hat einen positiven Effekt: über die Zunahme der Expression von Adiponectin-Rezeptoren, was zu einer Beeinflussung der Insulinsensitivität führt [66].
Eine Nahrungsergänzung mit Phytoöstrogenen (Isoflavon) in Form von Genistein (2 × 18 mg/Tag) resultiert nach 3 Monaten bei PCOS in einer Reduktion der LH-, Testosteron- und der DHEAS(Dehydroepiandrosteronsulfat)-Spiegel [67].
Die Einnahme von 50 mg/Tag Sojaisoflavonen über 12 Wochen führte bei Frauen mit PCOS zur Reduktion der Insulinspiegel und des HoMA-Indexes sowie zu einer Verminderung des FAI und der Serumtriglyzeride [68].
Ein ähnlicher Effekt bei PCOS wurde bei der täglichen Gabe von 200 µg Chrom (als Chrompicolinat) über 8 Wochen auf den Insulinspiegel sowie den HoMA-Index zusammen mit einer Reduktion des hs-CRP-Spiegels sowie einer günstigen Auswirkung auf Akne und Hirsutismus beobachtet [68, 69].
Der regelmäßige Verzehr von Lakritze verringert bei gesunden Frauen den Testosteronspiegel und kann als adjuvante Therapie bei Hirsutismus und PCOS in Erwägung gezogen werden [70].
In Tierversuchen zeigen sich bei der Gabe von Inulin bzw. Resveratrol (letzteres eventuell auch in Kombination mit Metformin) positive Effekte mit Besserung der ovariellen Histologie bzw. einer Suppression der inflammatorischen Marker [54, 71].

Fazit für die Praxis

  • Das PCOS (Syndrom polyzystischer Ovarien) gehört zu den häufigsten Endokrinopathien überhaupt, die weltweite Prävalenz wird auf 5–12 % geschätzt, die Ursache ist bis heute unbekannt.
  • Der klinische Phänotyp zeigt eine hohe Variabilität, entsprechend unterschiedlich sind auch die Therapiekonzepte.
  • Neben den endokrinologischen Aspekten rücken zunehmend die für das PCOS charakteristischen metabolischen Veränderungen in den Fokus des Interesses.
  • Veränderungen des Darmmikrobioms haben einen Einfluss auf die Entstehung und den klinischen Verlauf des PCOS.
  • Daraus ergeben sich sowohl diagnostische Hinweise als auch neue Therapieoptionen: So wirken sich eine Gewichtsreduktion, der Einsatz von Metformin, eine Modifikation der Ernährungsform sowie Prä- und Probiotika auf die Zusammensetzung des Darmmikrobioms und darüber auf Ausprägung und Verlauf des PCOS aus.
  • Zu erwarten ist, dass die Analyse des Darmmikrobioms in Zukunft zu den empfohlenen diagnostischen Verfahren zählen wird, um daraus die o. g. therapeutischen Maßnahmen abzuleiten.

Einhaltung ethischer Richtlinien

Interessenkonflikt

W.R. Heizmann und C. Keck geben an, dass kein Interessenkonflikt besteht.
Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.
Open Access Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden.
Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen.
Weitere Details zur Lizenz entnehmen Sie bitte der Lizenzinformation auf http://​creativecommons.​org/​licenses/​by/​4.​0/​deed.​de.

Unsere Produktempfehlungen

Der Gynäkologe

Print-Titel

Praxisrelevante und fundierte Fortbildung
Das Fortbildungsorgan der DGGG
Vom Wissen angrenzender Fachgebiete profitieren
Mit spannenden Falldarstellungen lernen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Gynäkologie

Kombi-Abonnement

Mit e.Med Gynäkologie erhalten Sie Zugang zu CME-Fortbildungen der beiden Fachgebiete, den Premium-Inhalten der Fachzeitschriften, inklusive einer gedruckten gynäkologischen oder urologischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Ndefo UA, Eaton A, Green MR (2013) Polycystic ovary syndrome: a review of treatment options with a focus on pharmacological approaches. P T 38(6):336–355 PubMedPubMedCentral Ndefo UA, Eaton A, Green MR (2013) Polycystic ovary syndrome: a review of treatment options with a focus on pharmacological approaches. P T 38(6):336–355 PubMedPubMedCentral
3.
Zurück zum Zitat Amiri M, Ramezani Tehrani F, Nahidi F, Bidhendi Yarandi R, Behboudi-Gandevani S, Azizi F (2017) Association between biochemical hyperandrogenism parameters and Ferriman-Gallwey score in patients with polycystic ovary syndrome: a systematic review and meta-regression analysis. Clin Endocrinol (Oxf) 87(3):217–230. https://​doi.​org/​10.​1111/​cen.​13389 CrossRef Amiri M, Ramezani Tehrani F, Nahidi F, Bidhendi Yarandi R, Behboudi-Gandevani S, Azizi F (2017) Association between biochemical hyperandrogenism parameters and Ferriman-Gallwey score in patients with polycystic ovary syndrome: a systematic review and meta-regression analysis. Clin Endocrinol (Oxf) 87(3):217–230. https://​doi.​org/​10.​1111/​cen.​13389 CrossRef
4.
Zurück zum Zitat Alexiou E et al (2017) Hyperandrogenemia in women with polycystic ovary syndrome: prevalence, characteristics and association with body mass index. Horm Mol Biol Clin Investig 29(3):105–111 PubMed Alexiou E et al (2017) Hyperandrogenemia in women with polycystic ovary syndrome: prevalence, characteristics and association with body mass index. Horm Mol Biol Clin Investig 29(3):105–111 PubMed
5.
Zurück zum Zitat Bozdag G et al (2016) The prevalence and phenotypic features of polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod 31(12):2841–2855 CrossRef Bozdag G et al (2016) The prevalence and phenotypic features of polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod 31(12):2841–2855 CrossRef
6.
Zurück zum Zitat Teede HJ et al (2018) Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod 33(9):1602–1618 CrossRef Teede HJ et al (2018) Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod 33(9):1602–1618 CrossRef
7.
Zurück zum Zitat Vermeulen A, Verdonck L, Kaufman JM (1999) A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 84(10):3666–3672 CrossRef Vermeulen A, Verdonck L, Kaufman JM (1999) A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 84(10):3666–3672 CrossRef
8.
Zurück zum Zitat Legro RS et al (1999) Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol Metab 84(1):165–169 PubMed Legro RS et al (1999) Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol Metab 84(1):165–169 PubMed
35.
Zurück zum Zitat Hayashi T, Yamashita T, Watanabe H, Kami K, Yoshida N, Tabata T, Emoto T, Sasaki N, Mizoguchi T, Irino Y, Toh R, Shinohara M, Okada Y, Ogawa W, Yamada T, Hirata KI (2018) Gut microbiome and plasma microbiome-related metabolites in patients with decompensated and compensated heart failure. Circ J 83(1):182–192. https://​doi.​org/​10.​1253/​circj.​CJ-18-0468 CrossRefPubMed Hayashi T, Yamashita T, Watanabe H, Kami K, Yoshida N, Tabata T, Emoto T, Sasaki N, Mizoguchi T, Irino Y, Toh R, Shinohara M, Okada Y, Ogawa W, Yamada T, Hirata KI (2018) Gut microbiome and plasma microbiome-related metabolites in patients with decompensated and compensated heart failure. Circ J 83(1):182–192. https://​doi.​org/​10.​1253/​circj.​CJ-18-0468 CrossRefPubMed
39.
Zurück zum Zitat Eyupoglu ND, Caliskan Guzelce E, Acikgoz A, Uyanik E, Bjørndal B, Berge RK, Svardal A, Yildiz BO (2019) Circulating gut microbiota metabolite trimethylamine N‑oxide and oral contraceptive use in polycystic ovary syndrome. Clin Endocrinol (Oxf) 91(6):810–815. https://​doi.​org/​10.​1111/​cen.​14101 CrossRef Eyupoglu ND, Caliskan Guzelce E, Acikgoz A, Uyanik E, Bjørndal B, Berge RK, Svardal A, Yildiz BO (2019) Circulating gut microbiota metabolite trimethylamine N‑oxide and oral contraceptive use in polycystic ovary syndrome. Clin Endocrinol (Oxf) 91(6):810–815. https://​doi.​org/​10.​1111/​cen.​14101 CrossRef
42.
Zurück zum Zitat Hestiantoro A et al (2018) Body fat percentage is a better marker than body mass index for determining inflammation status in polycystic ovary syndrome. Int J Reprod Biomed 16(10):623–628 PubMedPubMedCentral Hestiantoro A et al (2018) Body fat percentage is a better marker than body mass index for determining inflammation status in polycystic ovary syndrome. Int J Reprod Biomed 16(10):623–628 PubMedPubMedCentral
52.
Zurück zum Zitat de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM, Escobar JS (2017) Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care 40(1):54–62. https://​doi.​org/​10.​2337/​dc16-1324 CrossRefPubMed de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM, Escobar JS (2017) Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care 40(1):54–62. https://​doi.​org/​10.​2337/​dc16-1324 CrossRefPubMed
67.
Zurück zum Zitat Khani B, Mehrabian F, Khalesi E, Eshraghi A (2011) Effect of soy phytoestrogen on metabolic and hormonal disturbance of women with polycystic ovary syndrome. J Res Med Sci 16(3):297–302 PubMedPubMedCentral Khani B, Mehrabian F, Khalesi E, Eshraghi A (2011) Effect of soy phytoestrogen on metabolic and hormonal disturbance of women with polycystic ovary syndrome. J Res Med Sci 16(3):297–302 PubMedPubMedCentral
68.
Zurück zum Zitat Jamilian M, Bahmani F, Siavashani MA, Mazloomi M, Asemi Z, Esmaillzadeh A (2016) The effects of chromium supplementation on endocrine profiles, biomarkers of inflammation, and oxidative stress in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res 172(1):72–78. https://​doi.​org/​10.​1007/​s12011-015-0570-6 CrossRefPubMed Jamilian M, Bahmani F, Siavashani MA, Mazloomi M, Asemi Z, Esmaillzadeh A (2016) The effects of chromium supplementation on endocrine profiles, biomarkers of inflammation, and oxidative stress in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res 172(1):72–78. https://​doi.​org/​10.​1007/​s12011-015-0570-6 CrossRefPubMed
Metadaten
Titel
Mikrobiom und Stoffwechsel beim polyzystischen Ovarialsyndrom (PCOS)
verfasst von
Prof. Dr. med. Wolfgang R. Heizmann
Prof. Dr. Christoph Keck
Publikationsdatum
08.07.2021
Verlag
Springer Medizin
Erschienen in
Der Gynäkologe / Ausgabe 10/2021
Print ISSN: 0017-5994
Elektronische ISSN: 1433-0393
DOI
https://doi.org/10.1007/s00129-021-04829-x