Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2014

Open Access 01.12.2014 | Review

Post-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions

verfasst von: Fei Guo, Brittany C Parker Kerrigan, Da Yang, Limei Hu, Ilya Shmulevich, Anil K Sood, Fengxia Xue, Wei Zhang

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2014

Abstract

Epithelial-to-mesenchymal transition (EMT) and its reverse process, mesenchymal-to-epithelial transition (MET), play important roles in embryogenesis, stem cell biology, and cancer progression. EMT can be regulated by many signaling pathways and regulatory transcriptional networks. Furthermore, post-transcriptional regulatory networks regulate EMT; these networks include the long non-coding RNA (lncRNA) and microRNA (miRNA) families. Specifically, the miR-200 family, miR-101, miR-506, and several lncRNAs have been found to regulate EMT. Recent studies have illustrated that several lncRNAs are overexpressed in various cancers and that they can promote tumor metastasis by inducing EMT. MiRNA controls EMT by regulating EMT transcription factors or other EMT regulators, suggesting that lncRNAs and miRNA are novel therapeutic targets for the treatment of cancer. Further efforts have shown that non-coding-mediated EMT regulation is closely associated with epigenetic regulation through promoter methylation (e.g., miR-200 or miR-506) and protein regulation (e.g., SET8 via miR-502). The formation of gene fusions has also been found to promote EMT in prostate cancer. In this review, we discuss the post-transcriptional regulatory network that is involved in EMT and MET and how targeting EMT and MET may provide effective therapeutics for human disease.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1756-8722-7-19) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed to discussing and writing this manuscript. All authors have read and approved the final manuscript.

Introduction

EMT is a process whereby epithelial cells lose both polarity and cell-to-cell contacts. Cells undergoing EMT acquire a mesenchymal phenotype, which is characterized by an epithelial-to-mesenchymal switch in marker expression, such as the loss of epithelial markers (e.g., E-cadherin, claudin, and occludin) and gain of mesenchymal markers (e.g., vimentin and N-cadherin). The reverse process, known as mesenchymal-to-epithelial transition (MET), has also been reported [1]. EMT and MET are important in organ development, stem cell biology, wound healing, and cancer progression. Many signals, transcriptional factors, and post-transcriptional regulatory networks can induce EMT. Post-transcriptional regulatory networks include the miRNA and lncRNA families. Therefore, in this review, we focus on miRNA and lncRNA, which may be effective diagnostic and therapeutic targets in cancer. Specifically, we describe several lncRNAs that regulate EMT in cancer, as well as miRNAs that regulate multiple signaling pathways involved in EMT and transcription factors of E-cadherin.

EMT and MET regulate important processes, including disease

EMT and MET have central roles in embryogenesis and cancer metastasis [2]. EMT is an integral part of tissue remodeling that occurs during embryogenesis [1]. MET also contributes to embryonic development [3]. In adults, EMT can be activated to promote wound healing after tissue injury [4]. EMT induction allows cancer cells to disseminate from the primary tumor, invade surrounding tissues, and eventually generate metastases by colonizing remote sites via blood or lymphatic routes. Metastatic cells can then revert back via MET to re-acquire epithelial characteristics similar to those of cells in the primary tumor [4].
EMT and MET are essential to the regulation of stem cell pluripotency [4]. Tumors contain cancer stem cells (CSCs), which are a small subpopulation of cells that are capable of self-renewal, differentiation, and tumorigenicity. Evidence suggests that EMT induction enhances self-renewal and the acquisition of CSC characteristics [5]. Thus, therapeutics that target EMT may be useful for reducing CSC populations in cancer.

Key regulators involved in EMT and MET

During EMT, epithelial cells lose cell-to-cell interactions, undergo morphological challenges, and increase their cellular motility. The most important mediator of cell-to-cell adhesion is the cadherin family of proteins, which promotes the formation of adherens junctions that act as glue to hold the cells within tissues together. The most characterized cadherins include E-, N-, and P-cadherin. E-cadherin plays an important role in epithelial cell-to-cell interactions because it is responsible for holding neighboring epithelial cells together in a classic cobblestone structure. During EMT, E-cadherin is replaced by abnormal expression of N- or P-cadherin. The downregulation of E-cadherin leads to the release of β-catenin, and the latter translocates to the nucleus and functions as an activator for transcription factors, promoting cellular adhesion, tissue morphogenesis, and cancer development.
Other proteins that mediate EMT include vimentin and fibronectin. Vimentin is an intermediate filament protein that is upregulated in cells undergoing EMT. During EMT, vimentin expression causes epithelial cells to acquire a mesenchymal shape and increased motility [6]. Fibronectin mediates cellular interactions with the extracellular matrix and is important for migration, differentiation, growth, and cell adhesion. Like vimentin, fibronectin is also upregulated during EMT and can therefore be used as a biomarker for EMT (Figure 1).
EMT is regulated by many signaling pathways, transcriptional factors, and post-transcriptional factors. Many signals, including transforming growth factor-β (TGF-β), fibroblast growth factor (FGF), human growth factor (HGF), platelet-derived growth factor (PDGF), insulin-like growth factor (IGF) (and its receptor [IGFR]), vascular endothelial growth factor (VEGF), estrogen receptor (ERα), Notch, Wnt, and epidermal growth factor (EGF) may be involved in EMT. These pathways ultimately activate the transcription of EMT-related transcription factor families, including ZEB (ZEB1 and ZEB2), the zinc finger Snail (SNAI1 and SNAI2), and the basic helix-loop-helix (e.g., Twist1 and Twist2) [7]. By regulating the expression of E-cadherin, these transcription factors dynamically modulate EMT, cell adhesion, and motility. In addition to transcription factors, EMT is regulated by post-transcriptional mechanisms, including lncRNA and miRNA (Figure 1).

Regulation of EMT by lncRNAs

LncRNA, which is larger than 200 nt, consists of a heterogeneous group of RNA molecules that are involved in a broad spectrum of cellular processes and in cancer progression [8]. Studies have demonstrated that lncRNAs are aberrantly expressed in a variety of human cancers, such as gastric cancer [9, 10], bladder cancer [11, 12], and breast cancer [13]. Interestingly, a recent report revealed that several lncRNAs may be involved in EMT regulation [14].
Several important lncRNAs are reported to induce EMT, including highly upregulated in liver cancer (HULC), metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1), H19, and HOX transcript antisense intergenic RNA (HOTAIR).
HULC overexpression in gastric cancer was found to be correlated with lymph node metastasis, distant metastasis, and advanced tumor node metastasis stage [9]. Silencing of HULC effectively reversed the EMT phenotype [9]. MALAT-1 expression was remarkably increased in primary tumors that subsequently metastasized compared with those that did not metastasize. MALAT-1 promoted EMT by activating Wnt signaling in vitro[11]. H19 enhanced bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression [12].
The expression level of HOTAIR was significantly correlated with lymph node metastasis and TNM stage in gastric cancer. The results of in vitro studies suggested that HOTAIR promoted EMT by regulating Snail [10]. HOTAIR remodels the gene expression pattern of breast epithelial cells into a pattern that more closely resembles that of embryonic fibroblasts, leading to increased cancer invasiveness and metastasis [13]. HOTAIR resides in the mammalian HOXC locus and recruits the polycomb repressive complex 2 to specific target genes genome wide, leading to histone H3 lysine 27 trimethylation and epigenetic silencing of metastasis-suppressor genes.
The findings described above indicate that lncRNA has a role in tumor diagnosis and therapy. Recently, the therapeutic potential of targeting MALAT-1 was demonstrated, as free uptake of antisense oligonucleotides that target MALAT-1 in tumors prevented lung metastasis in nude mice [15]. Together, these results suggest that therapy is needed that hinders cancer progression by targeting specific lncRNAs that are implicated in EMT and therefore metastasis.

Regulation of EMT by miRNA

A second post-transcriptional mechanism that contributes to EMT involves miRNAs, which are 22-nucleotide non-coding RNAs that suppress gene expression through mRNA destabilization or translational inhibition. They are deregulated in a wide variety of human cancers [16] and have been shown to contribute to the control of cell growth, differentiation, and apoptosis, which are important to cancer development and progression [17]. MiRNAs can regulate multiple signaling pathways involved in EMT. Specifically, they can directly target transcription factors of E-cadherin and other EMT regulators.

MiRNAs regulate signaling pathways involved in EMT

Many miRNAs influence the EMT process by targeting the expression of specific ligands, receptors, and signaling pathways (Figure 2). Increasing evidence indicates that miRNAs regulate EMT by targeting key EMT regulators, including FGF (and its receptor [FGFR]), HGF, IGF (and IGFR), ERα, Notch, and Wnt. MiR-15 and miR-16 were downregulated in cancer-associated fibroblasts (CAFs) surrounding prostate tumors. This downregulation promoted tumor growth and progression through reduced post-transcriptional repression of FGF-2 and its receptor FGFR1, which act on both stromal and tumor cells to enhance cancer cell survival, proliferation, and migration [18]. Emerging evidence indicates that miR-198 is downregulated in hepatocellular carcinoma compared with in normal liver parenchyma, and forced expression of miR-198 inhibited HGF’s promotion of hepatocellular carcinoma cell migration and invasion in a c-MET-dependent manner [19]. A recent report showed that miR-7 suppresses Snail, increases E-cadherin expression, and partially reverses EMT by targeting IGF1R, generating a novel miR-7/IGF1R/Snail axis in gastric cancer [20]. As we know, ERα signaling opposes EMT by inhibiting TGF-β and cytokine signaling through Smad and nuclear factor-κB. Another report demonstrated that miR-206, miR-221, miR-222, miR-130a, miR-17, miR-92, and miR-145 could suppress ERα and promote EMT [21]. MiR-34a can regulate EMT by directly targeting Notch1 and Jagged1 [22]. Furthermore, a recent study illustrated that miR-200 members can target Jagged1, thereby mediating the downregulation of ZEB1 [23]. The Wnt/β-catenin signal pathway promotes EMT in cancer, and miR-200a was found to inhibit Wnt/β-catenin by targeting ZEB1 and ZEB2. MiR-200 can directly target β-catenin mRNA, inhibiting its translation and blocking Wnt/β-catenin signaling in meningioma [24].
MiRNA can also regulate EMT by targeting signaling pathways, including the TGF-β, PDGF, VEGF, and EGF pathways. TGF-β is a well-known EMT initiator. Exposing epithelial cells to TGF-β promotes the loss of epithelial morphological features, the increased expression of EMT marker genes such as ZEB1 and ZEB2, and the decreased expression of miR-200 [25]. Furthermore, downregulating paracrine TGF-β can inhibit and reverse EMT by downregulating ZEB1 and ZEB2 and upregulating miR-200b and miR-200c [26]. Inhibition of the Smad signaling pathway completely blocked the TGF-β1-mediated decrease in miR-200, suggesting that TGF-β1-induced suppression of the miR-200 family is regulated via Smad [27]. In addition, miR-99a and miR-99b may function as modulators within a complex network of factors that regulate TGF-β-induced EMT [28].
Anping Su et al. demonstrated that downregulation of TRPS1 by miR-221 is critical for the PDGF-mediated EMT phenotype [29]. VEGF was reported to suppress EMT by inhibiting the expression of miR-192 [30], which increases E-cadherin levels via repressed translation of ZEB2 mRNA [31]. Similarly, it was reported that EGF and EGFR can promote EMT by downregulating the miR-200 family in anaplastic thyroid cancer cells [32]. Furthermore, miR-155 overexpression suppressed EGF-induced EMT, decreased migration and invasion, inhibited cell proliferation, and increased chemosensitivity to DDP in human Caski cervical cancer cells [33]. Together, these data underscore the importance of miRNAs in EMT and malignant tumor progression.

MiRNAs that regulate E-cadherin transcription factors ZEB1 and ZEB2

The expression of E-cadherin is mainly controlled by three families of transcription factors: SNAI1 and SNAI2, ZEB1 and ZEB2, and Twist1 and Twist2. Several miRNAs directly target these families to modulate EMT in cancer (Figure 2). Members of the miR-200 family (miR-200a, miR-200b, miR-200c, miR-141, and miR-429) have emerged as important regulators of EMT, in part by targeting ZEB1 and ZEB2. Moreover, some signaling pathways, including p53, regulate EMT by regulating the miR-200-ZEB1 and ZEB2 regulatory loop.
The miR-200 family is usually downregulated in human cancer cells and tumors as a result of aberrant epigenetic gene silencing. The results of recent studies suggest that members of the miR-200 family play a critical role in suppressing EMT and cancer invasion and metastasis [34] by targeting transcriptional repressors of ZEB1 and ZEB2 [35]. Meanwhile, ZEB1 can directly suppress miRNA-200 family members in cancer cells, including miR-141 and miR-200c [36, 37]. It was also reported that ZEB1 and ZEB2 repressed the expression of miR-200a, miR-200b, and miR-429 by binding to a conserved pair of ZEB-type E-box elements located proximal to the transcription start site in the promoter region [38]. Therefore, ZEB1 and ZEB2 and miR-200 family members repress expression of each other in a reciprocal feedback loop, which may lead to amplification of EMT. Targeting this loop may be a new therapeutic strategy for cancer.

Pathways that suppress EMT by upregulating miR-200 and repressing ZEB1 and ZEB2

Several molecules have been found to upregulate the miR-200 family and consequently suppress EMT. For example, both P300 and PCAF act as cofactors for ZEB1, forming a P300/PCAF/ZEB1 complex on the miR200c/141 promoter. This results in lysine acetylation of ZEB1 and releases ZEB1’s suppression of miR-200c/141 transcription [39]. Smad3 was also reported to upregulate miR-200 family members at the transcriptional level in a TGF-β-independent manner [40]. p53 has been reported to transactivate miR-200 family members by directly binding to the promoters that repress ZEB1 and ZEB2 expression, leading to inhibition of EMT [41, 42]. Similarly, NPV-LDE-225 suppressed EMT by upregulating E-cadherin and inhibited N-cadherin, Snail, Slug, and ZEB1 by increasing miR-200a, miR-200b, and miR-200c [43].

Pathways that promote EMT by suppressing miR-200 and upregulating ZEB1 and ZEB2

In addition to their role in regulating EMT, miR-200 family members are negatively regulated by multiple signaling pathways. For example, in one study, overexpression of Stat3 [44], PDGF-D [45], Notch-1 [46], and DCLK1 [47] in cancer cells led to significant downregulation of miR-200 family members; this resulted in up-regulation of ZEB1, ZEB2, and SNAI2 expression and acquisition of the EMT phenotype. IDH1 and IDH2 mutants also caused an EMT-like phenotype; this phenotype was dependent on upregulation of the transcription factor ZEB1 and downregulation of miR-200 family members [48]. Other miRNAs can induce EMT by downregulating miR-200 through DICER, such as miR-103 or miR-107 [49]. Similarly, miR-130b silencing can restore DICER1 to a threshold level that allows miR-200 family members to repress EMT in endometrial cancer [50]. All of these findings indicate that these molecules promote EMT by suppressing miR-200.
Fusion genes are formed when chromosomal instability causes two genes that normally exist in isolation to fuse together [51]. Interestingly, a well-known gene fusion in prostate cancer that is produced by deletion of a 3-mega base region between ERG and TMPRSS2[52] (also reviewed in [Parker 2014 Journal of Pathology]) has also been found to upregulate ZEB1 and ZEB2 expression [53]. Specifically, expression of the TMPRSS2-ERG fusion gene caused epithelial immortalized prostate epithelial cells to undergo morphological changes consistent with those of mesenchymal cells while downregulating expression of the epithelial marker CDH1[53]. This finding highlights the complex ways in which EMT can be facilitated at the genetic level, simply by the fusion of two genes.

Epigenetic regulation of miR-200

MiR-200 family members can also be epigenetically regulated. It was reported that miR-200c expression was epigenetically regulated in CRC [54]. Rui Neves et al. also showed that the miR-200c/141 cluster is repressed by DNA methylation of a CpG island located in the promoter region of these miRNAs in invasive breast cancer cells [55].
The miR-200 family consists of five members in two clusters: miR-200b ~ 200a ~ 429 and miR-200c ~ 141. Studies have illustrated DNA methylation in two regions (#1 and #2) of a 2.5-kb large CpG island that is 2 kb upstream in miR-200b ~ 429 and in smaller CpG-enriched regions associated with miR-200c ~ 141. These regions can be demethylated by 5-Aza-20-deoxycytidine and the histone deacetylase inhibitor trichostatin A [56]. Aberrant DNA methylation of the CpG island or the CpG-enriched regions is closely linked to miR-200 inappropriate silencing in cancer cells [57]. Other factors may also be involved in miR-200 repression, such as ZEB1 and Twist1. A recent study showed that induction of ZEB1 and ZEB2 increased the methylation of miR-200 promoters [58]. Twist1 was also reported to directly associate with miR-200 promoters as a transcriptional repressor of miR-200 [56] (Figure 3A).

MiRNAs other than miR-200 inhibit EMT by targeting ZEB1 and ZEB2

In addition to miR-200 family members, other miRNAs have been identified that regulate EMT by directly targeting ZEB1 and ZEB2. For example, miR-130b [59], miR-150 [60], and miR-655 [61] inhibit EMT by directly targeting ZEB1. Ectopic expression of miR-192 and miR-215 increased E-cadherin levels by targeting ZEB2 [31]. MiR-205, which is induced by p63, was reported to inhibit EMT by targeting ZEB1 and ZEB2 [35] in breast cancer [62] and prostate cancer [63]. MiR-153 is a novel regulator of EMT that targets ZEB2 and SNAI1 [64].

MiRNAs that regulate SNAI1 and SNAI2

MiR-34 inhibits EMT by directly targeting SNAI1 [65]. Moreover, SNAI1 can repress transcription of miR-34 genes, resulting in a SNAI1/miR-34 feedback loop that is analogous to the reciprocal ZEB/miR-200 feedback loop [66]. MiR-34 targets a set of highly conserved sites in the 3′ untranslated region (UTR) of Wnt and EMT genes, specifically WNT1, WNT3, LRP6, AXIN2, β-catenin, and LEF1, resulting in suppression of TCF/LEF transcriptional activity and the EMT process [67].
MiR-203 was found to be repressed by SNAI1 during SNAI1-induced EMT in MCF7 breast cancer cells. Meanwhile, miR-203 repressed endogenous SNAI1, forming a double-negative miR203/SNAI1 feedback loop [68]. miR-203 targeted SNAI2 [69], and SNAI2 directly bound to the miR-203 promoter to inhibit its transcription. Therefore, miR-203 also formed a double-negative feedback loop with SNAI2 in which each inhibited the other’s expression, thereby controlling EMT [70]. In another double-feedback loop, miR-200 and SNAI2 regulate EMT. While SNAI2 is targeted by miR-200, SNAI2 directly binds E-boxes in the miR-200a/b promoter regions and represses miR-200a/b transcription. Therefore, SNAI2 and miR-200 act in a self-reinforcing regulatory loop that leads to amplification of EMT [71].
The results of a recent report suggest that miR-506 is a novel microRNA that inhibits EMT [72]. Integrated genomic analyses revealed a miRNA-regulatory network that is involved in EMT in serous ovarian cancer (Figure 4). MiR-506 augmented E-cadherin expression, inhibited cell migration and invasion, and prevented TGFβ-induced EMT by targeting SNAI2. MiR-506 expression is downregulated in an integrated mesenchymal subtype of serous ovarian cancer through methylation of CpG sites on the miR-506 promoter (Figure 3A). The nanoparticle delivery of miR-506 in orthotopic ovarian cancer mouse models led to E-cadherin induction and reduced tumor growth [72].
Several other miRNAs also target SNAI1 and SNAI2, such as miR-182 [69], miR-30 [73], miR-1 [71], and miR-29b [74] (Figure 2).

MiRNAs that regulate Twist1 and Twist2

The transcription factor Twist is a highly conserved basic helix-loop-helix transcription factor that promotes EMT and tumor metastasis. Apart from let-7d [75], miR-29b [74], and miR-214 [76], miR-580 was also reported to act as a negative regulator of Twist1 that induces EMT in breast cancer [77]. MiR-675 similarly directly downregulates Twist1 expression, leading to EMT [78] (Figure 2).
The results of a recent study showed that SET8 promotes EMT and enhances the invasive potential of breast cancer cells in vitro and in vivo by interacting with Twist. SET8 interacts with Twist to regulate the E-cadherin or N-cadherin promoter [79]. Fengju Song et al. identified a single-nucleotide polymorphism within the miR-502 seed-binding region in the 3′-UTR of the SET8 genethat modulates SET8 expression [80]. Thus, miR-502 may suppress EMT by inhibiting SET8 (Figure 3B).

MiRNAs directly regulate E-cadherin

Both miR-9 [81] and miR-23a [82] directly target E-cadherin, leading to increased cell motility and invasiveness (Figure 2). As miR-9 can be regulated by c-Myc and Prospero homeobox 1, overexpression of both [83, 84] led to EMT; it also resulted in a significant decrease in E-cadherin and increase in vimentin through the upregulation of miR-9. In addition, miR-9 promoted EMT and metastasis by directly regulating KLF17 expression [85].

MiRNAs regulate vimentin and fibronectin

MiR-506 was reported to inhibit TGFβ-induced EMT by directly targeting vimentin in a human breast cancer cell line [86]. MiR-30 was reported to suppress the migratory ability and invasiveness of breast cancer cell lines by directly targeting vimentin [87]. Furthermore, MiR-17-3p [88], as well as miR-124 and miR-203 [89], repressed vimentin expression by targeting its 3′UTR. miR-138 suppressed cell migration and invasion by directly targeting vimentin in renal cell carcinoma [90] and squamous cell carcinoma cells [91].
The results of another report suggested that miRNA-200b suppresses TGF-β1-induced EMT by directly targeting the 3′UTR of fibronectin [92]. Similarly, miR-17 resulted in decreased cell adhesion and migration by directly targeting fibronectin [93].
Since miRNAs play important roles in EMT and cancer metastasis, there is growing interest in using them in therapeutic applications [94]. Downregulation of the miRNAs that promote cancer progression may provide effective therapeutics for patients by using specific oligomers, called antagomirs that compete with the target mRNA to bind to miRNA. Krutzfeldt et al. found that antagomirs are powerful tools to silence specific miRNA in vivo and may represent a therapeutic strategy for silencing miRNAs in disease [95]. Meanwhile, the restoration of tumor-suppressive miRNA in tumors by external delivery may serve as a promising therapeutic option [96]. A report suggested that miR-200b and miR-200c were significantly associated with survival in gastric cancer patients; miR-200b suppressed ZEB1, augmented E-cadherin, inhibited cell migration, and suppressed tumor growth in a mouse model [97]. Furthermore, delivery of miR-200 members into the tumor endothelium resulted in marked reductions in metastasis and angiogenesis [98].

Conclusions and future directions

A plethora of miRNAs, including miR-200 family members and miR-506, have been found to directly regulate the expression of the target genes that are known to play critical roles in EMT regulation (Figure 4). As shown in Table 1, aside from regulating the signaling pathways and transcriptional factors described above, miRNAs regulate other genes to modulate EMT in various cancer types.
Table 1
MiRNAs that regulate EMT and their targets in different cancer types
Cancer type
miRNA
Target
Reference
Breast
miR-24
Net1A
[99]
 
miR-29a
TTP
[100]
 
miR-106b-25
SMAD7
[101]
 
miR-221/222
TRPS1
[102]
 
miR-374a
WIF1, PTEN, WNT5A
[103]
 
miR-375
MTDH
[104]
 
miR-448
SATB1
[105]
 
miR-506
Vimentin, SNAI2, CD151
[86]
 
miR-661
Nectin-1, StarD10
[106]
GC
miR-7
IGF1R
[20]
 
miR-27
APC
[107]
 
miR-106b-25
SMAD7
[101]
 
miR-197
p120 catenin
[108]
HCC
miR-21
PTEN, hSulf-1
[109]
 
miR-194
BMI-1
[110]
 
miR-490-3p
ERGIC3
[111]
 
miR-491
MMP-9
[112]
 
miR-612
AKT2
[113]
HNSCC
miR-138
Vimentin, ZEB2, EZH2
[91]
LAD
Let-7c
Bcl-xl
[114]
Liver
miR-216a/217
PTEN, SMAD7
[115]
Lung
miR-365
HMGA2
[116]
Melanoma
miR-137
CtBP1
[117]
NSCLC
miR-134
FOXM1
[118]
 
miR-149
FOXM1
[119]
Ovarian
miR-187
Dab2
[120]
Pancreatic
miR-126
ADAM9
[121]
Abbreviations: Net1A Neuroepithelial cell transforming 1, TTP Tristetraprolin, TRPS1 Trichorh inophalangeal 1, WIF1 Wnt inhibitory factor-1, MTDH Metadherin, SATB1 Special AT-rich sequence-binding protein-1, GC Gastric cancer, IGF1R Insulin-like growth factor-1 receptor, APC Adenomatous polyposis coli, HCC Hepatocellular carcinoma, hSulf-1 Human sulfatase-1, BMI-1, B lymphoma mouse Moloney leukemia virus insertion region 1, ERGIC3 Endoplasmic reticulum-Golgi intermediate compartment protein 3, HNSCC Head and neck squamous cell carcinoma, LAD Lung adenocarcinoma, CtBP1 Carboxyl-terminal binding protein 1, NSCLC Non-small cell lung cancer, FOXM1 Forkhead box M1, Dab2 Disabled homolog-2, ADAM9 Disintegrin and metalloproteinase domain-containing protein 9.
Targeting EMT and MET may provide effective therapeutics for cancer. However, therapeutic intervention may be complex because EMT occurs at an early stage of metastasis and MET occurs at later stages. MiRNAs that inhibit EMT, such as miR-141, were found in the circulation of patients with metastatic colon cancer, and high levels of plasma miR-141 were predictive of poor survival [122]. As miR-141 may promote MET, it is conceivable that miR-141 promotes tumor growth at distant sites at a late stage of metastasis, a theory that warrants further investigation. A recent report by Oscar et al. provided supporting evidence that MET is essential for the colonization and metastasis of differentiated carcinomas because of EMT-associated growth arrest [123]. Jeff et al. also demonstrated that activation of EMT promotes local tumor invasion, intravasation, and extravasation of the systemic circulation; MET is essential for establishing macrometastases [124]. As EMT is associated with decreased cell proliferation and MET promotes metastatic growth, it is still unknown whether EMT inhibition is a logical approach to preventing metastasis.
Most studies have shown that, as post-transcriptional regulators, lncRNA and miRNA play important roles in EMT and are important markers and tools in cancer diagnosis, prognosis, and therapeutics. However, lncRNA and miRNA have multiple targets that are involved in multiple different physiological processes; therefore, the role of therapeutics that target lncRNA or miRNA should be validated in vi vo to determine their overall physiological effect.

Acknowledgements

We thank Ms. Ann Sutton in the Department of Scientific Publications at MD Anderson for editing this manuscript. This study was partially supported by U.S. National Institutes of Health grants U24 CA143835, P50 CA083639, and U54 CA151668; MD Anderson support grant CA016672; and a grant from the Blanton-Davis Ovarian Cancer Research Program.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​ ) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed to discussing and writing this manuscript. All authors have read and approved the final manuscript.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

© Springer Medizin

Bis 11. April 2024 bestellen und im ersten Jahr 50 % sparen!

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

© Springer Medizin

Bis 11. April 2024 bestellen und im ersten Jahr 50 % sparen!

Literatur
1.
Zurück zum Zitat Thiery JP, Sleeman JP: Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006, 7: 131-142. 10.1038/nrm1835.PubMed Thiery JP, Sleeman JP: Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006, 7: 131-142. 10.1038/nrm1835.PubMed
2.
Zurück zum Zitat Chang CC, Hsu WH, Wang CC, Chou CH, Kuo MY, Lin BR, Chen ST, Tai SK, Kuo ML, Yang MH: Connective tissue growth factor activates pluripotency genes and mesenchymal-epithelial transition in head and neck cancer cells. Cancer Res. 2013, 73: 4147-4157. 10.1158/0008-5472.CAN-12-4085.PubMed Chang CC, Hsu WH, Wang CC, Chou CH, Kuo MY, Lin BR, Chen ST, Tai SK, Kuo ML, Yang MH: Connective tissue growth factor activates pluripotency genes and mesenchymal-epithelial transition in head and neck cancer cells. Cancer Res. 2013, 73: 4147-4157. 10.1158/0008-5472.CAN-12-4085.PubMed
3.
Zurück zum Zitat Wu CY, Tsai YP, Wu MZ, Teng SC, Wu KJ: Epigenetic reprogramming and post-transcriptional regulation during the epithelial-mesenchymal transition. Trends Genet. 2012, 28: 454-463. 10.1016/j.tig.2012.05.005.PubMed Wu CY, Tsai YP, Wu MZ, Teng SC, Wu KJ: Epigenetic reprogramming and post-transcriptional regulation during the epithelial-mesenchymal transition. Trends Genet. 2012, 28: 454-463. 10.1016/j.tig.2012.05.005.PubMed
4.
Zurück zum Zitat Lamouille S, Subramanyam D, Blelloch R, Derynck R: Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Curr Opin Cell Biol. 2013, 25: 200-207. 10.1016/j.ceb.2013.01.008.PubMedCentralPubMed Lamouille S, Subramanyam D, Blelloch R, Derynck R: Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Curr Opin Cell Biol. 2013, 25: 200-207. 10.1016/j.ceb.2013.01.008.PubMedCentralPubMed
5.
Zurück zum Zitat Yu Z, Pestell TG, Lisanti MP, Pestell RG: Cancer stem cells. Int J Biochem Cell Biol. 2012, 44: 2144-2151. 10.1016/j.biocel.2012.08.022.PubMedCentralPubMed Yu Z, Pestell TG, Lisanti MP, Pestell RG: Cancer stem cells. Int J Biochem Cell Biol. 2012, 44: 2144-2151. 10.1016/j.biocel.2012.08.022.PubMedCentralPubMed
6.
Zurück zum Zitat Mendez MG, Kojima S, Goldman RD: Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J. 2010, 2010: 24- Mendez MG, Kojima S, Goldman RD: Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J. 2010, 2010: 24-
7.
Zurück zum Zitat Yang J, Eddy JA, Pan Y, Hategan A, Tabus I, Wang Y, Cogdell D, Price ND, Pollock RE, Lazar AJ, Hunt KK, Trent JC, Zhang W: Integrated proteomics and genomics analysis reveals a novel mesenchymal to epithelial reverting transition in leiomyosarcoma through regulation of slug. Mol Cell Proteomics. 2010, 9: 2405-2413. 10.1074/mcp.M110.000240.PubMedCentralPubMed Yang J, Eddy JA, Pan Y, Hategan A, Tabus I, Wang Y, Cogdell D, Price ND, Pollock RE, Lazar AJ, Hunt KK, Trent JC, Zhang W: Integrated proteomics and genomics analysis reveals a novel mesenchymal to epithelial reverting transition in leiomyosarcoma through regulation of slug. Mol Cell Proteomics. 2010, 9: 2405-2413. 10.1074/mcp.M110.000240.PubMedCentralPubMed
8.
Zurück zum Zitat Huang T, Alvarez A, Hu B, Cheng SY: Noncoding RNAs in cancer and cancer stem cells. Chin J Cancer. 2013, 32: 582-593. 10.5732/cjc.013.10170.PubMedCentralPubMed Huang T, Alvarez A, Hu B, Cheng SY: Noncoding RNAs in cancer and cancer stem cells. Chin J Cancer. 2013, 32: 582-593. 10.5732/cjc.013.10170.PubMedCentralPubMed
9.
Zurück zum Zitat Zhao Y, Guo Q, Chen J, Hu J, Wang S, Sun Y: Role of long non-coding RNA HULC in cell proliferation, apoptosis and tumor metastasis of gastric cancer: a clinical and in vitro investigation. Oncol Rep. 2014, 31: 358-364.PubMed Zhao Y, Guo Q, Chen J, Hu J, Wang S, Sun Y: Role of long non-coding RNA HULC in cell proliferation, apoptosis and tumor metastasis of gastric cancer: a clinical and in vitro investigation. Oncol Rep. 2014, 31: 358-364.PubMed
10.
Zurück zum Zitat Xu ZY, Yu QM, Du YA, Yang LT, Dong RZ, Huang L, Yu PF, Cheng XD: Knockdown of long non-coding RNA HOTAIR suppresses tumor invasion and reverses epithelial-mesenchymal transition in gastric cancer. Int J Biol Sci. 2013, 9: 587-597. 10.7150/ijbs.6339.PubMedCentralPubMed Xu ZY, Yu QM, Du YA, Yang LT, Dong RZ, Huang L, Yu PF, Cheng XD: Knockdown of long non-coding RNA HOTAIR suppresses tumor invasion and reverses epithelial-mesenchymal transition in gastric cancer. Int J Biol Sci. 2013, 9: 587-597. 10.7150/ijbs.6339.PubMedCentralPubMed
11.
Zurück zum Zitat Ying L, Chen Q, Wang Y, Zhou Z, Huang Y, Qiu F: Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol Biosyst. 2012, 8: 2289-2294. 10.1039/c2mb25070e.PubMed Ying L, Chen Q, Wang Y, Zhou Z, Huang Y, Qiu F: Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol Biosyst. 2012, 8: 2289-2294. 10.1039/c2mb25070e.PubMed
12.
Zurück zum Zitat Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J: Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett. 2013, 333: 213-221. 10.1016/j.canlet.2013.01.033.PubMed Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J: Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett. 2013, 333: 213-221. 10.1016/j.canlet.2013.01.033.PubMed
13.
Zurück zum Zitat Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010, 464: 1071-1076. 10.1038/nature08975.PubMedCentralPubMed Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010, 464: 1071-1076. 10.1038/nature08975.PubMedCentralPubMed
14.
Zurück zum Zitat Hu P, Yang J, Hou Y, Zhang H, Zeng Z, Zhao L, Yu T, Tang X, Tu G, Cui X, Liu M: LncRNA expression signatures of twist-induced epithelial-to-mesenchymal transition in MCF10A cells. Cell Signal. 2014, 26: 83-93. 10.1016/j.cellsig.2013.10.001.PubMed Hu P, Yang J, Hou Y, Zhang H, Zeng Z, Zhao L, Yu T, Tang X, Tu G, Cui X, Liu M: LncRNA expression signatures of twist-induced epithelial-to-mesenchymal transition in MCF10A cells. Cell Signal. 2014, 26: 83-93. 10.1016/j.cellsig.2013.10.001.PubMed
15.
Zurück zum Zitat Li CH, Chen Y: Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol. 2013, 45: 1895-1910. 10.1016/j.biocel.2013.05.030.PubMed Li CH, Chen Y: Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol. 2013, 45: 1895-1910. 10.1016/j.biocel.2013.05.030.PubMed
16.
Zurück zum Zitat Hassan O, Ahmad A, Sethi S, Sarkar FH: Recent updates on the role of microRNAs in prostate cancer. J Hematol Oncol. 2012, 5: 9-10.1186/1756-8722-5-9.PubMedCentralPubMed Hassan O, Ahmad A, Sethi S, Sarkar FH: Recent updates on the role of microRNAs in prostate cancer. J Hematol Oncol. 2012, 5: 9-10.1186/1756-8722-5-9.PubMedCentralPubMed
17.
Zurück zum Zitat Budhu A, Ji J, Wang XW: The clinical potential of microRNAs. J Hematol Oncol. 2010, 3: 37-10.1186/1756-8722-3-37.PubMedCentralPubMed Budhu A, Ji J, Wang XW: The clinical potential of microRNAs. J Hematol Oncol. 2010, 3: 37-10.1186/1756-8722-3-37.PubMedCentralPubMed
18.
Zurück zum Zitat Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Sacca M, Memeo L, Colarossi C, Francescangeli F, Biffoni M, Collura D, Giacobbe A, D’Urso L, Falchi M, Venneri MA, Muto G, De Maria R, Bonci D:Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene. 2011, 30: 4231-4242. 10.1038/onc.2011.140.PubMed Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Sacca M, Memeo L, Colarossi C, Francescangeli F, Biffoni M, Collura D, Giacobbe A, D’Urso L, Falchi M, Venneri MA, Muto G, De Maria R, Bonci D:Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene. 2011, 30: 4231-4242. 10.1038/onc.2011.140.PubMed
19.
Zurück zum Zitat Tan S, Li R, Ding K, Lobie PE, Zhu T:miR-198 inhibits migration and invasion of hepatocellular carcinoma cells by targeting the HGF/c-MET pathway. FEBS Lett. 2011, 585: 2229-2234. 10.1016/j.febslet.2011.05.042.PubMed Tan S, Li R, Ding K, Lobie PE, Zhu T:miR-198 inhibits migration and invasion of hepatocellular carcinoma cells by targeting the HGF/c-MET pathway. FEBS Lett. 2011, 585: 2229-2234. 10.1016/j.febslet.2011.05.042.PubMed
20.
Zurück zum Zitat Zhao X, Dou W, He L, Liang S, Tie J, Liu C, Li T, Lu Y, Mo P, Shi Y, Wu K, Nie Y, Fan D: MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene. 2013, 32: 1363-1372. 10.1038/onc.2012.156.PubMed Zhao X, Dou W, He L, Liang S, Tie J, Liu C, Li T, Lu Y, Mo P, Shi Y, Wu K, Nie Y, Fan D: MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene. 2013, 32: 1363-1372. 10.1038/onc.2012.156.PubMed
21.
Zurück zum Zitat Guttilla IK, Adams BD, White BA: ERalpha, microRNAs, and the epithelial-mesenchymal transition in breast cancer. Trends Endocrinol Metab. 2012, 23: 73-82. 10.1016/j.tem.2011.12.001.PubMed Guttilla IK, Adams BD, White BA: ERalpha, microRNAs, and the epithelial-mesenchymal transition in breast cancer. Trends Endocrinol Metab. 2012, 23: 73-82. 10.1016/j.tem.2011.12.001.PubMed
22.
Zurück zum Zitat Du R, Sun W, Xia L, Zhao A, Yu Y, Zhao L, Wang H, Huang C, Sun S: Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells. PLoS One. 2012, 7: e30771-10.1371/journal.pone.0030771.PubMedCentralPubMed Du R, Sun W, Xia L, Zhao A, Yu Y, Zhao L, Wang H, Huang C, Sun S: Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells. PLoS One. 2012, 7: e30771-10.1371/journal.pone.0030771.PubMedCentralPubMed
23.
Zurück zum Zitat Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E, Wellner U, Dimmler A, Faller G, Schubert J, Brabletz T: The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J. 2011, 30: 770-782. 10.1038/emboj.2010.349.PubMedCentralPubMed Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E, Wellner U, Dimmler A, Faller G, Schubert J, Brabletz T: The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J. 2011, 30: 770-782. 10.1038/emboj.2010.349.PubMedCentralPubMed
24.
Zurück zum Zitat Saydam O, Shen Y, Wurdinger T, Senol O, Boke E, James MF, Tannous BA, Stemmer-Rachamimov AO, Yi M, Stephens RM, Fraefel C, Gusella JF, Krichevsky AM, Breakefield XO: Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway. Mol Cell Biol. 2009, 29: 5923-5940. 10.1128/MCB.00332-09.PubMedCentralPubMed Saydam O, Shen Y, Wurdinger T, Senol O, Boke E, James MF, Tannous BA, Stemmer-Rachamimov AO, Yi M, Stephens RM, Fraefel C, Gusella JF, Krichevsky AM, Breakefield XO: Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway. Mol Cell Biol. 2009, 29: 5923-5940. 10.1128/MCB.00332-09.PubMedCentralPubMed
25.
Zurück zum Zitat Gill BJ, Gibbons DL, Roudsari LC, Saik JE, Rizvi ZH, Roybal JD, Kurie JM, West JL: A synthetic matrix with independently tunable biochemistry and mechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model. Cancer Res. 2012, 72: 6013-6023. 10.1158/0008-5472.CAN-12-0895.PubMedCentralPubMed Gill BJ, Gibbons DL, Roudsari LC, Saik JE, Rizvi ZH, Roybal JD, Kurie JM, West JL: A synthetic matrix with independently tunable biochemistry and mechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model. Cancer Res. 2012, 72: 6013-6023. 10.1158/0008-5472.CAN-12-0895.PubMedCentralPubMed
26.
Zurück zum Zitat Xu Q, Wang L, Li H, Han Q, Li J, Qu X, Huang S, Zhao RC: Mesenchymal stem cells play a potential role in regulating the establishment and maintenance of epithelial-mesenchymal transition in MCF7 human breast cancer cells by paracrine and induced autocrine TGF-beta. Int J Oncol. 2012, 41: 959-968.PubMed Xu Q, Wang L, Li H, Han Q, Li J, Qu X, Huang S, Zhao RC: Mesenchymal stem cells play a potential role in regulating the establishment and maintenance of epithelial-mesenchymal transition in MCF7 human breast cancer cells by paracrine and induced autocrine TGF-beta. Int J Oncol. 2012, 41: 959-968.PubMed
27.
Zurück zum Zitat Xiong M, Jiang L, Zhou Y, Qiu W, Fang L, Tan R, Wen P, Yang J: The miR-200 family regulates TGF-beta1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol. 2012, 302: F369-F379. 10.1152/ajprenal.00268.2011.PubMed Xiong M, Jiang L, Zhou Y, Qiu W, Fang L, Tan R, Wen P, Yang J: The miR-200 family regulates TGF-beta1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol. 2012, 302: F369-F379. 10.1152/ajprenal.00268.2011.PubMed
28.
Zurück zum Zitat Turcatel G, Rubin N, El-Hashash A, Warburton D: MIR-99a and MIR-99b modulate TGF-beta induced epithelial to mesenchymal plasticity in normal murine mammary gland cells. PLoS One. 2012, 7: e31032-10.1371/journal.pone.0031032.PubMedCentralPubMed Turcatel G, Rubin N, El-Hashash A, Warburton D: MIR-99a and MIR-99b modulate TGF-beta induced epithelial to mesenchymal plasticity in normal murine mammary gland cells. PLoS One. 2012, 7: e31032-10.1371/journal.pone.0031032.PubMedCentralPubMed
29.
Zurück zum Zitat Su A, He S, Tian B, Hu W, Zhang Z: MicroRNA-221 mediates the effects of PDGF-BB on migration, proliferation, and the epithelial-mesenchymal transition in pancreatic cancer cells. PLoS One. 2013, 8: e71309-10.1371/journal.pone.0071309.PubMedCentralPubMed Su A, He S, Tian B, Hu W, Zhang Z: MicroRNA-221 mediates the effects of PDGF-BB on migration, proliferation, and the epithelial-mesenchymal transition in pancreatic cancer cells. PLoS One. 2013, 8: e71309-10.1371/journal.pone.0071309.PubMedCentralPubMed
30.
Zurück zum Zitat Hong JP, Li XM, Li MX, Zheng FL: VEGF suppresses epithelial-mesenchymal transition by inhibiting the expression of Smad3 and miR192, a Smad3-dependent microRNA. Int J Mol Med. 2013, 31: 1436-1442.PubMed Hong JP, Li XM, Li MX, Zheng FL: VEGF suppresses epithelial-mesenchymal transition by inhibiting the expression of Smad3 and miR192, a Smad3-dependent microRNA. Int J Mol Med. 2013, 31: 1436-1442.PubMed
31.
Zurück zum Zitat Wang B, Herman-Edelstein M, Koh P, Burns W, Jandeleit-Dahm K, Watson A, Saleem M, Goodall GJ, Twigg SM, Cooper ME, Kanthatidis P: E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes. 2010, 59: 1794-1802. 10.2337/db09-1736.PubMedCentralPubMed Wang B, Herman-Edelstein M, Koh P, Burns W, Jandeleit-Dahm K, Watson A, Saleem M, Goodall GJ, Twigg SM, Cooper ME, Kanthatidis P: E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes. 2010, 59: 1794-1802. 10.2337/db09-1736.PubMedCentralPubMed
32.
Zurück zum Zitat Zhang Z, Liu ZB, Ren WM, Ye XG, Zhang YY: The miR-200 family regulates the epithelial-mesenchymal transition induced by EGF/EGFR in anaplastic thyroid cancer cells. Int J Mol Med. 2012, 30: 856-862.PubMed Zhang Z, Liu ZB, Ren WM, Ye XG, Zhang YY: The miR-200 family regulates the epithelial-mesenchymal transition induced by EGF/EGFR in anaplastic thyroid cancer cells. Int J Mol Med. 2012, 30: 856-862.PubMed
33.
Zurück zum Zitat Lei C, Wang Y, Huang Y, Yu H, Wu L, Huang L: Up-regulated miR155 reverses the epithelial-mesenchymal transition induced by EGF and increases chemo-sensitivity to cisplatin in human Caski cervical cancer cells. PLoS One. 2012, 7: e52310-10.1371/journal.pone.0052310.PubMedCentralPubMed Lei C, Wang Y, Huang Y, Yu H, Wu L, Huang L: Up-regulated miR155 reverses the epithelial-mesenchymal transition induced by EGF and increases chemo-sensitivity to cisplatin in human Caski cervical cancer cells. PLoS One. 2012, 7: e52310-10.1371/journal.pone.0052310.PubMedCentralPubMed
34.
Zurück zum Zitat Mongroo PS, Rustgi AK: The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther. 2010, 10: 219-222. 10.4161/cbt.10.3.12548.PubMedCentralPubMed Mongroo PS, Rustgi AK: The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther. 2010, 10: 219-222. 10.4161/cbt.10.3.12548.PubMedCentralPubMed
35.
Zurück zum Zitat Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008, 10: 593-601. 10.1038/ncb1722.PubMed Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008, 10: 593-601. 10.1038/ncb1722.PubMed
36.
Zurück zum Zitat Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T: A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008, 9: 582-589. 10.1038/embor.2008.74.PubMedCentralPubMed Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T: A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008, 9: 582-589. 10.1038/embor.2008.74.PubMedCentralPubMed
37.
Zurück zum Zitat Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, Brunton VG, Morton J, Sansom O, Schuler J, Stemmler MP, Herzberger C, Hopt U, Keck T, Brabletz S, Brabletz T, Darling D, zur Hausen A, Brunton VG, Morton J, Sansom O, Schuler J, Stemmler MP, Herzberger C, Hopt U, Keck T, Brabletz S, Brabletz T:The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009, 11: 1487-1495. 10.1038/ncb1998.PubMed Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, Brunton VG, Morton J, Sansom O, Schuler J, Stemmler MP, Herzberger C, Hopt U, Keck T, Brabletz S, Brabletz T, Darling D, zur Hausen A, Brunton VG, Morton J, Sansom O, Schuler J, Stemmler MP, Herzberger C, Hopt U, Keck T, Brabletz S, Brabletz T:The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009, 11: 1487-1495. 10.1038/ncb1998.PubMed
38.
Zurück zum Zitat Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ: A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008, 68: 7846-7854. 10.1158/0008-5472.CAN-08-1942.PubMed Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ: A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008, 68: 7846-7854. 10.1158/0008-5472.CAN-08-1942.PubMed
39.
Zurück zum Zitat Mizuguchi Y, Specht S, Lunz JG, Isse K, Corbitt N, Takizawa T, Demetris AJ: Cooperation of p300 and PCAF in the control of microRNA 200c/141 transcription and epithelial characteristics. PLoS One. 2012, 7: e32449-10.1371/journal.pone.0032449.PubMedCentralPubMed Mizuguchi Y, Specht S, Lunz JG, Isse K, Corbitt N, Takizawa T, Demetris AJ: Cooperation of p300 and PCAF in the control of microRNA 200c/141 transcription and epithelial characteristics. PLoS One. 2012, 7: e32449-10.1371/journal.pone.0032449.PubMedCentralPubMed
40.
Zurück zum Zitat Ahn SM, Cha JY, Kim J, Kim D, Trang HT, Kim YM, Cho YH, Park D, Hong S: Smad3 regulates E-cadherin via miRNA-200 pathway. Oncogene. 2012, 31: 3051-3059. 10.1038/onc.2011.484.PubMed Ahn SM, Cha JY, Kim J, Kim D, Trang HT, Kim YM, Cho YH, Park D, Hong S: Smad3 regulates E-cadherin via miRNA-200 pathway. Oncogene. 2012, 31: 3051-3059. 10.1038/onc.2011.484.PubMed
41.
Zurück zum Zitat Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, Yu WH, Rehman SK, Hsu JL, Lee HH, Liu M, Chen CT, Yu D, Hung MC: p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol. 2011, 13: 317-323. 10.1038/ncb2173.PubMedCentralPubMed Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, Yu WH, Rehman SK, Hsu JL, Lee HH, Liu M, Chen CT, Yu D, Hung MC: p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol. 2011, 13: 317-323. 10.1038/ncb2173.PubMedCentralPubMed
42.
Zurück zum Zitat Schubert J, Brabletz T: p53 Spreads out further: suppression of EMT and stemness by activating miR-200c expression. Cell Res. 2011, 21: 705-707. 10.1038/cr.2011.62.PubMedCentralPubMed Schubert J, Brabletz T: p53 Spreads out further: suppression of EMT and stemness by activating miR-200c expression. Cell Res. 2011, 21: 705-707. 10.1038/cr.2011.62.PubMedCentralPubMed
43.
Zurück zum Zitat Fu J, Rodova M, Nanta R, Meeker D, van Veldhuizen PJ, Srivastava RK, Shankar S: NPV-LDE-225 (Erismodegib) inhibits epithelial mesenchymal transition and self-renewal of glioblastoma initiating cells by regulating miR-21, miR-128, and miR-200. Neuro Oncol. 2013, 15: 691-706. 10.1093/neuonc/not011.PubMedCentralPubMed Fu J, Rodova M, Nanta R, Meeker D, van Veldhuizen PJ, Srivastava RK, Shankar S: NPV-LDE-225 (Erismodegib) inhibits epithelial mesenchymal transition and self-renewal of glioblastoma initiating cells by regulating miR-21, miR-128, and miR-200. Neuro Oncol. 2013, 15: 691-706. 10.1093/neuonc/not011.PubMedCentralPubMed
44.
Zurück zum Zitat Guo L, Chen C, Shi M, Wang F, Chen X, Diao D, Hu M, Yu M, Qian L, Guo N: Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelial-mesenchymal transition. Oncogene. 2013, 32: 5272-5282. 10.1038/onc.2012.573.PubMed Guo L, Chen C, Shi M, Wang F, Chen X, Diao D, Hu M, Yu M, Qian L, Guo N: Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelial-mesenchymal transition. Oncogene. 2013, 32: 5272-5282. 10.1038/onc.2012.573.PubMed
45.
Zurück zum Zitat Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HR, Sarkar FH:miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells. 2009, 27: 1712-1721. 10.1002/stem.101.PubMedCentralPubMed Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HR, Sarkar FH:miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells. 2009, 27: 1712-1721. 10.1002/stem.101.PubMedCentralPubMed
46.
Zurück zum Zitat Bao B, Wang Z, Ali S, Kong D, Li Y, Ahmad A, Banerjee S, Azmi AS, Miele L, Sarkar FH: Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett. 2011, 307: 26-36. 10.1016/j.canlet.2011.03.012.PubMedCentralPubMed Bao B, Wang Z, Ali S, Kong D, Li Y, Ahmad A, Banerjee S, Azmi AS, Miele L, Sarkar FH: Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett. 2011, 307: 26-36. 10.1016/j.canlet.2011.03.012.PubMedCentralPubMed
47.
Zurück zum Zitat Sureban SM, May R, Qu D, Weygant N, Chandrakesan P, Ali N, Lightfoot SA, Pantazis P, Rao CV, Postier RG, Houchen CW: DCLK1 Regulates Pluripotency and Angiogenic Factors via microRNA-Dependent Mechanisms in Pancreatic Cancer. PLoS One. 2013, 8: e73940-10.1371/journal.pone.0073940.PubMedCentralPubMed Sureban SM, May R, Qu D, Weygant N, Chandrakesan P, Ali N, Lightfoot SA, Pantazis P, Rao CV, Postier RG, Houchen CW: DCLK1 Regulates Pluripotency and Angiogenic Factors via microRNA-Dependent Mechanisms in Pancreatic Cancer. PLoS One. 2013, 8: e73940-10.1371/journal.pone.0073940.PubMedCentralPubMed
48.
Zurück zum Zitat Grassian AR, Lin F, Barrett R, Liu Y, Jiang W, Korpal M, Astley H, Gitterman D, Henley T, Howes R, Levell J, Korn JM, Pagliarini R: Isocitrate dehydrogenase (IDH) mutations promote a reversible ZEB1/microRNA (miR)-200-dependent epithelial-mesenchymal transition (EMT). J Biol Chem. 2012, 287: 42180-42194. 10.1074/jbc.M112.417832.PubMedCentralPubMed Grassian AR, Lin F, Barrett R, Liu Y, Jiang W, Korpal M, Astley H, Gitterman D, Henley T, Howes R, Levell J, Korn JM, Pagliarini R: Isocitrate dehydrogenase (IDH) mutations promote a reversible ZEB1/microRNA (miR)-200-dependent epithelial-mesenchymal transition (EMT). J Biol Chem. 2012, 287: 42180-42194. 10.1074/jbc.M112.417832.PubMedCentralPubMed
49.
Zurück zum Zitat Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T, Parenti AR, Daidone MG, Bicciato S, Piccolo S: A MicroRNA targeting dicer for metastasis control. Cell. 2010, 141: 1195-1207. 10.1016/j.cell.2010.05.017.PubMed Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T, Parenti AR, Daidone MG, Bicciato S, Piccolo S: A MicroRNA targeting dicer for metastasis control. Cell. 2010, 141: 1195-1207. 10.1016/j.cell.2010.05.017.PubMed
50.
Zurück zum Zitat Li BL, Lu C, Lu W, Yang TT, Qu J, Hong X, Wan XP:miR-130b is an EMT-related microRNA that targets DICER1 for aggression in endometrial cancer. Med Oncol. 2013, 30: 484-PubMed Li BL, Lu C, Lu W, Yang TT, Qu J, Hong X, Wan XP:miR-130b is an EMT-related microRNA that targets DICER1 for aggression in endometrial cancer. Med Oncol. 2013, 30: 484-PubMed
51.
Zurück zum Zitat Parker BC, Zhang W: Fusion genes in solid tumors: an emerging target for cancer diagnosis and treatment. Chin J Cancer. 2013, 32: 594-603. 10.5732/cjc.013.10178.PubMedCentralPubMed Parker BC, Zhang W: Fusion genes in solid tumors: an emerging target for cancer diagnosis and treatment. Chin J Cancer. 2013, 32: 594-603. 10.5732/cjc.013.10178.PubMedCentralPubMed
52.
Zurück zum Zitat Yoshimoto M, Joshua AM, Chilton-Macneill S, Bayani J, Selvarajah S, Evans AJ, Zielenska M, Squire JA: Three-color FISH analysis of TMPRSS2/ERG fusions in prostate cancer indicates that genomic microdeletion of chromosome 21 is associated with rearrangement. Neoplasia. 2006, 8: 465-469. 10.1593/neo.06283.PubMedCentralPubMed Yoshimoto M, Joshua AM, Chilton-Macneill S, Bayani J, Selvarajah S, Evans AJ, Zielenska M, Squire JA: Three-color FISH analysis of TMPRSS2/ERG fusions in prostate cancer indicates that genomic microdeletion of chromosome 21 is associated with rearrangement. Neoplasia. 2006, 8: 465-469. 10.1593/neo.06283.PubMedCentralPubMed
53.
Zurück zum Zitat Leshem O, Madar S, Kogan-Sakin I, Kamer I, Goldstein I, Brosh R, Cohen Y, Jacob-Hirsch J, Ehrlich M, Ben-Sasson S, Goldfinger N, Loewenthal R, Gazit E, Rotter V, Berger R: TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One. 2011, 6: e21650-10.1371/journal.pone.0021650.PubMedCentralPubMed Leshem O, Madar S, Kogan-Sakin I, Kamer I, Goldstein I, Brosh R, Cohen Y, Jacob-Hirsch J, Ehrlich M, Ben-Sasson S, Goldfinger N, Loewenthal R, Gazit E, Rotter V, Berger R: TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One. 2011, 6: e21650-10.1371/journal.pone.0021650.PubMedCentralPubMed
54.
Zurück zum Zitat Hur K, Toiyama Y, Takahashi M, Balaguer F, Nagasaka T, Koike J, Hemmi H, Koi M, Boland CR, Goel A: MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut. 2013, 62: 1315-1326. 10.1136/gutjnl-2011-301846.PubMedCentralPubMed Hur K, Toiyama Y, Takahashi M, Balaguer F, Nagasaka T, Koike J, Hemmi H, Koi M, Boland CR, Goel A: MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut. 2013, 62: 1315-1326. 10.1136/gutjnl-2011-301846.PubMedCentralPubMed
55.
Zurück zum Zitat Neves R, Scheel C, Weinhold S, Honisch E, Iwaniuk KM, Trompeter HI, Niederacher D, Wernet P, Santourlidis S, Uhrberg M: Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells. BMC Res Notes. 2010, 3: 219-10.1186/1756-0500-3-219.PubMedCentralPubMed Neves R, Scheel C, Weinhold S, Honisch E, Iwaniuk KM, Trompeter HI, Niederacher D, Wernet P, Santourlidis S, Uhrberg M: Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells. BMC Res Notes. 2010, 3: 219-10.1186/1756-0500-3-219.PubMedCentralPubMed
56.
Zurück zum Zitat Wiklund ED, Bramsen JB, Hulf T, Dyrskjot L, Ramanathan R, Hansen TB, Villadsen SB, Gao S, Ostenfeld MS, Borre M, Peter ME, Orntoft TF, Kjems J, Clark SJ: Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer. 2011, 128: 1327-1334. 10.1002/ijc.25461.PubMed Wiklund ED, Bramsen JB, Hulf T, Dyrskjot L, Ramanathan R, Hansen TB, Villadsen SB, Gao S, Ostenfeld MS, Borre M, Peter ME, Orntoft TF, Kjems J, Clark SJ: Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer. 2011, 128: 1327-1334. 10.1002/ijc.25461.PubMed
57.
Zurück zum Zitat Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S, Stampfer MR, Futscher BW: Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One. 2010, 5: e8697-10.1371/journal.pone.0008697.PubMedCentralPubMed Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S, Stampfer MR, Futscher BW: Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One. 2010, 5: e8697-10.1371/journal.pone.0008697.PubMedCentralPubMed
58.
Zurück zum Zitat Wang Z, Zhao Y, Smith E, Goodall GJ, Drew PA, Brabletz T, Yang C: Reversal and prevention of arsenic-induced human bronchial epithelial cell malignant transformation by microRNA-200b. Toxicol Sci. 2011, 121: 110-122. 10.1093/toxsci/kfr029.PubMedCentralPubMed Wang Z, Zhao Y, Smith E, Goodall GJ, Drew PA, Brabletz T, Yang C: Reversal and prevention of arsenic-induced human bronchial epithelial cell malignant transformation by microRNA-200b. Toxicol Sci. 2011, 121: 110-122. 10.1093/toxsci/kfr029.PubMedCentralPubMed
59.
Zurück zum Zitat Dong P, Karaayvaz M, Jia N, Kaneuchi M, Hamada J, Watari H, Sudo S, Ju J, Sakuragi N: Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene. 2013, 32: 3286-3295. 10.1038/onc.2012.334.PubMedCentralPubMed Dong P, Karaayvaz M, Jia N, Kaneuchi M, Hamada J, Watari H, Sudo S, Ju J, Sakuragi N: Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene. 2013, 32: 3286-3295. 10.1038/onc.2012.334.PubMedCentralPubMed
60.
Zurück zum Zitat Yokobori T, Suzuki S, Tanaka N, Inose T, Sohda M, Sano A, Sakai M, Nakajima M, Miyazaki T, Kato H, Kuwano H: MiR-150 is associated with poor prognosis in esophageal squamous cell carcinoma via targeting the EMT inducer ZEB1. Cancer Sci. 2013, 104: 48-54. 10.1111/cas.12030.PubMed Yokobori T, Suzuki S, Tanaka N, Inose T, Sohda M, Sano A, Sakai M, Nakajima M, Miyazaki T, Kato H, Kuwano H: MiR-150 is associated with poor prognosis in esophageal squamous cell carcinoma via targeting the EMT inducer ZEB1. Cancer Sci. 2013, 104: 48-54. 10.1111/cas.12030.PubMed
61.
Zurück zum Zitat Harazono Y, Muramatsu T, Endo H, Uzawa N, Kawano T, Harada K, Inazawa J, Kozaki k:miR-655 Is an EMT-suppressive MicroRNA targeting ZEB1 and TGFBR2. PLoS One. 2013, 8: e62757-10.1371/journal.pone.0062757.PubMedCentralPubMed Harazono Y, Muramatsu T, Endo H, Uzawa N, Kawano T, Harada K, Inazawa J, Kozaki k:miR-655 Is an EMT-suppressive MicroRNA targeting ZEB1 and TGFBR2. PLoS One. 2013, 8: e62757-10.1371/journal.pone.0062757.PubMedCentralPubMed
62.
Zurück zum Zitat Lee JY, Park MK, Park JH, Lee HJ, Shin DH, Kang Y, Lee CH, Kong G: Loss of the polycomb protein Mel-18 enhances the epithelial-mesenchymal transition by ZEB1 and ZEB2 expression through the downregulation of miR-205 in breast cancer. Oncogene. 2013, doi: 10.1038/onc.2013.53. [Epub ahead of print] Lee JY, Park MK, Park JH, Lee HJ, Shin DH, Kang Y, Lee CH, Kong G: Loss of the polycomb protein Mel-18 enhances the epithelial-mesenchymal transition by ZEB1 and ZEB2 expression through the downregulation of miR-205 in breast cancer. Oncogene. 2013, doi: 10.1038/onc.2013.53. [Epub ahead of print]
63.
Zurück zum Zitat Tucci P, Agostini M, Grespi F, Markert EK, Terrinoni A, Vousden KH, Muller PA, Dotsch V, Kehrloesser S, Sayan BS, Giaccone G, Lowe SW, Takahashi N, Vandenabeele P, Knight RA, Levine AJ, Melino G: Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer. Proc Natl Acad Sci U S A. 2012, 109: 15312-15317. 10.1073/pnas.1110977109.PubMedCentralPubMed Tucci P, Agostini M, Grespi F, Markert EK, Terrinoni A, Vousden KH, Muller PA, Dotsch V, Kehrloesser S, Sayan BS, Giaccone G, Lowe SW, Takahashi N, Vandenabeele P, Knight RA, Levine AJ, Melino G: Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer. Proc Natl Acad Sci U S A. 2012, 109: 15312-15317. 10.1073/pnas.1110977109.PubMedCentralPubMed
64.
Zurück zum Zitat Xu Q, Sun Q, Zhang J, Yu J, Chen W, Zhang Z: Downregulation of miR-153 contributes to epithelial-mesenchymal transition and tumor metastasis in human epithelial cancer. Carcinogenesis. 2013, 34: 539-549. 10.1093/carcin/bgs374.PubMed Xu Q, Sun Q, Zhang J, Yu J, Chen W, Zhang Z: Downregulation of miR-153 contributes to epithelial-mesenchymal transition and tumor metastasis in human epithelial cancer. Carcinogenesis. 2013, 34: 539-549. 10.1093/carcin/bgs374.PubMed
65.
Zurück zum Zitat Kim NH, Kim HS, Li XY, Lee I, Choi HS, Kang SE, Cha SY, Ryu JK, Yoon D, Fearon ER, Rowe RG, Lee S, Maher CA, Weiss SJ, Yook JI: A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol. 2011, 195: 417-433. 10.1083/jcb.201103097.PubMedCentralPubMed Kim NH, Kim HS, Li XY, Lee I, Choi HS, Kang SE, Cha SY, Ryu JK, Yoon D, Fearon ER, Rowe RG, Lee S, Maher CA, Weiss SJ, Yook JI: A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol. 2011, 195: 417-433. 10.1083/jcb.201103097.PubMedCentralPubMed
66.
Zurück zum Zitat Brabletz T: MiR-34 and SNAIL: another double-negative feedback loop controlling cellular plasticity/EMT governed by p53. Cell Cycle. 2012, 11: 215-216. 10.4161/cc.11.2.18900.PubMed Brabletz T: MiR-34 and SNAIL: another double-negative feedback loop controlling cellular plasticity/EMT governed by p53. Cell Cycle. 2012, 11: 215-216. 10.4161/cc.11.2.18900.PubMed
67.
Zurück zum Zitat Cha YH, Kim NH, Park C, Lee I, Kim HS, Yook JI: MiRNA-34 intrinsically links p53 tumor suppressor and Wnt signaling. Cell Cycle. 2012, 11: 1273-1281. 10.4161/cc.19618.PubMed Cha YH, Kim NH, Park C, Lee I, Kim HS, Yook JI: MiRNA-34 intrinsically links p53 tumor suppressor and Wnt signaling. Cell Cycle. 2012, 11: 1273-1281. 10.4161/cc.19618.PubMed
68.
Zurück zum Zitat Moes M, le Bechec A, Crespo I, Laurini C, Halavatyi A, Vetter G, Del Sol A, Friederich E: A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition. PLoS One. 2012, 7: e35440-10.1371/journal.pone.0035440.PubMedCentralPubMed Moes M, le Bechec A, Crespo I, Laurini C, Halavatyi A, Vetter G, Del Sol A, Friederich E: A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition. PLoS One. 2012, 7: e35440-10.1371/journal.pone.0035440.PubMedCentralPubMed
69.
Zurück zum Zitat Qu Y, Li WC, Hellem MR, Rostad K, Popa M, McCormack E, Oyan AM, Kalland KH, Ke XS: MiR-182 and miR-203 induce mesenchymal to epithelial transition and self-sufficiency of growth signals via repressing SNAI2 in prostate cells. Int J Cancer. 2013, 133: 544-555. 10.1002/ijc.28056.PubMed Qu Y, Li WC, Hellem MR, Rostad K, Popa M, McCormack E, Oyan AM, Kalland KH, Ke XS: MiR-182 and miR-203 induce mesenchymal to epithelial transition and self-sufficiency of growth signals via repressing SNAI2 in prostate cells. Int J Cancer. 2013, 133: 544-555. 10.1002/ijc.28056.PubMed
70.
Zurück zum Zitat Ding X, Park SI, McCauley LK, Wang CY: Signaling between transforming growth factor beta (TGF-beta) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. J Biol Chem. 2013, 288: 10241-10253. 10.1074/jbc.M112.443655.PubMedCentralPubMed Ding X, Park SI, McCauley LK, Wang CY: Signaling between transforming growth factor beta (TGF-beta) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. J Biol Chem. 2013, 288: 10241-10253. 10.1074/jbc.M112.443655.PubMedCentralPubMed
71.
Zurück zum Zitat Liu YN, Yin JJ, Abou-Kheir W, Hynes PG, Casey OM, Fang L, Yi M, Stephens RM, Seng V, Sheppard-Tillman H, Martin P, Kelly K: MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene. 2013, 32: 296-306. 10.1038/onc.2012.58.PubMed Liu YN, Yin JJ, Abou-Kheir W, Hynes PG, Casey OM, Fang L, Yi M, Stephens RM, Seng V, Sheppard-Tillman H, Martin P, Kelly K: MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene. 2013, 32: 296-306. 10.1038/onc.2012.58.PubMed
72.
Zurück zum Zitat Yang D, Sun Y, Hu L, Zheng H, Ji P, Pecot CV, Zhao Y, Reynold S, Cheng H, Rupaimoole R, Cogdell D, Nykter M, Broaddus R, Rodriguez-Aguayo C, Lopez-Berestein G, Liu J, Shmulevich I, Sood AK, Chen K, Zhang W: Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell. 2013, 23: 186-199. 10.1016/j.ccr.2012.12.020.PubMedCentralPubMed Yang D, Sun Y, Hu L, Zheng H, Ji P, Pecot CV, Zhao Y, Reynold S, Cheng H, Rupaimoole R, Cogdell D, Nykter M, Broaddus R, Rodriguez-Aguayo C, Lopez-Berestein G, Liu J, Shmulevich I, Sood AK, Chen K, Zhang W: Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell. 2013, 23: 186-199. 10.1016/j.ccr.2012.12.020.PubMedCentralPubMed
73.
Zurück zum Zitat Kumarswamy R, Mudduluru G, Ceppi P, Muppala S, Kozlowski M, Niklinski J, Papotti M, Allgayer H: MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer. Int J Cancer. 2012, 130: 2044-2053. 10.1002/ijc.26218.PubMed Kumarswamy R, Mudduluru G, Ceppi P, Muppala S, Kozlowski M, Niklinski J, Papotti M, Allgayer H: MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer. Int J Cancer. 2012, 130: 2044-2053. 10.1002/ijc.26218.PubMed
74.
Zurück zum Zitat Ru P, Steele R, Newhall P, Phillips NJ, Toth K, Ray RB:miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Mol Cancer Ther. 2012, 11: 1166-1173. 10.1158/1535-7163.MCT-12-0100.PubMed Ru P, Steele R, Newhall P, Phillips NJ, Toth K, Ray RB:miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Mol Cancer Ther. 2012, 11: 1166-1173. 10.1158/1535-7163.MCT-12-0100.PubMed
75.
Zurück zum Zitat Chang CJ, Hsu CC, Chang CH, Tsai LL, Chang YC, Lu SW, Yu CH, Huang HS, Wang JJ, Tsai CH, Chou MY, Yu CC, Hu FW: Let-7d functions as novel regulator of epithelial-mesenchymal transition and chemoresistant property in oral cancer. Oncol Rep. 2011, 26: 1003-1010.PubMed Chang CJ, Hsu CC, Chang CH, Tsai LL, Chang YC, Lu SW, Yu CH, Huang HS, Wang JJ, Tsai CH, Chou MY, Yu CC, Hu FW: Let-7d functions as novel regulator of epithelial-mesenchymal transition and chemoresistant property in oral cancer. Oncol Rep. 2011, 26: 1003-1010.PubMed
76.
Zurück zum Zitat Li B, Han Q, Zhu Y, Yu Y, Wang J, Jiang X: Down-regulation of miR-214 contributes to intrahepatic cholangiocarcinoma metastasis by targeting Twist. FEBS J. 2012, 279: 2393-2398.PubMed Li B, Han Q, Zhu Y, Yu Y, Wang J, Jiang X: Down-regulation of miR-214 contributes to intrahepatic cholangiocarcinoma metastasis by targeting Twist. FEBS J. 2012, 279: 2393-2398.PubMed
77.
Zurück zum Zitat Nairismagi ML, Vislovukh A, Meng Q, Kratassiouk G, Beldiman C, Petretich M, Groisman R, Fuchtbauer EM, Harel-Bellan A, Groisman I: Translational control of TWIST1 expression in MCF-10A cell lines recapitulating breast cancer progression. Oncogene. 2012, 31: 4960-4966. 10.1038/onc.2011.650.PubMed Nairismagi ML, Vislovukh A, Meng Q, Kratassiouk G, Beldiman C, Petretich M, Groisman R, Fuchtbauer EM, Harel-Bellan A, Groisman I: Translational control of TWIST1 expression in MCF-10A cell lines recapitulating breast cancer progression. Oncogene. 2012, 31: 4960-4966. 10.1038/onc.2011.650.PubMed
78.
Zurück zum Zitat Hernandez JM, Elahi A, Clark CW, Wang J, Humphries LA, Centeno B, Bloom G, Fuchs BC, Yeatman T, Shibata D: miR-675 Mediates Downregulation of Twist1 and Rb in AFP-Secreting Hepatocellular Carcinoma. Ann Surg Oncol. 2013, S625-635. Suppl 3 Hernandez JM, Elahi A, Clark CW, Wang J, Humphries LA, Centeno B, Bloom G, Fuchs BC, Yeatman T, Shibata D: miR-675 Mediates Downregulation of Twist1 and Rb in AFP-Secreting Hepatocellular Carcinoma. Ann Surg Oncol. 2013, S625-635. Suppl 3
79.
Zurück zum Zitat Yang F, Sun L, Li Q, Han X, Lei L, Zhang H, Shang Y: SET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional activities. EMBO J. 2012, 31: 110-123. 10.1038/emboj.2011.364.PubMedCentralPubMed Yang F, Sun L, Li Q, Han X, Lei L, Zhang H, Shang Y: SET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional activities. EMBO J. 2012, 31: 110-123. 10.1038/emboj.2011.364.PubMedCentralPubMed
80.
Zurück zum Zitat Song F, Zheng H, Liu B, Wei S, Dai H, Zhang L, Calin GA, Hao X, Wei Q, Zhang W, Chen K:An miR-502-binding site single-nucleotide polymorphism in the 3′-untranslated region of the SET8 gene is associated with early age of breast cancer onset. Clin Cancer Res. 2009, 15: 6292-6300. 10.1158/1078-0432.CCR-09-0826.PubMed Song F, Zheng H, Liu B, Wei S, Dai H, Zhang L, Calin GA, Hao X, Wei Q, Zhang W, Chen K:An miR-502-binding site single-nucleotide polymorphism in the 3′-untranslated region of the SET8 gene is associated with early age of breast cancer onset. Clin Cancer Res. 2009, 15: 6292-6300. 10.1158/1078-0432.CCR-09-0826.PubMed
81.
Zurück zum Zitat Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA: miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010, 12: 247-256.PubMedCentralPubMed Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA: miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010, 12: 247-256.PubMedCentralPubMed
82.
Zurück zum Zitat Cao M, Seike M, Soeno C, Mizutani H, Kitamura K, Minegishi Y, Noro R, Yoshimura A, Cai L, Gemma A: MiR-23a regulates TGF-beta-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells. Int J Oncol. 2012, 41: 869-875.PubMedCentralPubMed Cao M, Seike M, Soeno C, Mizutani H, Kitamura K, Minegishi Y, Noro R, Yoshimura A, Cai L, Gemma A: MiR-23a regulates TGF-beta-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells. Int J Oncol. 2012, 41: 869-875.PubMedCentralPubMed
83.
Zurück zum Zitat Khew-Goodall Y, Goodall GJ: Myc-modulated miR-9 makes more metastases. Nat Cell Biol. 2010, 12: 209-211.PubMed Khew-Goodall Y, Goodall GJ: Myc-modulated miR-9 makes more metastases. Nat Cell Biol. 2010, 12: 209-211.PubMed
84.
Zurück zum Zitat Lu MH, Huang CC, Pan MR, Chen HH, Hung WC: Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin Cancer Res. 2012, 18: 6416-6425. 10.1158/1078-0432.CCR-12-0832.PubMed Lu MH, Huang CC, Pan MR, Chen HH, Hung WC: Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin Cancer Res. 2012, 18: 6416-6425. 10.1158/1078-0432.CCR-12-0832.PubMed
85.
Zurück zum Zitat Sun Z, Han Q, Zhou N, Wang S, Lu S, Bai C, Zhao RC: MicroRNA-9 enhances migration and invasion through KLF17 in hepatocellular carcinoma. Mol Oncol. 2013, 7: 884-894. 10.1016/j.molonc.2013.04.007.PubMed Sun Z, Han Q, Zhou N, Wang S, Lu S, Bai C, Zhao RC: MicroRNA-9 enhances migration and invasion through KLF17 in hepatocellular carcinoma. Mol Oncol. 2013, 7: 884-894. 10.1016/j.molonc.2013.04.007.PubMed
86.
Zurück zum Zitat Arora H, Qureshi R, Park WY:miR-506 regulates epithelial mesenchymal transition in breast cancer cell lines. PLoS One. 2013, 8: e64273-10.1371/journal.pone.0064273.PubMedCentralPubMed Arora H, Qureshi R, Park WY:miR-506 regulates epithelial mesenchymal transition in breast cancer cell lines. PLoS One. 2013, 8: e64273-10.1371/journal.pone.0064273.PubMedCentralPubMed
87.
Zurück zum Zitat Cheng CW, Wang HW, Chang CW, Chu HW, Chen CY, Yu JC, Chao JI, Liu HF, Ding SL, Shen CY: MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res Treat. 2012, 134: 1081-1093. 10.1007/s10549-012-2034-4.PubMed Cheng CW, Wang HW, Chang CW, Chu HW, Chen CY, Yu JC, Chao JI, Liu HF, Ding SL, Shen CY: MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res Treat. 2012, 134: 1081-1093. 10.1007/s10549-012-2034-4.PubMed
88.
Zurück zum Zitat Shan SW, Fang L, Shatseva T, Rutnam ZJ, Yang X, Du W, Lu WY, Xuan JW, Deng Z, Yang BB: Mature miR-17-5p and passenger miR-17-3p induce hepatocellular carcinoma by targeting PTEN, GalNT7 and vimentin in different signal pathways. J Cell Sci. 2013, 126: 1517-1530. 10.1242/jcs.122895.PubMed Shan SW, Fang L, Shatseva T, Rutnam ZJ, Yang X, Du W, Lu WY, Xuan JW, Deng Z, Yang BB: Mature miR-17-5p and passenger miR-17-3p induce hepatocellular carcinoma by targeting PTEN, GalNT7 and vimentin in different signal pathways. J Cell Sci. 2013, 126: 1517-1530. 10.1242/jcs.122895.PubMed
89.
Zurück zum Zitat Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J:miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis. 2010, 31: 766-776. 10.1093/carcin/bgp250.PubMed Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J:miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis. 2010, 31: 766-776. 10.1093/carcin/bgp250.PubMed
90.
Zurück zum Zitat Yamasaki T, Seki N, Yamada Y, Yoshino H, Hidaka H, Chiyomaru T, Nohata N, Kinoshita T, Nakagawa M, Enokida H: Tumor suppressive microRNA138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma. Int J Oncol. 2012, 41: 805-817.PubMedCentralPubMed Yamasaki T, Seki N, Yamada Y, Yoshino H, Hidaka H, Chiyomaru T, Nohata N, Kinoshita T, Nakagawa M, Enokida H: Tumor suppressive microRNA138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma. Int J Oncol. 2012, 41: 805-817.PubMedCentralPubMed
91.
Zurück zum Zitat Liu X, Wang C, Chen Z, Jin Y, Wang Y, Kolokythas A, Dai Y, Zhao X: MicroRNA-138 suppresses epithelial-mesenchymal transition in squamous cell carcinoma cell lines. Biochem J. 2011, 440: 23-31. 10.1042/BJ20111006.PubMedCentralPubMed Liu X, Wang C, Chen Z, Jin Y, Wang Y, Kolokythas A, Dai Y, Zhao X: MicroRNA-138 suppresses epithelial-mesenchymal transition in squamous cell carcinoma cell lines. Biochem J. 2011, 440: 23-31. 10.1042/BJ20111006.PubMedCentralPubMed
92.
Zurück zum Zitat Tang O, Chen XM, Shen S, Hahn M, Pollock CA: MiRNA-200b represses transforming growth factor-beta1-induced EMT and fibronectin expression in kidney proximal tubular cells. Am J Physiol Renal Physiol. 2013, 304: F1266-1273. 10.1152/ajprenal.00302.2012.PubMed Tang O, Chen XM, Shen S, Hahn M, Pollock CA: MiRNA-200b represses transforming growth factor-beta1-induced EMT and fibronectin expression in kidney proximal tubular cells. Am J Physiol Renal Physiol. 2013, 304: F1266-1273. 10.1152/ajprenal.00302.2012.PubMed
93.
Zurück zum Zitat Shan SW, Lee DY, Deng Z, Shatseva T, Jeyapalan Z, Du WW, Zhang Y, Xuan JW, Yee SP, Siragam V, Yang BB: MicroRNA MiR-17 retards tissue growth and represses fibronectin expression. Nat Cell Biol. 2009, 11: 1031-1038. 10.1038/ncb1917.PubMed Shan SW, Lee DY, Deng Z, Shatseva T, Jeyapalan Z, Du WW, Zhang Y, Xuan JW, Yee SP, Siragam V, Yang BB: MicroRNA MiR-17 retards tissue growth and represses fibronectin expression. Nat Cell Biol. 2009, 11: 1031-1038. 10.1038/ncb1917.PubMed
94.
Zurück zum Zitat Chai S, Ma S: Clinical implications of microRNAs in liver cancer stem cells. Chin J Cancer. 2013, 32: 419-426. 10.5732/cjc.013.10038.PubMedCentralPubMed Chai S, Ma S: Clinical implications of microRNAs in liver cancer stem cells. Chin J Cancer. 2013, 32: 419-426. 10.5732/cjc.013.10038.PubMedCentralPubMed
95.
Zurück zum Zitat Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M: Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005, 438: 685-689. 10.1038/nature04303.PubMed Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M: Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005, 438: 685-689. 10.1038/nature04303.PubMed
96.
Zurück zum Zitat Rupaimoole R, Han HD, Lopez-Berestein G, Sood AK: MicroRNA therapeutics: principles, expectations, and challenges. Chin J Cancer. 2011, 30: 368-370. 10.5732/cjc.011.10186.PubMedCentralPubMed Rupaimoole R, Han HD, Lopez-Berestein G, Sood AK: MicroRNA therapeutics: principles, expectations, and challenges. Chin J Cancer. 2011, 30: 368-370. 10.5732/cjc.011.10186.PubMedCentralPubMed
97.
Zurück zum Zitat Song F, Yang D, Liu B, Guo Y, Zheng H, Li L, Wang T, Yu J, Zhao Y, Niu R, Liang H, Winkler H, Zhang W, Hao X, Chen K: Integrated microRNA network analyses identify a poor-prognosis subtype of gastric cancer characterized by the miR-200 family. Clin Cancer Res. 2013, 20: 878-889.PubMed Song F, Yang D, Liu B, Guo Y, Zheng H, Li L, Wang T, Yu J, Zhao Y, Niu R, Liang H, Winkler H, Zhang W, Hao X, Chen K: Integrated microRNA network analyses identify a poor-prognosis subtype of gastric cancer characterized by the miR-200 family. Clin Cancer Res. 2013, 20: 878-889.PubMed
98.
Zurück zum Zitat Pecot CV, Rupaimoole R, Yang D, Akbani R, Ivan C, Lu C, Wu S, Han HD, Shah MY, Rodriguez-Aguayo C, Bottsford-Miller J, Liu Y, Kim SB, Unruh A, Gonzalez-Villasana V, Huang L, Zand B, Moreno-Smith M, Mangala LS, Taylor M, Dalton HJ, Sehgal V, Wen Y, Kang Y, Baggerly KA, Lee JS, Ram PT, Ravoori MK, Kundra V, Zhang X: Tumour angiogenesis regulation by the miR-200 family. Nat Commun. 2013, 4: 2427-PubMedCentralPubMed Pecot CV, Rupaimoole R, Yang D, Akbani R, Ivan C, Lu C, Wu S, Han HD, Shah MY, Rodriguez-Aguayo C, Bottsford-Miller J, Liu Y, Kim SB, Unruh A, Gonzalez-Villasana V, Huang L, Zand B, Moreno-Smith M, Mangala LS, Taylor M, Dalton HJ, Sehgal V, Wen Y, Kang Y, Baggerly KA, Lee JS, Ram PT, Ravoori MK, Kundra V, Zhang X: Tumour angiogenesis regulation by the miR-200 family. Nat Commun. 2013, 4: 2427-PubMedCentralPubMed
99.
Zurück zum Zitat Papadimitriou E, Vasilaki E, Vorvis C, Iliopoulos D, Moustakas A, Kardassis D, Stournaras C: Differential regulation of the two RhoA-specific GEF isoforms Net1/Net1A by TGF-beta and miR-24: role in epithelial-to-mesenchymal transition. Oncogene. 2012, 31: 2862-2875. 10.1038/onc.2011.457.PubMed Papadimitriou E, Vasilaki E, Vorvis C, Iliopoulos D, Moustakas A, Kardassis D, Stournaras C: Differential regulation of the two RhoA-specific GEF isoforms Net1/Net1A by TGF-beta and miR-24: role in epithelial-to-mesenchymal transition. Oncogene. 2012, 31: 2862-2875. 10.1038/onc.2011.457.PubMed
100.
Zurück zum Zitat Gebeshuber CA, Zatloukal K, Martinez J:miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep. 2009, 10: 400-405. 10.1038/embor.2009.9.PubMedCentralPubMed Gebeshuber CA, Zatloukal K, Martinez J:miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep. 2009, 10: 400-405. 10.1038/embor.2009.9.PubMedCentralPubMed
101.
Zurück zum Zitat Smith AL, Iwanaga R, Drasin DJ, Micalizzi DS, Vartuli RL, Tan AC, Ford HL: The miR-106b-25 cluster targets Smad7, activates TGF-beta signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene. 2012, 31: 5162-5171. 10.1038/onc.2012.11.PubMedCentralPubMed Smith AL, Iwanaga R, Drasin DJ, Micalizzi DS, Vartuli RL, Tan AC, Ford HL: The miR-106b-25 cluster targets Smad7, activates TGF-beta signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene. 2012, 31: 5162-5171. 10.1038/onc.2012.11.PubMedCentralPubMed
102.
Zurück zum Zitat Stinson S, Lackner MR, Adai AT, Yu N, Kim HJ, O’Brien C, Spokerke J, Jhunjhunwala S, Boyd Z, Januario T, Newman RJ, Yue P, Bourgon R, Modrusan Z, Stern HM, Warming S, de Sauvage FJ, Amler L, Yeh RF, Dornan D: TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci Signal. 2011, 4: ra41-10.1126/scisignal.4159ec41.PubMed Stinson S, Lackner MR, Adai AT, Yu N, Kim HJ, O’Brien C, Spokerke J, Jhunjhunwala S, Boyd Z, Januario T, Newman RJ, Yue P, Bourgon R, Modrusan Z, Stern HM, Warming S, de Sauvage FJ, Amler L, Yeh RF, Dornan D: TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci Signal. 2011, 4: ra41-10.1126/scisignal.4159ec41.PubMed
103.
Zurück zum Zitat Cai J, Guan H, Fang L, Yang Y, Zhu X, Yuan J, Wu J, Li M: MicroRNA-374a activates Wnt/beta-catenin signaling to promote breast cancer metastasis. J Clin Invest. 2013, 123: 566-579.PubMedCentralPubMed Cai J, Guan H, Fang L, Yang Y, Zhu X, Yuan J, Wu J, Li M: MicroRNA-374a activates Wnt/beta-catenin signaling to promote breast cancer metastasis. J Clin Invest. 2013, 123: 566-579.PubMedCentralPubMed
104.
Zurück zum Zitat Ward A, Balwierz A, Zhang JD, Kublbeck M, Pawitan Y, Hielscher T, Wiemann S, Sahin O: Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene. 2013, 32: 1173-1182. 10.1038/onc.2012.128.PubMed Ward A, Balwierz A, Zhang JD, Kublbeck M, Pawitan Y, Hielscher T, Wiemann S, Sahin O: Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene. 2013, 32: 1173-1182. 10.1038/onc.2012.128.PubMed
105.
Zurück zum Zitat Li QQ, Chen ZQ, Cao XX, Xu JD, Xu JW, Chen YY, Wang WJ, Chen Q, Tang F, Liu XP, Xu ZD: Involvement of NF-kappaB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial-mesenchymal transition of breast cancer cells. Cell Death Differ. 2011, 18: 16-25. 10.1038/cdd.2010.103.PubMedCentralPubMed Li QQ, Chen ZQ, Cao XX, Xu JD, Xu JW, Chen YY, Wang WJ, Chen Q, Tang F, Liu XP, Xu ZD: Involvement of NF-kappaB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial-mesenchymal transition of breast cancer cells. Cell Death Differ. 2011, 18: 16-25. 10.1038/cdd.2010.103.PubMedCentralPubMed
106.
Zurück zum Zitat Vetter G, Saumet A, Moes M, Vallar L, le Bechec A, Laurini C, Sabbah M, Arar K, Theillet C, Lecellier CH, Friederich E:miR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene. 2010, 29: 4436-4448. 10.1038/onc.2010.181.PubMedCentralPubMed Vetter G, Saumet A, Moes M, Vallar L, le Bechec A, Laurini C, Sabbah M, Arar K, Theillet C, Lecellier CH, Friederich E:miR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene. 2010, 29: 4436-4448. 10.1038/onc.2010.181.PubMedCentralPubMed
107.
Zurück zum Zitat Zhang Z, Liu S, Shi R, Zhao G:miR-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genet. 2011, 204: 486-491. 10.1016/j.cancergen.2011.07.004.PubMed Zhang Z, Liu S, Shi R, Zhao G:miR-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genet. 2011, 204: 486-491. 10.1016/j.cancergen.2011.07.004.PubMed
108.
Zurück zum Zitat Hamada S, Satoh K, Miura S, Hirota M, Kanno A, Masamune A, Kikuta K, Kume K, Unno J, Egawa S, Motoi F, Unno M, Shimosegawa T:miR-197 induces epithelial-mesenchymal transition in pancreatic cancer cells by targeting p120 catenin. J Cell Physiol. 2013, 228: 1255-1263. 10.1002/jcp.24280.PubMed Hamada S, Satoh K, Miura S, Hirota M, Kanno A, Masamune A, Kikuta K, Kume K, Unno J, Egawa S, Motoi F, Unno M, Shimosegawa T:miR-197 induces epithelial-mesenchymal transition in pancreatic cancer cells by targeting p120 catenin. J Cell Physiol. 2013, 228: 1255-1263. 10.1002/jcp.24280.PubMed
109.
Zurück zum Zitat Bao L, Yan Y, Xu C, Ji W, Shen S, Xu G, Zeng Y, Sun B, Qian H, Chen L, Wu M, Su C, Chen J: MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. Cancer Lett. 2013, 337: 226-236. 10.1016/j.canlet.2013.05.007.PubMed Bao L, Yan Y, Xu C, Ji W, Shen S, Xu G, Zeng Y, Sun B, Qian H, Chen L, Wu M, Su C, Chen J: MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. Cancer Lett. 2013, 337: 226-236. 10.1016/j.canlet.2013.05.007.PubMed
110.
Zurück zum Zitat Dong P, Kaneuchi M, Watari H, Hamada J, Sudo S, Ju J, Sakuragi N: MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1. Mol Cancer. 2011, 10: 99-10.1186/1476-4598-10-99.PubMedCentralPubMed Dong P, Kaneuchi M, Watari H, Hamada J, Sudo S, Ju J, Sakuragi N: MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1. Mol Cancer. 2011, 10: 99-10.1186/1476-4598-10-99.PubMedCentralPubMed
111.
Zurück zum Zitat Zhang LY, Liu M, Li X, Tang H:miR-490-3p modulates cell growth and epithelial to mesenchymal transition of hepatocellular carcinoma cells by targeting endoplasmic reticulum-Golgi intermediate compartment protein 3 (ERGIC3). J Biol Chem. 2013, 288: 4035-4047. 10.1074/jbc.M112.410506.PubMedCentralPubMed Zhang LY, Liu M, Li X, Tang H:miR-490-3p modulates cell growth and epithelial to mesenchymal transition of hepatocellular carcinoma cells by targeting endoplasmic reticulum-Golgi intermediate compartment protein 3 (ERGIC3). J Biol Chem. 2013, 288: 4035-4047. 10.1074/jbc.M112.410506.PubMedCentralPubMed
112.
Zurück zum Zitat Zhou Y, Li Y, Ye J, Jiang R, Yan H, Yang X, Liu Q, Zhang J: MicroRNA-491 is involved in metastasis of hepatocellular carcinoma by inhibitions of matrix metalloproteinase and epithelial to mesenchymal transition. Liver Int. 2013, 33: 1271-1280. 10.1111/liv.12190.PubMed Zhou Y, Li Y, Ye J, Jiang R, Yan H, Yang X, Liu Q, Zhang J: MicroRNA-491 is involved in metastasis of hepatocellular carcinoma by inhibitions of matrix metalloproteinase and epithelial to mesenchymal transition. Liver Int. 2013, 33: 1271-1280. 10.1111/liv.12190.PubMed
113.
Zurück zum Zitat Tao ZH, Wan JL, Zeng LY, Xie L, Sun HC, Qin LX, Wang L, Zhou J, Ren ZG, Li YX, Fan J, Wu WZ:miR-612 suppresses the invasive-metastatic cascade in hepatocellular carcinoma. J Exp Med. 2013, 210: 789-803. 10.1084/jem.20120153.PubMedCentralPubMed Tao ZH, Wan JL, Zeng LY, Xie L, Sun HC, Qin LX, Wang L, Zhou J, Ren ZG, Li YX, Fan J, Wu WZ:miR-612 suppresses the invasive-metastatic cascade in hepatocellular carcinoma. J Exp Med. 2013, 210: 789-803. 10.1084/jem.20120153.PubMedCentralPubMed
114.
Zurück zum Zitat Cui SY, Huang JY, Chen YT, Song HZ, Feng B, Huang GC, Wang R, Chen LB, De W: Let-7c governs the acquisition of chemo- or radioresistance and epithelial-to-mesenchymal transition phenotypes in docetaxel-resistant lung adenocarcinoma. Mol Cancer Res. 2013, 11: 699-713. 10.1158/1541-7786.MCR-13-0019-T.PubMed Cui SY, Huang JY, Chen YT, Song HZ, Feng B, Huang GC, Wang R, Chen LB, De W: Let-7c governs the acquisition of chemo- or radioresistance and epithelial-to-mesenchymal transition phenotypes in docetaxel-resistant lung adenocarcinoma. Mol Cancer Res. 2013, 11: 699-713. 10.1158/1541-7786.MCR-13-0019-T.PubMed
115.
Zurück zum Zitat Xia H, Ooi LL, Hui KM: MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology. 2013, 58: 629-641. 10.1002/hep.26369.PubMed Xia H, Ooi LL, Hui KM: MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology. 2013, 58: 629-641. 10.1002/hep.26369.PubMed
116.
Zurück zum Zitat Qi J, Rice SJ, Salzberg AC, Runkle EA, Liao J, Zander DS, Mu D: MiR-365 regulates lung cancer and developmental gene thyroid transcription factor 1. Cell Cycle. 2012, 11: 177-186. 10.4161/cc.11.1.18576.PubMedCentralPubMed Qi J, Rice SJ, Salzberg AC, Runkle EA, Liao J, Zander DS, Mu D: MiR-365 regulates lung cancer and developmental gene thyroid transcription factor 1. Cell Cycle. 2012, 11: 177-186. 10.4161/cc.11.1.18576.PubMedCentralPubMed
117.
Zurück zum Zitat Luo C, Tetteh PW, Merz PR, Dickes E, Abukiwan A, Hotz-Wagenblatt A, Holland-Cunz S, Sinnberg T, Schittek B, Schadendorf D, Diederichs S, Eichmuller SB:miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes. J Invest Dermatol. 2013, 133: 768-775. 10.1038/jid.2012.357.PubMed Luo C, Tetteh PW, Merz PR, Dickes E, Abukiwan A, Hotz-Wagenblatt A, Holland-Cunz S, Sinnberg T, Schittek B, Schadendorf D, Diederichs S, Eichmuller SB:miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes. J Invest Dermatol. 2013, 133: 768-775. 10.1038/jid.2012.357.PubMed
118.
Zurück zum Zitat Li J, Wang Y, Luo J, Fu Z, Ying J, Yu Y, Yu W:miR-134 inhibits epithelial to mesenchymal transition by targeting FOXM1 in non-small cell lung cancer cells. FEBS Lett. 2012, 586: 3761-3765. 10.1016/j.febslet.2012.09.016.PubMed Li J, Wang Y, Luo J, Fu Z, Ying J, Yu Y, Yu W:miR-134 inhibits epithelial to mesenchymal transition by targeting FOXM1 in non-small cell lung cancer cells. FEBS Lett. 2012, 586: 3761-3765. 10.1016/j.febslet.2012.09.016.PubMed
119.
Zurück zum Zitat Ke Y, Zhao W, Xiong J, Cao R:miR-149 inhibits Non-small-cell lung cancer cells EMT by targeting FOXM1. Biochem Res Int. 2013, 2013: 506731-PubMedCentralPubMed Ke Y, Zhao W, Xiong J, Cao R:miR-149 inhibits Non-small-cell lung cancer cells EMT by targeting FOXM1. Biochem Res Int. 2013, 2013: 506731-PubMedCentralPubMed
120.
Zurück zum Zitat Chao A, Lin CY, Lee YS, Tsai CL, Wei PC, Hsueh S, Wu TI, Tsai CN, Wang CJ, Chao AS, Wang TH, Lai CH: Regulation of ovarian cancer progression by microRNA-187 through targeting Disabled homolog-2. Oncogene. 2012, 31: 764-775. 10.1038/onc.2011.269.PubMed Chao A, Lin CY, Lee YS, Tsai CL, Wei PC, Hsueh S, Wu TI, Tsai CN, Wang CJ, Chao AS, Wang TH, Lai CH: Regulation of ovarian cancer progression by microRNA-187 through targeting Disabled homolog-2. Oncogene. 2012, 31: 764-775. 10.1038/onc.2011.269.PubMed
121.
Zurück zum Zitat Hamada S, Satoh K, Fujibuchi W, Hirota M, Kanno A, Unno J, Masamune A, Kikuta K, Kume K, Shimosegawa T: MiR-126 acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9. Mol Cancer Res. 2012, 10: 3-10. 10.1158/1541-7786.MCR-11-0272.PubMed Hamada S, Satoh K, Fujibuchi W, Hirota M, Kanno A, Unno J, Masamune A, Kikuta K, Kume K, Shimosegawa T: MiR-126 acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9. Mol Cancer Res. 2012, 10: 3-10. 10.1158/1541-7786.MCR-11-0272.PubMed
122.
Zurück zum Zitat Cheng H, Zhang L, Cogdell DE, Zheng H, Schetter AJ, Nykter M, Harris CC, Chen K, Hamilton SR, Zhang W: Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One. 2011, 6: e17745-10.1371/journal.pone.0017745.PubMedCentralPubMed Cheng H, Zhang L, Cogdell DE, Zheng H, Schetter AJ, Nykter M, Harris CC, Chen K, Hamilton SR, Zhang W: Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One. 2011, 6: e17745-10.1371/journal.pone.0017745.PubMedCentralPubMed
123.
Zurück zum Zitat Ocana OH, Corcoles R, Fabra A, Moreno-Bueno G, Acloque H, Vega S, Barrallo-Gimeno A, Cano A, Nieto MA: Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell. 2012, 22: 709-724. 10.1016/j.ccr.2012.10.012.PubMed Ocana OH, Corcoles R, Fabra A, Moreno-Bueno G, Acloque H, Vega S, Barrallo-Gimeno A, Cano A, Nieto MA: Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell. 2012, 22: 709-724. 10.1016/j.ccr.2012.10.012.PubMed
124.
Zurück zum Zitat Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J: Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell. 2012, 22: 725-736. 10.1016/j.ccr.2012.09.022.PubMedCentralPubMed Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J: Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell. 2012, 22: 725-736. 10.1016/j.ccr.2012.09.022.PubMedCentralPubMed
Metadaten
Titel
Post-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions
verfasst von
Fei Guo
Brittany C Parker Kerrigan
Da Yang
Limei Hu
Ilya Shmulevich
Anil K Sood
Fengxia Xue
Wei Zhang
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2014
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/1756-8722-7-19

Weitere Artikel der Ausgabe 1/2014

Journal of Hematology & Oncology 1/2014 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.