Skip to main content
Erschienen in: Lasers in Medical Science 3/2019

22.10.2018 | Original Article

Potentials and pitfalls of gold-silica nanoshell as the exogenous contrast agent for optical diagnosis of cancers: a numerical parametric study

verfasst von: Xiao Xu

Erschienen in: Lasers in Medical Science | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

For nanoshell-assisted optical detection of cancers, gold shell, silica core (gold-silica) nanoshells are engineered to be the exogenous contrast agent. This work has performed systematic numerical parametric study to investigate the nonlinear dependences of the hemisphere diffuse reflectance on gold-silica nanoshells, laser irradiance, and hosting biology tissue. Planar phantom based tissue models have been constructed as platforms for study. The radiant transport equation (RTE) has been applied to mathematically describe the interactions among laser lights, hosting tissues, and hosted nanoshells. The diffuse reflectance signal under various combinations of parametric conditions has been computed and analyzed. Parametric parameters whose effects on the diffuse reflectance signal have been investigated are: (1) optical properties of a nanoshell generic, (2) nanoshell volume fraction, which is an indicator of nanoshell accumulation in the target tissue site, (3) the width of irradiating laser beam, and (4) thickness of the tissue slab. Seven nanoshell generics have been tested as the exogenous contrast agent including the R[50, 10] (radius of silica core is 50 nm and thickness of gold shell is 10 nm), R[55, 25], R[40, 15], R[40, 40], R[104, 23], R[75, 40] and R[154, 24] nanoshells. It has been found the R[55, 25] nanoshell works best as the exogenous contrast agent, the R[75, 40] and R[104, 23] nanoshells show good potentials as well while the R[50, 10] and R[40, 15] nanoshells should be avoided for diagnostic usage. The practice of neglecting the absorption characteristic of the exogenous contrast agent, which is quite common among the bio-nano community, has been proven to end up with an over-prediction of the effectiveness of the exogenous contrast agent. Such practice therefore is not well justified and should be avoided in future research. Interactions among laser lights, the tissue and nanoshells are highly nonlinear, demonstrated by that nanoshell generics with totally different optical properties might have similar effects on the diffuse reflectance signal and vice versa. Prior to any bench experiment, preliminary numerical investigation as this work has showcased is highly recommended.
Literatur
1.
Zurück zum Zitat Liang C, Sung KB, Richards-Kortum RR, Descour MR (2002) Design of a high-numerical aperture minimature microscope objective for an endoscopic fiber confocal reflectance microscopy. Appl Optics 41(22):4603–4610CrossRef Liang C, Sung KB, Richards-Kortum RR, Descour MR (2002) Design of a high-numerical aperture minimature microscope objective for an endoscopic fiber confocal reflectance microscopy. Appl Optics 41(22):4603–4610CrossRef
2.
Zurück zum Zitat Sung KB, Liang C, Descour M, Collier T, Follen M, Richards-Kortum R (2002) Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissue. IEEE T Biomedi Eng 49(10):1168–1172CrossRef Sung KB, Liang C, Descour M, Collier T, Follen M, Richards-Kortum R (2002) Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissue. IEEE T Biomedi Eng 49(10):1168–1172CrossRef
3.
Zurück zum Zitat Barton JK, Halas NJ, West JL, Drezek RA (2004) Nanoshells as an optical coherence tomography contrast agent. Proc SPIE 5316: 99–106CrossRef Barton JK, Halas NJ, West JL, Drezek RA (2004) Nanoshells as an optical coherence tomography contrast agent. Proc SPIE 5316: 99–106CrossRef
4.
Zurück zum Zitat Tucker-Schwartz JM, Meyer TA, Patil CA, Duvall CL, Skala MC (2012) In vivo photothermal optical coherence tomography of gold nanorod contrast agents. Biomed Opt Express 3(11):2882–2895CrossRef Tucker-Schwartz JM, Meyer TA, Patil CA, Duvall CL, Skala MC (2012) In vivo photothermal optical coherence tomography of gold nanorod contrast agents. Biomed Opt Express 3(11):2882–2895CrossRef
5.
Zurück zum Zitat Kirillin MY, Agrba PD, Sirotkina MA, Shirmanova MV, Zagainova EV, Kamensky VA (2010) Nanoparticles as contrast-enhancing agents in optical coherence tomography imaging of the structural components of skin: quantitative evaluation. Quant Electron 40(6):525–530CrossRef Kirillin MY, Agrba PD, Sirotkina MA, Shirmanova MV, Zagainova EV, Kamensky VA (2010) Nanoparticles as contrast-enhancing agents in optical coherence tomography imaging of the structural components of skin: quantitative evaluation. Quant Electron 40(6):525–530CrossRef
6.
Zurück zum Zitat Zhou L, Wu G, Wei H, Guo Z, Yang H, He Y, Xie S, Liu Y, Meng Q (2015) Effects of titanium dioxide nanoparticles coupled with diode laser on optical properties of in vitro normal and cancerous human lung tissues studied with optical coherence tomography and diffuse reflectance spectra. J Biomed Opt 20(4):046003 (10pp) Zhou L, Wu G, Wei H, Guo Z, Yang H, He Y, Xie S, Liu Y, Meng Q (2015) Effects of titanium dioxide nanoparticles coupled with diode laser on optical properties of in vitro normal and cancerous human lung tissues studied with optical coherence tomography and diffuse reflectance spectra. J Biomed Opt 20(4):046003 (10pp)
7.
Zurück zum Zitat Zhou F, Wei H, Ye X, Hu K, Wu G, Yang H, He Y, Xie S, Guo Z (2015) Influence of nanoparticles accumulation on optical properties of human normal and cancerous liver tissue in vitro estimated by OCT. Phys Med Biol 60:1385–1397CrossRefPubMed Zhou F, Wei H, Ye X, Hu K, Wu G, Yang H, He Y, Xie S, Guo Z (2015) Influence of nanoparticles accumulation on optical properties of human normal and cancerous liver tissue in vitro estimated by OCT. Phys Med Biol 60:1385–1397CrossRefPubMed
8.
Zurück zum Zitat Krainov A, Mokeeva A, Sergeeva E, Zabotnov S, Kirillin M (2013) Nanoparticles as contrasting agents in diffuse optical spectroscopy. Proce SPIE 86990Q(8pp):8699 Krainov A, Mokeeva A, Sergeeva E, Zabotnov S, Kirillin M (2013) Nanoparticles as contrasting agents in diffuse optical spectroscopy. Proce SPIE 86990Q(8pp):8699
9.
Zurück zum Zitat Zhang YQ, Wu GY, Wei HJ, Guo ZY, Yang HQ, He YH, Xie SS, Liu Y (2014) Effect of differently sized nanoparticles’ accumulation on the optical properties of ex vivo normal and adenomatous human colon tissue with OCT imaging and diffuse reflectance spectra. Laser Phys Lett 085901(8pp):11 Zhang YQ, Wu GY, Wei HJ, Guo ZY, Yang HQ, He YH, Xie SS, Liu Y (2014) Effect of differently sized nanoparticles’ accumulation on the optical properties of ex vivo normal and adenomatous human colon tissue with OCT imaging and diffuse reflectance spectra. Laser Phys Lett 085901(8pp):11
10.
Zurück zum Zitat Lin A, Lewinski N, West J, Halas N, Drezek R (2005) Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells. J Biomed Opt 10(6):064035CrossRefPubMed Lin A, Lewinski N, West J, Halas N, Drezek R (2005) Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells. J Biomed Opt 10(6):064035CrossRefPubMed
11.
Zurück zum Zitat Bayer CL, Kelvekar J, Emelianov SY (2013) Influence of nanosecond pulsed laser irradiance on the viability of nanoparticle-loaded cells: implications for safety of contrast-enhanced photo-acoustic imaging. Nanotechnology 24:465101 (8pp)CrossRef Bayer CL, Kelvekar J, Emelianov SY (2013) Influence of nanosecond pulsed laser irradiance on the viability of nanoparticle-loaded cells: implications for safety of contrast-enhanced photo-acoustic imaging. Nanotechnology 24:465101 (8pp)CrossRef
12.
Zurück zum Zitat Fang W, Wei Y (2016) Upconversion nanoparticle as a theranostic agent for tumor imaging and therapy. J Innov Opt Health Sci 9(4):1630006(20pp)CrossRef Fang W, Wei Y (2016) Upconversion nanoparticle as a theranostic agent for tumor imaging and therapy. J Innov Opt Health Sci 9(4):1630006(20pp)CrossRef
13.
Zurück zum Zitat Sajjadi AY, Suratkar A, Mitra K, Grace MS (2012) Short-pulse laser-based system for detection of tumors: administration of gold nanoparticles enhances contrast. J Nanotechnology Eng Med 3:021002 (6pp)CrossRef Sajjadi AY, Suratkar A, Mitra K, Grace MS (2012) Short-pulse laser-based system for detection of tumors: administration of gold nanoparticles enhances contrast. J Nanotechnology Eng Med 3:021002 (6pp)CrossRef
14.
Zurück zum Zitat Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM (2011) Nanoparticles as contrast agents for in-vivo bio-imaging: current status and future perspectives. Anal Bioanal Chem 399:3–27CrossRefPubMed Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM (2011) Nanoparticles as contrast agents for in-vivo bio-imaging: current status and future perspectives. Anal Bioanal Chem 399:3–27CrossRefPubMed
15.
Zurück zum Zitat Bardhan R, Grady NK, Cole JR, Joshi A, Halas NJ (2009) Fluorescene enhancement by Au nanostructures: nanoshells and nanorods. ACS Nano 3(3):744–752CrossRefPubMed Bardhan R, Grady NK, Cole JR, Joshi A, Halas NJ (2009) Fluorescene enhancement by Au nanostructures: nanoshells and nanorods. ACS Nano 3(3):744–752CrossRefPubMed
16.
Zurück zum Zitat Zagaynova EV, Shirmanova MV, Kirillin MY, Khlebtsov BN, Orlova AG, Balalaeva IV, Sirotkina MA, Bugrova ML, Agrba PD, Kamensky VA (2008) Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Phys Med Biol 53:4995–5009CrossRefPubMed Zagaynova EV, Shirmanova MV, Kirillin MY, Khlebtsov BN, Orlova AG, Balalaeva IV, Sirotkina MA, Bugrova ML, Agrba PD, Kamensky VA (2008) Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Phys Med Biol 53:4995–5009CrossRefPubMed
17.
Zurück zum Zitat Key J, Leary JF (2014) Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomed 9:711–726 Key J, Leary JF (2014) Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomed 9:711–726
18.
Zurück zum Zitat Shi Y, Fan S, Chen S, Jiang X, Zhao Q, Ren Q, Cui D, Zhou C (2014) OCT imaging enhancement of ovarian cancer using gold and gold/silver nanorods. Proc SPIE 9268:92682Q (7pp)CrossRef Shi Y, Fan S, Chen S, Jiang X, Zhao Q, Ren Q, Cui D, Zhou C (2014) OCT imaging enhancement of ovarian cancer using gold and gold/silver nanorods. Proc SPIE 9268:92682Q (7pp)CrossRef
19.
Zurück zum Zitat Zeng H, Petek M, Zorman MT, McWilliams A, Palcic B, Lam S (2004) Integrated endoscopy system for simultaneous imaging and spectroscopy for early lung cancer detection. Opt Lett 29(6):587–589CrossRefPubMed Zeng H, Petek M, Zorman MT, McWilliams A, Palcic B, Lam S (2004) Integrated endoscopy system for simultaneous imaging and spectroscopy for early lung cancer detection. Opt Lett 29(6):587–589CrossRefPubMed
20.
Zurück zum Zitat Onofre MA, Sopsto MR, Navarro CM (2001) Reliability of toluidine blue application in the detection of oral epithelial dysplasia and in situ and invasive squamous cell carcinomas, Oral Surg, Oral Med. Oral Path Oral Radi 91(5):535–540CrossRef Onofre MA, Sopsto MR, Navarro CM (2001) Reliability of toluidine blue application in the detection of oral epithelial dysplasia and in situ and invasive squamous cell carcinomas, Oral Surg, Oral Med. Oral Path Oral Radi 91(5):535–540CrossRef
21.
Zurück zum Zitat Tincani AJ, Brandalise N, Altemani A, Scanavini RC, Valerio J, Lage HT, Molina G, Martins AS (2000) Diagnosis of superifical esophageal cancer and dysplasia using endoscopic screening with a 2% Lugol dye solution in patients with head and neck cancer. Head Neck 22(2):170–174CrossRefPubMed Tincani AJ, Brandalise N, Altemani A, Scanavini RC, Valerio J, Lage HT, Molina G, Martins AS (2000) Diagnosis of superifical esophageal cancer and dysplasia using endoscopic screening with a 2% Lugol dye solution in patients with head and neck cancer. Head Neck 22(2):170–174CrossRefPubMed
22.
Zurück zum Zitat Xu X, Meade A, Bayazitoglu Y (2013) Feasibility of selctive nanoparticle-assisted photothermal treatment for an embedded liver tumor. Lasers Med Sci 28:1159–1168CrossRefPubMed Xu X, Meade A, Bayazitoglu Y (2013) Feasibility of selctive nanoparticle-assisted photothermal treatment for an embedded liver tumor. Lasers Med Sci 28:1159–1168CrossRefPubMed
23.
Zurück zum Zitat Xu X, Meade A, Bayazitoglu Y (2011) Numerical investigation of nanoparticle-assisted laser-induced interstitial thermotherapy, toward tumor and cancer treatment. Lasers Med Sci 26:213–222CrossRefPubMed Xu X, Meade A, Bayazitoglu Y (2011) Numerical investigation of nanoparticle-assisted laser-induced interstitial thermotherapy, toward tumor and cancer treatment. Lasers Med Sci 26:213–222CrossRefPubMed
24.
Zurück zum Zitat Xu X, Bayazitoglu Y, Meade A (2018) Evaluation of theranostic perspective of gold-silica nanoshell for cancers: a numerical parametric study. Lasers Med Sci under review Xu X, Bayazitoglu Y, Meade A (2018) Evaluation of theranostic perspective of gold-silica nanoshell for cancers: a numerical parametric study. Lasers Med Sci under review
25.
Zurück zum Zitat Vera J, Bayazitoglu Y (2009) Gold nanoshell density variation with laser power for induced hyperthermia. Int J Heat Mass Tran 52:564–573CrossRef Vera J, Bayazitoglu Y (2009) Gold nanoshell density variation with laser power for induced hyperthermia. Int J Heat Mass Tran 52:564–573CrossRef
26.
Zurück zum Zitat Vera J, Bayazitoglu Y (2009) A note on laser penetration in nanoshell deposited tissue. Int J Heat Mass Tran 52(13/14):3402–3406CrossRef Vera J, Bayazitoglu Y (2009) A note on laser penetration in nanoshell deposited tissue. Int J Heat Mass Tran 52(13/14):3402–3406CrossRef
27.
Zurück zum Zitat Eillot AM, Schwartz JS, Wang J, Shetty AM, Bougoyne C, O’Neal D, Hazle J, Stafford RJ (2009) Quantitative comparison of delta P1 versus optical diffusion approximations for modeling near-infrared gold nanoshell heating. Med Phys 36(4):1351–1358CrossRef Eillot AM, Schwartz JS, Wang J, Shetty AM, Bougoyne C, O’Neal D, Hazle J, Stafford RJ (2009) Quantitative comparison of delta P1 versus optical diffusion approximations for modeling near-infrared gold nanoshell heating. Med Phys 36(4):1351–1358CrossRef
28.
Zurück zum Zitat Feng Y, Fuentes D, Hawkins A, Bass J, Rylander MN, Eillot A, Shetty A, Stafford RJ, Oden JT (2009) Nanoshell-mediated laser surgery simulation for prostate cancer treatment. Eng Comput 25:3–13CrossRefPubMedPubMedCentral Feng Y, Fuentes D, Hawkins A, Bass J, Rylander MN, Eillot A, Shetty A, Stafford RJ, Oden JT (2009) Nanoshell-mediated laser surgery simulation for prostate cancer treatment. Eng Comput 25:3–13CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Xu X, Meade A, Bayazitoglu Y (2010) Fluence rate distribution in laser-induced interstitial thermotherapy by meshfree collocation. Int J Heat Mass Tran 53:4017–4022CrossRef Xu X, Meade A, Bayazitoglu Y (2010) Fluence rate distribution in laser-induced interstitial thermotherapy by meshfree collocation. Int J Heat Mass Tran 53:4017–4022CrossRef
30.
Zurück zum Zitat Chai J, Lee H, Patankar S (1994) Finite volume method for radiative heat transfer. J Thermophys Heat Tran 8(3):419–425CrossRef Chai J, Lee H, Patankar S (1994) Finite volume method for radiative heat transfer. J Thermophys Heat Tran 8(3):419–425CrossRef
31.
Zurück zum Zitat Lin A (2006) Nanoengineered contrast agents for biophotonics: modeling and experimental measurements of gold nanoshell reflectance. Rice University, Ph.D dissertation Lin A (2006) Nanoengineered contrast agents for biophotonics: modeling and experimental measurements of gold nanoshell reflectance. Rice University, Ph.D dissertation
32.
Zurück zum Zitat Henyey L, Greenstein J (1941) Diffuse radiation in the galaxy. Astrophys J 93:70–83CrossRef Henyey L, Greenstein J (1941) Diffuse radiation in the galaxy. Astrophys J 93:70–83CrossRef
33.
Zurück zum Zitat Mie G (1908) Beitrage zur Optik truber Medien, speziell kolloidaler metallosungen. Ann Phys 330:377–445CrossRef Mie G (1908) Beitrage zur Optik truber Medien, speziell kolloidaler metallosungen. Ann Phys 330:377–445CrossRef
34.
Zurück zum Zitat Hull E (1998) Nichols MG and Forster TH Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes. Phys Med Biol 43:3381–3404CrossRefPubMed Hull E (1998) Nichols MG and Forster TH Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes. Phys Med Biol 43:3381–3404CrossRefPubMed
35.
Zurück zum Zitat Liu Q, Zhang C, Ramanujam N (2003) Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum. J Biomed Opt 8(2):223–236CrossRefPubMed Liu Q, Zhang C, Ramanujam N (2003) Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum. J Biomed Opt 8(2):223–236CrossRefPubMed
36.
Zurück zum Zitat Liu Q, Ramanujam N (2004) Experimental proof of the feasibility of using an angled fiber-optic probe for depth-sensitive fluorescence spectroscopy of turbid media. Opt Lett 29(17):2034–2036CrossRefPubMed Liu Q, Ramanujam N (2004) Experimental proof of the feasibility of using an angled fiber-optic probe for depth-sensitive fluorescence spectroscopy of turbid media. Opt Lett 29(17):2034–2036CrossRefPubMed
37.
Zurück zum Zitat Sokolov K, Drezek R, Gossage K, Richards-Kortum R (1999) Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology. Opt Lett 5(13):302–317 Sokolov K, Drezek R, Gossage K, Richards-Kortum R (1999) Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology. Opt Lett 5(13):302–317
38.
Zurück zum Zitat Sokolov K, Galvan J, Myakov A, Lacy A, Lotan R, Richards-Kortum R (2002) Realistic three-dimensional epithelial tissue phantoms for biomedical optics. J Biomed Opt 7(1):148–156CrossRefPubMed Sokolov K, Galvan J, Myakov A, Lacy A, Lotan R, Richards-Kortum R (2002) Realistic three-dimensional epithelial tissue phantoms for biomedical optics. J Biomed Opt 7(1):148–156CrossRefPubMed
39.
Zurück zum Zitat Gossage KW, Smith CM, Kanter EM, Hariri LP, Stone AL, Rodriguez JJ (2006) Williams SK and Barton JK Texture analysis of speckle in optical coherence tomography images of tissue phantoms. Phys Med Biol 51:1563–1575CrossRefPubMed Gossage KW, Smith CM, Kanter EM, Hariri LP, Stone AL, Rodriguez JJ (2006) Williams SK and Barton JK Texture analysis of speckle in optical coherence tomography images of tissue phantoms. Phys Med Biol 51:1563–1575CrossRefPubMed
40.
Zurück zum Zitat Vishwananth K, Pogue B, Mycek M (2002) Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods. Phys Med Biol 47:3387–3405CrossRef Vishwananth K, Pogue B, Mycek M (2002) Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods. Phys Med Biol 47:3387–3405CrossRef
41.
Zurück zum Zitat van Staveren HJ, Moes CJM, van Marle J (1991) Prahl SA and can Gemert MJC Light scattering in intralipid-10% in the wavelength range of 400-1100nm. Appl Opt 30(31):4507–4514CrossRefPubMed van Staveren HJ, Moes CJM, van Marle J (1991) Prahl SA and can Gemert MJC Light scattering in intralipid-10% in the wavelength range of 400-1100nm. Appl Opt 30(31):4507–4514CrossRefPubMed
42.
Zurück zum Zitat Luadi M, Colombo A, Farina B, Tomatis S, Marchesini R (2001) A phantom with tissue-like optical properties in the visible and near infrared for use on photomedicine. Las Sure Med 28:237–243CrossRef Luadi M, Colombo A, Farina B, Tomatis S, Marchesini R (2001) A phantom with tissue-like optical properties in the visible and near infrared for use on photomedicine. Las Sure Med 28:237–243CrossRef
43.
Zurück zum Zitat Germer C, Roggan A, Ritz JP, Isbert C, Albrecht D, Muller G, Buhr H (1998) Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range. Las Sure Med 23:194–203CrossRef Germer C, Roggan A, Ritz JP, Isbert C, Albrecht D, Muller G, Buhr H (1998) Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range. Las Sure Med 23:194–203CrossRef
44.
Zurück zum Zitat Toricelli A, Pifferi A, Taroni P, Giambattistelli E, Cubeddu R (2001) In vivo optical characterization of human tissues from 610-1010nm by time-resolved reflectance spectroscopy. Phys Med Biol 46:2227–2237CrossRef Toricelli A, Pifferi A, Taroni P, Giambattistelli E, Cubeddu R (2001) In vivo optical characterization of human tissues from 610-1010nm by time-resolved reflectance spectroscopy. Phys Med Biol 46:2227–2237CrossRef
45.
Zurück zum Zitat Doornbos R, Lang R, Aalders M, Cross F, Sterenborg H (1999) The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy. Phys Med Biol 44:967–981CrossRefPubMed Doornbos R, Lang R, Aalders M, Cross F, Sterenborg H (1999) The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy. Phys Med Biol 44:967–981CrossRefPubMed
46.
Zurück zum Zitat Welch AJ, Gardner C (2002) Optical and thermal response of tissue to laser radiation. Lasers Med Sci 27-45, edited by Waynant RW, CRC Press Welch AJ, Gardner C (2002) Optical and thermal response of tissue to laser radiation. Lasers Med Sci 27-45, edited by Waynant RW, CRC Press
47.
Zurück zum Zitat Ishimaru A (1978) Wave propagation and scattering in random medium. Academic Press, New York Ishimaru A (1978) Wave propagation and scattering in random medium. Academic Press, New York
48.
Zurück zum Zitat Hornung R, Pham TH, Keefe KA, Berns MW, Tadir Y, Tromberg BJ (1999) Quantitative near-infrared spectroscopy of cervical dysplasia in vivo. Human Reprod 14(11):2908–2916CrossRef Hornung R, Pham TH, Keefe KA, Berns MW, Tadir Y, Tromberg BJ (1999) Quantitative near-infrared spectroscopy of cervical dysplasia in vivo. Human Reprod 14(11):2908–2916CrossRef
49.
Zurück zum Zitat Matsumura Y, Maeda H (1986) A new concept of macromolecular therapies in cancer chemotherapy: mechanism of tumor tropic accumulation of proteins and the anti-tumor agent SMANCS. Cancer Res 6:6387–6392 Matsumura Y, Maeda H (1986) A new concept of macromolecular therapies in cancer chemotherapy: mechanism of tumor tropic accumulation of proteins and the anti-tumor agent SMANCS. Cancer Res 6:6387–6392
50.
Zurück zum Zitat Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Contr Release 65:271–284CrossRef Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Contr Release 65:271–284CrossRef
51.
Zurück zum Zitat Maeda H (2001) The enhanced permeability and retention (EPR) affect in tumor vasculature: the key role of tumor-selective macro- molecular drug targeting. Adv Enzym Regul 41:189–207CrossRef Maeda H (2001) The enhanced permeability and retention (EPR) affect in tumor vasculature: the key role of tumor-selective macro- molecular drug targeting. Adv Enzym Regul 41:189–207CrossRef
52.
Zurück zum Zitat Maeda H, Fang J, Inutsuka T, Kitamoto Y (2003) Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 3: 319–328CrossRefPubMed Maeda H, Fang J, Inutsuka T, Kitamoto Y (2003) Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 3: 319–328CrossRefPubMed
53.
Zurück zum Zitat Iyer A, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11:812–818CrossRefPubMed Iyer A, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11:812–818CrossRefPubMed
Metadaten
Titel
Potentials and pitfalls of gold-silica nanoshell as the exogenous contrast agent for optical diagnosis of cancers: a numerical parametric study
verfasst von
Xiao Xu
Publikationsdatum
22.10.2018
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 3/2019
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-018-2639-x

Weitere Artikel der Ausgabe 3/2019

Lasers in Medical Science 3/2019 Zur Ausgabe