Zum Inhalt

Practical Compass of Single-Cell RNA-Seq Analysis

  • Open Access
  • 29.11.2023
Erschienen in:
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Purpose of Review

This review paper provides step-by-step instructions on the fundamental process, from handling fastq datasets to illustrating plots and drawing trajectories.

Recent Findings

The number of studies using single-cell RNA-seq (scRNA-seq) is increasing. scRNA-seq revealed the heterogeneity or diversity of the cellular populations. scRNA-seq also provides insight into the interactions between different cell types. User-friendly scRNA-seq packages for ligand-receptor interactions and trajectory analyses are available. In skeletal biology, osteoclast differentiation, fracture healing, ectopic ossification, human bone development, and the bone marrow niche have been examined using scRNA-seq. scRNA-seq data analysis tools are still being developed, even at the fundamental step of dataset integration. However, updating the latest information is difficult for many researchers. Investigators and reviewers must share their knowledge of in silico scRNA-seq for better biological interpretation.

Summary

This review article aims to provide a useful guide for complex analytical processes in single-cell RNA-seq data analysis.
The original online version of this article was revised: In Table 1 of this article, each ref. number is off by one less than the correct number.
A correction to this article is available online at https://​doi.​org/​10.​1007/​s11914-024-00861-7.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

The number of research articles using single-cell RNA-seq (scRNA-seq) is increasing. scRNA-seq has become a core technique in biology in the last 10 years [1]. scRNA-seq enabled us to determine the quantity of each type of mRNA at a single-cell resolution. There are two major reasons why the use of scRNA-seq has spread worldwide. First, scRNA-seq clarifies the heterogeneity or diversity of cell populations from the perspective of gene expression patterns. Second, scRNA-seq can predict the interactions and connectivity between cells, which cannot be easily specified in traditional ways.
scRNA-seq has been used in skeletal biology [2, 3]. For example, we can determine the cell differentiation stages of osteoclasts [4] and their interspecies differences [5•]. Ligand receptor analysis can predict drug repositioning candidates for fracture healing [6] and clarify the hidden mechanisms of ectopic ossification [7]. Gene regulatory analysis has also revealed epigenetic properties in a model of human bone development [8•] and the bone marrow niche [9]. Furthermore, a new subcellular sequencing tool to identify therapeutic targets has been proposed in the field of skeletal biology [10•].
Currently, in silico analysis is necessary not only for computational biologists but also for wet-lab biologists and well-established reviewers [11, 12]. In this review, we have summarized the in silico scRNA-seq framework. Active learners can understand the standard workflow and pitfalls of in silico analysis. In addition, this review may be useful to busy reviewers. This article provides a list of points for reviewing of scRNA-seq studies.
The standard workflow of in silico scRNA-seq analysis is summarized in Fig. 1. The scRNA-seq packages and tools recommended by the authors are summarized in Table 1. These tools were selected primarily because of their usability and widespread use.
Fig. 1
Standard workflow of in silico scRNA-seq analysis. All figures were made from publicly available datasets (SRR8181408, SRR8181409, SRR8181410, SRR8181411, SRR11101718, SRR11101719, SRR11101720, SRR11101721, and SRR12266815) [1315]
Bild vergrößern
Table 1
List of packages or tools recommended by the authors
Package or tool
First author
Year
Language
Title or explanation
Ref
Step 1. Obtain FASTQ files from public database
fasterq-dump
The SRA Toolkit Development Team
2023
C
extracting data in FASTQ- or FASTA-format from SRA-accessions
[16]
parallel-fastq-dump
Valieris
2021
Python
Speed up the process by dividing the work into multiple threads
[17]
Step 2. Quality check and mapping to the reference genome
Cell Ranger
Zheng
2017
 
Massively parallel digital transcriptional profiling of single cells
[20]
STARsolo
Kaminow
2021
C
STARsolo: accurate, fast, and versatile mapping/quantification of single-cell and single-nucleus RNA-seq data
[21]
Step 3. Preparation environment for the in silico analysis
R
R Core Team
2023
 
R: A Language and Environment for Statistical Computing
[22]
Tidyverse
Wickham
2019
R
Welcome to the Tidyverse
[23]
ggplot2
Wickham
 
R
Elegant Graphics for Data Analysis
[24]
Python3
Van Rossum
2009
 
Python 3 Reference Manual
[25]
Matplotlib
Hunter
2007
Python
Matplotlib: A 2D graphics environment
[26]
seaborn
Waskom
2021
Python
seaborn: statistical data visualization
[27]
Step 4. Preprocess of datasets
Seurat 4
Hao
2021
R
Integrated analysis of multimodal single-cell data
[28]
Seurat 5
Hao
2022
R
Dictionary learning for integrative, multimodal, and scalable single-cell analysis
[29••]
sctransform
Hafemeister
2019
R
Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression
[30]
Scanpy
Wolf
2018
Python
SCANPY: large-scale single-cell gene expression data analysis
[31]
scverse
Virshup
2023
Python
The scverse project provides a computational ecosystem for single-cell omics data analysis
[32]
Step 5. Dataset integration
Seurat 5
Hao
2022
R
 
[29••]
scvi-tools
Gayoso
2022
Python
A Python library for probabilistic analysis of single-cell omics data
[34•]
benchmark study
Luecken
2022
 
Benchmarking atlas-level data integration in single-cell genomics
[33•]
Step 6. Unbiased clustering
t-SNE
van der Maaten
2008
 
Visualizing Data using t-SNE
[35]
UMAP
Leland McInnes
2020
 
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
[36]
Step 7. Functional annotation
AUCell
Aibar
2016
R, Python
AUCell: Analysis of “gene set” activity in single-cell RNA-seq data
[38]
SCENIC
Aibar
2017
R
SCENIC: single-cell regulatory network inference and clustering
[39]
pySCENIC
Van de Sande
2020
Python
A scalable SCENIC workflow for single-cell gene regulatory network analysis
[39, 40]
decoupleR
Badia
2022
R, Python
decoupleR: ensemble of computational methods to infer biological activities from omics data
[41•]
CellAssign
Zhang
2019
Python
Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling
[42]
Nitchenet
Browaeys
2020
R
NicheNet: modeling intercellular communication by linking ligands to target genes
[44]
Omnipath
Turei
2021
R, Python
Integrated intra- and intercellular signaling knowledge for multicellular omics analysis
[45]
scTensor
Tsuyuzaki
2019
R
Uncovering hypergraphs of cell–cell interaction from single cell RNA-sequencing data
[46]
Cellular interaction review
Armingol
2021
 
Deciphering cell–cell interactions and communication from gene expression
[43]
Step 8. Trajectory analysis
Velocyto
La Manno
2018
Python, R
RNA velocity of single cells
[47]
scVelo
Bergen
2020
Python
Generalizing RNA velocity to transient cell states through dynamical modeling
[48•]
Dynamo
Qiu
2022
Python
Mapping transcriptomic vector fields of single cells
[49]
Monocle 3
Trapnell
2014
R
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
[50]
PAGA
Wolf
2019
Python
graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells
[51]
benchmark study
Saelens
2019
 
A comparison of single-cell trajectory inference methods
[52•]

Step 1. Obtain FASTQ files from wet experiments and public database

There are two ways to obtain FASTQ files. One is to utilize public resources and the other is to perform wet experiments. The combinatorial approach has become more common with the increase in public datasets.
The first method for obtaining FASTQ files is to download them from a public database. sequence read archive (SRA), European nucleotide archive (ENA), and DDBJ sequence read archive (DRA) are the three major archives of sequencing datasets. The DDBJ search website is useful for finding the SRR number of datasets related to the project. The same project in one’s own experiments sometimes spares you from conducting expensive reproductive experiments. Public datasets were also used to increase the scale of scRNA-seq experiments. Integrative analyses are recommended for the following two reasons. First, a greater variety of cells often makes cell annotation easier. Second, integrative analysis with datasets from other research groups reduces biases related to the procedures of the group and increases the external validity of the experiments.
It takes considerable time and computer resources to download heavy FASTQ files of tens of gigabytes. fasterq-dump in the SRA toolkit [16], which is a fast version of fastq-dump, is commonly used to speed up downloading. parallel-fastq-dump [17] splits fastq files and downloads them by palletization of the process.
The second method is to perform a scRNA-seq experiment on one’s own. Although wet experiments are beyond the scope of this article, attention should be paid to the process of preparing cell suspensions. This is because the selection bias in wet experiments affects the results of in silico scRNA-seq. Less bias between samples makes the integration of scRNA-seq datasets easier.
Cell suspension preparation is the first step of droplet-based scRNA-seq. To smoothen the preparation step, we should repeatedly practice the entire preparation process and stabilize protocols.
When dissociating cells from solid tissue, a variety of healthy cells should be maintained and as many dead cells should be excluded as possible. Cell-sorting techniques using flow cytometry and magnetic devices are useful. After making a cell suspension, cell aggregation often occurs, which may cause problems in fluid-based sorting and should be loosened by pipetting.
After making cell suspensions, we performed highly elaborate library construction according to the manufacturer’s protocol like chromium (10 × genomics, Pleasanton, CA, U.S.). The number of living cells is important for the first chromium step. Instead of droplet-based sequencing, traditional plate-based sequencing after cell sorting, for example, SMART-seq® Single Cell Kit (Takara Bio, San Jose, CA, U.S.) [18], and RT-RamDA® cDNA Synthesis Kit (TOYOBO, Osaka, Japan) [19], are powerful tools for full-length total sequencing. After sequencing the constructed library, the FASTQ files are obtained.

Step 2. Quality check and mapping to the reference genome

Cell Ranger is a useful pipeline to align outputted fastq files by chromium, on the prebuilt reference genome and make the folder of ready-to-use matrix files for the downstream analysis [20]. The Cell Ranger version and the reference genome used should be included in the manuscript to help reproduce the analysis. Cell Ranger consumes substantial computer memory; therefore, enough memory and storage more than the required level should be prepared. When using a public computer, the impact of load on the common space should be considered.
The authors preferred STARsolo [21], which is a single-cell version of the common aligner STAR. SMART-seq or Drop-seq datasets, other than chromium, can be processed using the same protocol. In addition, the same reference genome as that used in bulk RNA-seq can be used with simple arguments by STARsolo. Unlike Cell Ranger, the library construction protocol, including the chromium chemistry version, should be specified as a variable.
STARSolo offers three advantages. First, STARsolo can be adapted for other scRNA-seq datasets such as SMART-seq. Second, the mapping time is shorter than that of CellRanger. Third, this is the most important reason, the same reference genome as the usual bulk RNA-seq can be used.
When performing integrative analysis with other experiments of yours or public datasets by other groups, the same mapping protocol should be performed to avoid a mismatch of the reference genome. Repeat mapping on the reference genome is frequently performed. This is partially because Cell Ranger is frequently updated.

Step 3. Preparation environment for the in silico analysis

Some vendors have provided browser-based analytical tools. These readily available tools are useful for checking quickly whether wet experiments are successful. However, it is too difficult to perform advanced analysis, including cell interaction, and to produce images with publication quality using only these tools. This is why researchers and reviewers should be familiar with in silico analysis.
R language [22] is commonly used in statistical science and bioinformatics analyses. Tidyverse project [23] provides several powerful toolkits for handling datasets with simple syntax. In particular, ggplot2 [24] increases the visibility of graphs and ensures reproducibility, which is important in science.
Updating R and the packages sometimes yields different UMAP or clustering results. Major R updates require package reinstallation. Although we do not want to update these versions, version conflicts between packages do not allow us to change only problematic packages, but enforce updating all packages. The results without big picture changes with different versions, in which minor detailed changes are allowed, should be stated in the manuscript.
Memory usage should be cared for when using R. Regardless of the PC setup, the memory consumption of R can cause sudden crashes. This is a good practice for saving files and images. It is also important to delete the unused variables and intermediate files.
Taking fashionable machine learning methods into the study, converting platform R to Python3 is considered because of the large memory requirement [25]. The main feature of Python is its numerous modules, including deep learning. Another feature is the creation of a virtual environment with modules required for each project to avoid version conflicts between the packages. Matplotlib [26] and Seaborn [27] support data visualization. Based on the author’s experience, switching from R to Python requires practice.

Step 4. Preprocess of datasets

Seurat [28] is a core package for processing and normalizing scRNA-seq datasets. Seurat has been developed to integrate multiple datasets. In the latest version 5 [29••], we can choose an integration method including sctransform [30]. In Python, Scanpy [31] in scverse project [32] is the core package for processing the datasets. It is not difficult to handle fundamental packages in both R and Python because tutorials are available online and many virtual workshops are available. Core preprocessing: Filtering and normalization are almost the same regardless of the package.
The total number of detected genes, percentage of counts on mitochondrial genes, and sometimes ribosomal genes are common indicators for cutting off dead cells or poorly sequenced cells. These cutoff values should be listed in the manuscript. Different technologies for library construction typically result in different levels of these indicators. Different levels are often observed, even with the same technology. The same cutoff value is recommended for making posterior calculation easy; however, different cutoff values may be accepted for each dataset.
The selected cells are then normalized to compare RNA expression between cells. Additional normalization of the total number of reads should be performed because of the low sensitivity of single-cell sequencing from a low amount of RNA. Percentages of mitochondrial gene count and cell cycle scores are usually regressed out for normalization. Although cell cycle scoring and assignment of the cell cycle state for each cell are performed routinely by Seurat, cell cycles are predicted by comparing the mRNA expression of cell cycle genes. When analyzing datasets in which the cell cycle is highly activated, cell cycle regression may be unnecessary.

Step 5. Dataset integration

It is common to handle multiple datasets; however, it is difficult to integrate datasets with different expression levels. Various integration methods have been devised and are currently under development. The latest method should be considered at the time of submission because the choice of method leads to different results. Benchmark studies on integration are useful for selecting packages [33•]. The latest version of Seurat allows the selection of various integration methods [29••]. Scverse projects provide scvi-tools to perform probabilistic analysis, particularly when integrating datasets [34•]. Whether the results of the integration are correct should be examined from the perspective of wet scientists.

Step 6. Unbiased clustering

To understand the heterogeneous gene expression patterns at a glance, dimension reduction with tSNE [35] and UMAP [36] is performed. The distribution of datasets, mitochondrial percentage, and cell cycle are indicators of the successful integration of the datasets. Unbiased clustering after dimension reduction makes it possible to depict the cell populations. The resolution must be tuned by the authors to adapt the assumed cell types, although some tools for the automatic determination of cluster numbers have been proposed [37].
Maps derived from scRNA-seq datasets are built based on RNA expression patterns and do not always fit the standard biological view. Not only local structures but also the whole picture often change according to the method. For example, small islands and their connectivity to a main island can be easily transformed. The robustness of in silico results should be examined, especially when discussing minor cell populations. Insufficient batch-effect elimination often yields distinct clusters. In some cases, more cells are required to reach a conclusion. Public datasets are used as external references to reduce researcher bias.

Step 7. Regular visualization and functional annotation

In scRNA-seq, gene expression and cellular functions are explained at two levels: cell and cluster or group. Feature plots explain gene expression cell by cell on the same map. Continuous changes in the levels are easily depicted. Dot plots and violin plots are used to summarize the expression levels group by group. Dot plots are recommended for showing sets of genes within a limited space.
Cell types and their functions are determined by considering sets of gene expression, sometimes called gene set activities. AUCell is useful for calculating the gene set activity score [38], and with the same algorithm, we can predict upstream transcription factor activity using SCENIC or pySCENIC [39, 40]. decoupleR [41•] enables the use of multiple ensemble annotative methods including AUCell. Automatic cell annotation using the deep learning method is implemented using CellAssign [42].
Intercellular interactions can be predicted using paired gene expression in different groups of cells, including ligand receptor (LR) interactions. Several types of tools have been proposed [43]. Nitchenet [44] considers downstream pathways including receptors to transcriptional factors. The LR pair database directly affects the results of the LR analysis. Omnipath project provides large well-organized references [45]. With abundant computer memory, tensor-based cell communication analysis between more than two cell types provides further LR relationships [46].

Step 8. Trajectory analysis

RNA velocity is a well-known concept for predicting local changes in the cellular state from the spliced/unspliced ratio of sequenced reads and is implemented as Velocyto [47]. Streamline visualization can be illustrated by a generalized version of Velocyto called scVelo [48•]. Plots with arrows are attractive; however, RNA velocity tools are still under development [49]. Trajectory analysis provides just supportive evidence for cellular pathways.
Monocle2 or monocle3 in R [50], and PAGA in Python [51] are commonly used to draw global trajectory lines based on gene expression. To choose the appropriate tool for each analysis, rough topological characteristics, such as cycle, linear, branch, tree, and disconnection, should be presumed before trajectory analysis. Dynguidelines project provides a clue for selecting appropriate trajectory tools for each analysis [52•].

Conclusion

scRNA-seq provides insight into the diversity of cell populations. However, the preprocessing and integrative steps for multiple datasets remain controversial. The honest manifestation of the fundamental steps makes the study reproducible.
Reviewers of scRNA-seq research should first check these basic points (summarized in Table 2) and then discuss whether the biological interpretation is reasonable. There have been scRNA-seq studies with insufficient replicates. However, in the era when there are plenty of public scRNA-seq fastq files, investigators’ procedures should be examined for propriety and external validity.
Table 2
Key consideration when reviewing a scRNA-seq data analysis
Usage of published tools at the time of submission (not the time of review)
The number of cells was sequenced and analyzed in each experiment
Sufficient replication to support the claim
Cutoff values to eliminate dead or badly sequenced cells
Dataset integration method mainly considering the batch effect of each sample
Unbiased clustering examined by biological interpretation
Optional (Not mandatory) trajectory analyses
Cell type annotation referring to marker genes and gene ontology term
The use of scRNA-seq analysis has continued to evolve rapidly. Discussion between investigators and reviewers should be performed within the scope of the methods at the time of submission. Better use of this innovative technique will enhance our biological knowledge.

Declarations

Competing interests

The authors declare that they have no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

download
DOWNLOAD
print
DRUCKEN
Titel
Practical Compass of Single-Cell RNA-Seq Analysis
Verfasst von
Hiroyuki Okada
Ung-il Chung
Hironori Hojo
Publikationsdatum
29.11.2023
Verlag
Springer US
Erschienen in
Current Osteoporosis Reports / Ausgabe 5/2024
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-023-00840-4
1.
Zurück zum Zitat Method of the year 2013. Nat Methods. 2014;11(1):1. https://​doi.​org/​10.​1038/​nmeth.​2801.
2.
Zurück zum Zitat Greenblatt MB, Ono N, Ayturk UM, Debnath S, Lalani S. The unmixing problem: a guide to applying single-cell RNA sequencing to bone. J Bone Miner Res. 2019;34(7):1207–19. https://​doi.​org/​10.​1002/​jbmr.​3802.CrossRefPubMed
3.
Zurück zum Zitat Ono N, Taipaleenmaki H, Veis DJ. Single-cell RNA-sequencing leading to breakthroughs in musculoskeletal research. JBMR Plus. 2022;6(7):e10652. https://​doi.​org/​10.​1002/​jbm4.​10652.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Tsukasaki M, Huynh NC, Okamoto K, Muro R, Terashima A, Kurikawa Y, Komatsu N, Pluemsakunthai W, Nitta T, Abe T, Kiyonari H, Okamura T, Sakai M, Matsukawa T, Matsumoto M, Kobayashi Y, Penninger JM, Takayanagi H. Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution. Nat Metab. 2020;2(12):1382–90. https://​doi.​org/​10.​1038/​s42255-020-00318-y.CrossRefPubMed
5.•
Zurück zum Zitat Omata Y, Okada H, Uebe S, Izawa N, Ekici AB, Sarter K, Saito T, Schett G, Tanaka S, Zaiss MM. Interspecies single-Cell RNA-Seq analysis reveals the novel trajectory of osteoclast differentiation and therapeutic targets. JBMR Plus. 2022;6(7):e10631. https://​doi.​org/​10.​1002/​jbm4.​10631. Interspecies difference in osteoclast differentiation path was depicted using single cell RNA-seq.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Nakayama M, Okada H, Seki M, Suzuki Y, Chung UI, Ohba S, Hojo H. Single-cell RNA sequencing unravels heterogeneity of skeletal progenitors and cell-cell interactions underlying the bone repair process. Regen Ther. 2022;21:9–18. https://​doi.​org/​10.​1016/​j.​reth.​2022.​05.​001.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Tachibana N, Chijimatsu R, Okada H, Oichi T, Taniguchi Y, Maenohara Y, Miyahara J, Ishikura H, Iwanaga Y, Arino Y, Nagata K, Nakamoto H, Kato S, Doi T, Matsubayashi Y, Oshima Y, Terashima A, Omata Y, Yano F, Maeda S, Ikegawa S, Seki M, Suzuki Y, Tanaka S, Saito T. RSPO2 defines a distinct undifferentiated progenitor in the tendon/ligament and suppresses ectopic ossification. Sci Adv. 2022;8(33):eabn2138. https://​doi.​org/​10.​1126/​sciadv.​abn2138.CrossRefPubMedPubMedCentral
8.•
Zurück zum Zitat Tani S, Okada H, Onodera S, Chijimatsu R, Seki M, Suzuki Y, Xin X, Rowe DW, Saito T, Tanaka S, Chung UI, Ohba S, Hojo H. Stem cell-based modeling and single-cell multiomics reveal gene-regulatory mechanisms underlying human skeletal development. Cell Rep. 2023;42(4):112276. https://​doi.​org/​10.​1016/​j.​celrep.​2023.​112276. Transcriptomic and epigenetic human bone development was illustrated by a novel multi-omics approach.
9.
Zurück zum Zitat Kanazawa S, Okada H, Hojo H, Ohba S, Iwata J, Komura M, Hikita A, Hoshi K. Mesenchymal stromal cells in the bone marrow niche consist of multi-populations with distinct transcriptional and epigenetic properties. Sci Rep. 2021;11(1):15811. https://​doi.​org/​10.​1038/​s41598-021-94186-5.CrossRefPubMedPubMedCentral
10.•
Zurück zum Zitat Okada H, Terui Y, Omata Y, Terashima A, Seki M, Tani S, Kanazawa S, Hosonuma M, Miyahara J, Makabe K, Onodera S, Yano F, Kajiya H, Gori F, Saito T, Suzuki Y, Okabe K, Baron R, Chung UI, Tanaka S, Hojo H. Inclusive living subcellular sequencing rendering physical physiological and human pathological features in osteoimmune diversity. bioRxiv. 2022.09.05.506360. https://​doi.​org/​10.​1101/​2022.​09.​05.​506360. The technology for live subcellular sequencing was achieved.
11.
Zurück zum Zitat Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol. 2019;15(6):e8746. https://​doi.​org/​10.​15252/​msb.​20188746.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Andrews TS, Kiselev VY, McCarthy D, Hemberg M. Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data. Nat Protoc. 2021;16(1):1–9. https://​doi.​org/​10.​1038/​s41596-020-00409-w.CrossRefPubMed
13.
Zurück zum Zitat Baccin C, Al-Sabah J, Velten L, Helbling PM, Grunschlager F, Hernandez-Malmierca P, Nombela-Arrieta C, Steinmetz LM, Trumpp A, Haas S. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat Cell Biol. 2020;22(1):38–48. https://​doi.​org/​10.​1038/​s41556-019-0439-6.CrossRefPubMed
14.
Zurück zum Zitat Wang JS, Kamath T, Mazur CM, Mirzamohammadi F, Rotter D, Hojo H, Castro CD, Tokavanich N, Patel R, Govea N, Enishi T, Wu Y, da Silva Martins J, Bruce M, Brooks DJ, Bouxsein ML, Tokarz D, Lin CP, Abdul A, Macosko EZ, Fiscaletti M, Munns CF, Ryder P, Kost-Alimova M, Byrne P, Cimini B, Fujiwara M, Kronenberg HM, Wein MN. Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin. Nat Commun. 2021;12(1):6271. https://​doi.​org/​10.​1038/​s41467-021-26571-7.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Zhong L, Yao L, Tower RJ, Wei Y, Miao Z, Park J, Shrestha R, Wang L, Yu W, Holdreith N, Huang X, Zhang Y, Tong W, Gong Y, Ahn J, Susztak K, Dyment N, Li M, Long F, Chen C, Seale P, Qin L. Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. Elife. 2020;9:e54695. https://​doi.​org/​10.​7554/​eLife.​54695.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat The SRA Toolkit Development Team: SRA toolkit. edn 3.0.3. Edited by; 2023.
17.
Zurück zum Zitat Valieris R, Fukushima K, Homer N. parallel-fastq-dump. edn 0.6.7. Edited by; 2021.
18.
Zurück zum Zitat Ramskold D, Luo S, Wang YC, Li R, Deng Q, Faridani OR, Daniels GA, Khrebtukova I, Loring JF, Laurent LC, Schroth GP, Sandberg R. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012;30(8):777–82. https://​doi.​org/​10.​1038/​nbt.​2282.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Hayashi T, Ozaki H, Sasagawa Y, Umeda M, Danno H, Nikaido I. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs. Nat Commun. 2018;9(1):619. https://​doi.​org/​10.​1038/​s41467-018-02866-0.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049. https://​doi.​org/​10.​1038/​ncomms14049.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Kaminow B, Yunusov D, Dobin A. STARsolo: accurate, fast and versatile mapping/quantification of single-cell and single-nucleus RNA-seq data. bioRxiv. 2021.05.05.442755. https://​doi.​org/​10.​1101/​2021.​05.​05.​442755.
22.
Zurück zum Zitat R Core Team. _R: a language and environment for statistical computing_. R Foundation for Statistical Computing, Vienna, Austria; 2023.
23.
Zurück zum Zitat Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, Grolemund G, Hayes A, Henry L, Hester J, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4(43):1686 10.21105/joss.01686.CrossRef
24.
Zurück zum Zitat Wickham H. ggplot2: elegant graphics for data analysis: Springer-Verlag New York; 2009.
25.
Zurück zum Zitat Van Rossum G, Drake FL. Python 3 reference manual: CreateSpace; 2009.
26.
Zurück zum Zitat Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9:90–5. https://​doi.​org/​10.​1109/​MCSE.​2007.​55.CrossRef
27.
Zurück zum Zitat Waskom M. seaborn: statistical data visualization.  J Open Source Softw. 2021;6:3021. https://​doi.​org/​10.​21105/​joss.​03021.CrossRef
28.
Zurück zum Zitat Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, Hoffman P, Stoeckius M, Papalexi E, Mimitou EP, Jain J, Srivastava A, Stuart T, Fleming LM, Yeung B, Rogers AJ, McElrath JM, Blish CA, Gottardo R, Smibert P, Satija R. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573–87.e29. https://​doi.​org/​10.​1016/​j.​cell.​2021.​04.​048.CrossRefPubMedPubMedCentral
29.••
Zurück zum Zitat Hao Y, Stuart T, Kowalski MH, Choudhary S, Hoffman P, Hartman A, Srivastava A, Molla G, Madad S, Fernandez-Granda C, Satija R. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat Biotechnol. 2023. https://​doi.​org/​10.​1038/​s41587-023-01767-y. The fundamental package Seurat in scRNA-seq analysis was updated to version 5.
30.
Zurück zum Zitat Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20(1):296. https://​doi.​org/​10.​1186/​s13059-019-1874-1.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19(1):15. https://​doi.​org/​10.​1186/​s13059-017-1382-0.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Virshup I, Bredikhin D, Heumos L, Palla G, Sturm G, Gayoso A, Kats I, Koutrouli M; Scverse Community; Berger B, Pe'er D, Regev A, Teichmann SA, Finotello F, Wolf FA, Yosef N, Stegle O, Theis FJ. The scverse project provides a computational ecosystem for single-cell omics data analysis. Nat Biotechnol. 2023;41(5):604–6. https://​doi.​org/​10.​1038/​s41587-023-01733-8.
33.•
Zurück zum Zitat Luecken MD, Buttner M, Chaichoompu K, Danese A, Interlandi M, Mueller MF, Strobl DC, Zappia L, Dugas M, Colome-Tatche M, Theis FJ. Benchmarking atlas-level data integration in single-cell genomics. Nat Methods. 2022;19(1):41–50. https://​doi.​org/​10.​1038/​s41592-021-01336-8. This benckmark study provided a clue to choose the appropriate integration method of scRNA-seq.CrossRefPubMed
34.•
Zurück zum Zitat Gayoso A, Lopez R, Xing G, Boyeau P, Valiollah Pour Amiri V, Hong J, Wu K, Jayasuriya M, Mehlman E, Langevin M, Liu Y, Samaran J, Misrachi G, Nazaret A, Clivio O, Xu C, Ashuach T, Gabitto M, Lotfollahi M, Svensson V, da Veiga Beltrame E, Kleshchevnikov V, Talavera-López C, Pachter L, Theis FJ, Streets A, Jordan MI, Regier J, Yosef N. A Python library for probabilistic analysis of single-cell omics data. Nat Biotechnol. 2022;40(2):163–6. https://​doi.​org/​10.​1038/​s41587-021-01206-w. Quality of automatic cell annotation was improved with machine learning technique.CrossRefPubMed
35.
Zurück zum Zitat van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008:2579–2605.
36.
Zurück zum Zitat Leland McInnes JH, Melville J. UMAP: uniform manifold approximation and projection for dimension reduction. arXiv. 2020. https://​doi.​org/​10.​48550/​arXiv.​1802.​03426.
37.
Zurück zum Zitat Gorzalczany MB, Rudzinski F. Generalized self-organizing maps for automatic determination of the number of clusters and their multiprototypes in cluster analysis. IEEE Trans Neural Netw Learn Syst. 2018;29(7):2833–45. https://​doi.​org/​10.​1109/​TNNLS.​2017.​2704779.CrossRefPubMed
38.
Zurück zum Zitat Aibar S, Aerts S. AUCell. 2016.
39.
Zurück zum Zitat Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow F, Marine JC, Geurts P, Aerts J, van den Oord J, Atak ZK, Wouters J, Aerts S. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083–6. https://​doi.​org/​10.​1038/​nmeth.​4463.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Van de Sande B, Flerin C, Davie K, De Waegeneer M, Hulselmans G, Aibar S, Seurinck R, Saelens W, Cannoodt R, Rouchon Q, Verbeiren T, De Maeyer D, Reumers J, Saeys Y, Aerts S. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat Protoc. 2020;15(7):2247–76. https://​doi.​org/​10.​1038/​s41596-020-0336-2.CrossRefPubMed
41.•
Zurück zum Zitat Badia IMP, Velez Santiago J, Braunger J, Geiss C, Dimitrov D, Muller-Dott S, Taus P, Dugourd A, Holland CH, Ramirez Flores RO, et al. decoupleR: ensemble of computational methods to infer biological activities from omics data. Bioinform Adv. 2022;2:vbac016. decoupleR proveids ensemble methods of various annotation tools.
42.
Zurück zum Zitat Zhang AW, O’Flanagan C, Chavez EA, Lim JLP, Ceglia N, McPherson A, Wiens M, Walters P, Chan T, Hewitson B, Lai D, Mottok A, Sarkozy C, Chong L, Aoki T, Wang X, Weng AP, McAlpine JN, Aparicio S, Steidl C, Campbell KR, Shah SP. Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling. Nat Methods. 2019;16(10):1007–15. https://​doi.​org/​10.​1038/​s41592-019-0529-1.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Armingol E, Officer A, Harismendy O, Lewis NE. Deciphering cell-cell interactions and communication from gene expression. Nat Rev Genet. 2021;22(2):71–88. https://​doi.​org/​10.​1038/​s41576-020-00292-x.CrossRefPubMed
44.
Zurück zum Zitat Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods. 2020;17(2):159–62. https://​doi.​org/​10.​1038/​s41592-019-0667-5.CrossRefPubMed
45.
Zurück zum Zitat Turei D, Valdeolivas A, Gul L, Palacio-Escat N, Klein M, Ivanova O, Olbei M, Gabor A, Theis F, Modos D, Korcsmáros T, Saez-Rodriguez J. Integrated intra- and intercellular signaling knowledge for multicellular omics analysis. Mol Syst Biol. 2021;17(3):e9923. https://​doi.​org/​10.​15252/​msb.​20209923.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Tsuyuzaki K, Ishii M, Nikaido I. Uncovering hypergraphs of cell-cell interaction from single cell RNA-sequencing data. bioRxiv. 566182. https://​doi.​org/​10.​1101/​566182.
47.
Zurück zum Zitat La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, Lidschreiber K, Kastriti ME, Lönnerberg P, Furlan A, Fan J, Borm LE, Liu Z, van Bruggen D, Guo J, He X, Barker R, Sundström E, Castelo-Branco G, Cramer P, Adameyko I, Linnarsson S, Kharchenko PV. RNA velocity of single cells. Nature. 2018;560(7719):494–8. https://​doi.​org/​10.​1038/​s41586-018-0414-6.CrossRefPubMedPubMedCentral
48.•
Zurück zum Zitat Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol. 2020;38(12):1408–14. https://​doi.​org/​10.​1038/​s41587-020-0591-3. scVelo provides characteristic streamline trajectories on scRNA-seq maps.CrossRefPubMed
49.
Zurück zum Zitat Qiu X, Zhang Y, Martin-Rufino JD, Weng C, Hosseinzadeh S, Yang D, Pogson AN, Hein MY, Hoi Joseph Min K, Wang L, Grody EI, Shurtleff MJ, Yuan R, Xu S, Ma Y, Replogle JM, Lander ES, Darmanis S, Bahar I, Sankaran VG, Xing J, Weissman JS. Mapping transcriptomic vector fields of single cells. Cell. 2022;185(4):690–711.e45. https://​doi.​org/​10.​1016/​j.​cell.​2021.​12.​045.
50.
Zurück zum Zitat Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381–6. https://​doi.​org/​10.​1038/​nbt.​2859.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Wolf FA, Hamey FK, Plass M, Solana J, Dahlin JS, Göttgens B, Rajewsky N, Simon L, Theis FJ. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 2019;20(1):59. https://​doi.​org/​10.​1186/​s13059-019-1663-x.CrossRefPubMedPubMedCentral
52.•
Zurück zum Zitat Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-cell trajectory inference methods. Nat Biotechnol. 2019;37(5):547–54. https://​doi.​org/​10.​1038/​s41587-019-0071-9. dynguidelines provide a clue to choose the appropriate method of trajectory tools.CrossRefPubMed

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie erweitert durch Fallbeispiele, Videos und Abbildungen. Zur Fortbildung und Wissenserweiterung, verfasst und geprüft von Expertinnen und Experten der Gesellschaft für Arthroskopie und Gelenkchirurgie (AGA).


Jetzt entdecken!

Neu im Fachgebiet Orthopädie und Unfallchirurgie

STAR-Approach: „Das Beste aus zwei Welten“

Mit dem STAR-Approach, einem modifizierten posterioren Zugang zum Hüftgelenk, erreicht man nicht nur optimalen Überblick, sondern auch die vollständige Schonung des M. piriformis und wichtiger Nerven.

Sprunggelenksfraktur: Die Fünf-Millimeter-Grenze als OP-Indikation

Ob bei Sprunggelenksfrakturen operiert wird, hängt meist von der Stabilität ab. Entscheidend ist die präzise Messung des medialen Gelenkspalts im Belastungsröntgen. Warum die Fünf-Millimeter-Regel hilft, unnötige Operationen zu vermeiden, stellte die Orthopädin Dr. Helen Anwander auf dem diesjährigen Orthopädie und Unfallchirurgie Kongress vor.

Periprothetische Infektion: Welches Verfahren beim Prothesenwechsel liegt im Trend?

Eine periprothetische Gelenkinfektion stellt ein erhebliches Mortalitätsrisiko in der Endoprothetik dar. Der Prothesenwechsel kann in einem einzeitigen oder zweizeitigen Verfahren erfolgen. Die Wahl des Verfahrens beeinflusst die Prognose maßgeblich, weshalb der Trend klar in eine Richtung geht.

Muskelfaserrisse im Sport – kein banales Problem!

Die Tragweite von Muskelverletzungen im Sport wird oftmals verkannt. Sie sind eine wesentliche Ursache für Ausfälle, nicht selten sogar für das Ende der Karriere. Wie sieht die optimale Versorgung aus?

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

Bildnachweise
Arthropedia, Gebrochener Fuß im Gips/© Aleksandr Kirillov / stock.adobe.com (Symbolbild mit Fotomodell), Knochensäge im Einsatz bei Knie-TEP/© Issara / stock.adobe.com (Symbolbild mit Fotomodellen), Läufer umfasst sein Sprunggelenk/© PeopleImages / Getty Images / iStock (Symbolbild mit Fotomodell)