Skip to main content
Erschienen in: Herz 5/2017

26.06.2017 | Main topic

Precision medicine approach to genetic cardiomyopathy

verfasst von: Dr. K. Filonenko, Prof. Dr. H. A. Katus, PD Dr. B. Meder

Erschienen in: Herz | Ausgabe 5/2017

Einloggen, um Zugang zu erhalten

Abstract

Precision medicine aims to achieve improved survival by strategies that recognize the genetic and phenotypic individuality of patients and stratify treatment accordingly. Genetic cardiomyopathies represent an ideal disease group to fully embark on this concept: they are in total frequent diseases with a marked morbidity and mortality and there is ample knowledge about their predisposing genetic factors and associated functional mechanisms. The current review highlights the genetic etiology and gives examples of the diverse treatment strategies that are envisaged in the future.
Literatur
1.
Zurück zum Zitat Maron BJ et al (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113(14):1807–1816CrossRefPubMed Maron BJ et al (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113(14):1807–1816CrossRefPubMed
3.
Zurück zum Zitat Watkins H, Ashrafian H, Redwood C (2011) Inherited cardiomyopathies. N Engl J Med 364(17):1643–1656CrossRefPubMed Watkins H, Ashrafian H, Redwood C (2011) Inherited cardiomyopathies. N Engl J Med 364(17):1643–1656CrossRefPubMed
4.
Zurück zum Zitat Garnier S et al (2015) Involvement of BAG3 and HSPB7 loci in various etiologies of systolic heart failure: results of a European collaboration assembling more than 2000 patients. Int J Cardiol 189:105–107CrossRefPubMed Garnier S et al (2015) Involvement of BAG3 and HSPB7 loci in various etiologies of systolic heart failure: results of a European collaboration assembling more than 2000 patients. Int J Cardiol 189:105–107CrossRefPubMed
5.
Zurück zum Zitat Villard E et al (2011) A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur Heart J 32(9):1065–1076CrossRefPubMedPubMedCentral Villard E et al (2011) A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur Heart J 32(9):1065–1076CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Meder B et al (2014) A genome-wide association study identifies 6p21 as novel risk locus for dilated cardiomyopathy. Eur Heart J 35(16):1069–1077CrossRefPubMed Meder B et al (2014) A genome-wide association study identifies 6p21 as novel risk locus for dilated cardiomyopathy. Eur Heart J 35(16):1069–1077CrossRefPubMed
8.
Zurück zum Zitat Haas J et al (2015) Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J 36(18):1123–1135aCrossRefPubMed Haas J et al (2015) Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J 36(18):1123–1135aCrossRefPubMed
9.
Zurück zum Zitat Lopez-Ayala JM et al (2014) Desmoplakin truncations and arrhythmogenic left ventricular cardiomyopathy: characterizing a phenotype. Europace 16(12):1838–1846CrossRefPubMed Lopez-Ayala JM et al (2014) Desmoplakin truncations and arrhythmogenic left ventricular cardiomyopathy: characterizing a phenotype. Europace 16(12):1838–1846CrossRefPubMed
10.
Zurück zum Zitat Olson TM et al (2002) Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation 105(4):431–437CrossRefPubMed Olson TM et al (2002) Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation 105(4):431–437CrossRefPubMed
11.
Zurück zum Zitat Cahill TJ, Ashrafian H, Watkins H (2013) Genetic cardiomyopathies causing heart failure. Circ Res 113(6):660–675CrossRefPubMed Cahill TJ, Ashrafian H, Watkins H (2013) Genetic cardiomyopathies causing heart failure. Circ Res 113(6):660–675CrossRefPubMed
12.
13.
Zurück zum Zitat Hershberger RE, Morales A, Siegfried JD (2010) Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genet Med 12(11):655–667CrossRefPubMedPubMedCentral Hershberger RE, Morales A, Siegfried JD (2010) Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genet Med 12(11):655–667CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Hassel D et al (2009) Nexilin mutations destabilize cardiac Z‑disks and lead to dilated cardiomyopathy. Nat Med 15(11):1281–1288CrossRefPubMed Hassel D et al (2009) Nexilin mutations destabilize cardiac Z‑disks and lead to dilated cardiomyopathy. Nat Med 15(11):1281–1288CrossRefPubMed
15.
Zurück zum Zitat Jacoby D, McKenna WJ (2012) Genetics of inherited cardiomyopathy. Eur Heart J 33(3):296–304CrossRefPubMed Jacoby D, McKenna WJ (2012) Genetics of inherited cardiomyopathy. Eur Heart J 33(3):296–304CrossRefPubMed
16.
Zurück zum Zitat Ehlermann P et al (2011) Sudden cardiac death in a patient with lamin A/C mutation in the absence of dilated cardiomyopathy or conduction disease. Clin Res Cardiol 100(6):547–551CrossRefPubMed Ehlermann P et al (2011) Sudden cardiac death in a patient with lamin A/C mutation in the absence of dilated cardiomyopathy or conduction disease. Clin Res Cardiol 100(6):547–551CrossRefPubMed
17.
Zurück zum Zitat van Rijsingen IA et al (2012) Risk factors for malignant ventricular arrhythmias in lamin a/c mutation carriers a European cohort study. J Am Coll Cardiol 59(5):493–500CrossRefPubMed van Rijsingen IA et al (2012) Risk factors for malignant ventricular arrhythmias in lamin a/c mutation carriers a European cohort study. J Am Coll Cardiol 59(5):493–500CrossRefPubMed
18.
Zurück zum Zitat Taylor MR et al (2007) Prevalence of desmin mutations in dilated cardiomyopathy. Circulation 115(10):1244–1251PubMed Taylor MR et al (2007) Prevalence of desmin mutations in dilated cardiomyopathy. Circulation 115(10):1244–1251PubMed
19.
Zurück zum Zitat Towbin JA et al (1993) X‑linked dilated cardiomyopathy. Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation 87(6):1854–1865CrossRefPubMed Towbin JA et al (1993) X‑linked dilated cardiomyopathy. Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation 87(6):1854–1865CrossRefPubMed
20.
Zurück zum Zitat McNair WP et al (2011) SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism. J Am Coll Cardiol 57(21):2160–2168CrossRefPubMed McNair WP et al (2011) SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism. J Am Coll Cardiol 57(21):2160–2168CrossRefPubMed
21.
22.
23.
Zurück zum Zitat van Rijsingen IA et al (2014) Outcome in phospholamban R14del carriers: results of a large multicentre cohort study. Circ Cardiovasc Genet 7(4):455–465CrossRefPubMed van Rijsingen IA et al (2014) Outcome in phospholamban R14del carriers: results of a large multicentre cohort study. Circ Cardiovasc Genet 7(4):455–465CrossRefPubMed
24.
Zurück zum Zitat Finsterer J, Stollberger C, Towbin JA (2017) Left ventricular noncompaction cardiomyopathy: cardiac, neuromuscular, and genetic factors. Nat Rev Cardiol 14(4):224–237CrossRefPubMed Finsterer J, Stollberger C, Towbin JA (2017) Left ventricular noncompaction cardiomyopathy: cardiac, neuromuscular, and genetic factors. Nat Rev Cardiol 14(4):224–237CrossRefPubMed
25.
Zurück zum Zitat Oechslin E, Jenni R (2011) Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur Heart J 32(12):1446–1456CrossRefPubMed Oechslin E, Jenni R (2011) Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur Heart J 32(12):1446–1456CrossRefPubMed
26.
Zurück zum Zitat Arbustini E et al (2016) Left ventricular noncompaction: a distinct genetic cardiomyopathy? J Am Coll Cardiol 68(9):949–966CrossRefPubMed Arbustini E et al (2016) Left ventricular noncompaction: a distinct genetic cardiomyopathy? J Am Coll Cardiol 68(9):949–966CrossRefPubMed
27.
Zurück zum Zitat Towbin JA (2010) Left ventricular noncompaction: a new form of heart failure. Heart Fail Clin 6(4):453–469CrossRefPubMed Towbin JA (2010) Left ventricular noncompaction: a new form of heart failure. Heart Fail Clin 6(4):453–469CrossRefPubMed
28.
Zurück zum Zitat Bleyl SB et al (1997) Xq28-linked noncompaction of the left ventricular myocardium: prenatal diagnosis and pathologic analysis of affected individuals. Am J Med Genet 72(3):257–265CrossRefPubMed Bleyl SB et al (1997) Xq28-linked noncompaction of the left ventricular myocardium: prenatal diagnosis and pathologic analysis of affected individuals. Am J Med Genet 72(3):257–265CrossRefPubMed
29.
Zurück zum Zitat Sen-Chowdhry S, Syrris P, McKenna WJ (2010) Genetics of restrictive cardiomyopathy. Heart Fail Clin 6(2):179–186CrossRefPubMed Sen-Chowdhry S, Syrris P, McKenna WJ (2010) Genetics of restrictive cardiomyopathy. Heart Fail Clin 6(2):179–186CrossRefPubMed
30.
Zurück zum Zitat Ichida F et al (2001) Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation 103(9):1256–1263CrossRefPubMed Ichida F et al (2001) Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation 103(9):1256–1263CrossRefPubMed
31.
Zurück zum Zitat Hermida-Prieto M et al (2004) Familial dilated cardiomyopathy and isolated left ventricular noncompaction associated with lamin A/C gene mutations. Am J Cardiol 94(1):50–54CrossRefPubMed Hermida-Prieto M et al (2004) Familial dilated cardiomyopathy and isolated left ventricular noncompaction associated with lamin A/C gene mutations. Am J Cardiol 94(1):50–54CrossRefPubMed
32.
Zurück zum Zitat Hoedemaekers YM et al (2007) Cardiac beta-myosin heavy chain defects in two families with non-compaction cardiomyopathy: linking non-compaction to hypertrophic, restrictive, and dilated cardiomyopathies. Eur Heart J 28(22):2732–2737CrossRefPubMed Hoedemaekers YM et al (2007) Cardiac beta-myosin heavy chain defects in two families with non-compaction cardiomyopathy: linking non-compaction to hypertrophic, restrictive, and dilated cardiomyopathies. Eur Heart J 28(22):2732–2737CrossRefPubMed
33.
Zurück zum Zitat Udeoji DU et al (2013) Left ventricular noncompaction cardiomyopathy: updated review. Ther Adv Cardiovasc Dis 7(5):260–273CrossRefPubMed Udeoji DU et al (2013) Left ventricular noncompaction cardiomyopathy: updated review. Ther Adv Cardiovasc Dis 7(5):260–273CrossRefPubMed
35.
Zurück zum Zitat Parent JJ, Towbin JA, Jefferies JL (2015) Left ventricular noncompaction in a family with lamin A/C gene mutation. Tex Heart Inst J 42(1):73–76CrossRefPubMedPubMedCentral Parent JJ, Towbin JA, Jefferies JL (2015) Left ventricular noncompaction in a family with lamin A/C gene mutation. Tex Heart Inst J 42(1):73–76CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Maron BJ et al (2016) Hypertrophic cardiomyopathy in children, adolescents, and young adults associated with low cardiovascular mortality with contemporary management strategies. Circulation 133(1):62–73CrossRefPubMed Maron BJ et al (2016) Hypertrophic cardiomyopathy in children, adolescents, and young adults associated with low cardiovascular mortality with contemporary management strategies. Circulation 133(1):62–73CrossRefPubMed
37.
Zurück zum Zitat Maron MS et al (2016) Occurrence of clinically diagnosed hypertrophic cardiomyopathy in the united states. Am J Cardiol 117(10):1651–1654CrossRefPubMed Maron MS et al (2016) Occurrence of clinically diagnosed hypertrophic cardiomyopathy in the united states. Am J Cardiol 117(10):1651–1654CrossRefPubMed
38.
Zurück zum Zitat Sen-Chowdhry S et al (2016) Update on hypertrophic cardiomyopathy and a guide to the guidelines. Nat Rev Cardiol 13(11):651–675CrossRefPubMed Sen-Chowdhry S et al (2016) Update on hypertrophic cardiomyopathy and a guide to the guidelines. Nat Rev Cardiol 13(11):651–675CrossRefPubMed
39.
Zurück zum Zitat Chung MW, Tsoutsman T, Semsarian C (2003) Hypertrophic cardiomyopathy: from gene defect to clinical disease. Cell Res 13(1):9–20CrossRefPubMed Chung MW, Tsoutsman T, Semsarian C (2003) Hypertrophic cardiomyopathy: from gene defect to clinical disease. Cell Res 13(1):9–20CrossRefPubMed
41.
Zurück zum Zitat Burke MA et al (2016) Clinical and mechanistic insights into the genetics of cardiomyopathy. J Am Coll Cardiol 68(25):2871–2886CrossRefPubMed Burke MA et al (2016) Clinical and mechanistic insights into the genetics of cardiomyopathy. J Am Coll Cardiol 68(25):2871–2886CrossRefPubMed
42.
Zurück zum Zitat Konno T et al (2010) Genetics of hypertrophic cardiomyopathy. Curr Opin Cardiol 25(3):205–209CrossRefPubMed Konno T et al (2010) Genetics of hypertrophic cardiomyopathy. Curr Opin Cardiol 25(3):205–209CrossRefPubMed
43.
Zurück zum Zitat Lechin M et al (1995) Angiotensin-I converting enzyme genotypes and left ventricular hypertrophy in patients with hypertrophic cardiomyopathy. Circulation 92(7):1808–1812CrossRefPubMed Lechin M et al (1995) Angiotensin-I converting enzyme genotypes and left ventricular hypertrophy in patients with hypertrophic cardiomyopathy. Circulation 92(7):1808–1812CrossRefPubMed
44.
Zurück zum Zitat Tesson F et al (1997) The influence of the angiotensin I converting enzyme genotype in familial hypertrophic cardiomyopathy varies with the disease gene mutation. J Mol Cell Cardiol 29(2):831–838CrossRefPubMed Tesson F et al (1997) The influence of the angiotensin I converting enzyme genotype in familial hypertrophic cardiomyopathy varies with the disease gene mutation. J Mol Cell Cardiol 29(2):831–838CrossRefPubMed
45.
Zurück zum Zitat Rigat B et al (1990) An insertion/deletion polymorphism in the angiotensin I‑converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86(4):1343–1346CrossRefPubMedPubMedCentral Rigat B et al (1990) An insertion/deletion polymorphism in the angiotensin I‑converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86(4):1343–1346CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Marian AJ et al (1993) Angiotensin-converting enzyme polymorphism in hypertrophic cardiomyopathy and sudden cardiac death. Lancet 342(8879):1085–1086CrossRefPubMed Marian AJ et al (1993) Angiotensin-converting enzyme polymorphism in hypertrophic cardiomyopathy and sudden cardiac death. Lancet 342(8879):1085–1086CrossRefPubMed
47.
Zurück zum Zitat Lind JM et al (2008) Sex hormone receptor gene variation associated with phenotype in male hypertrophic cardiomyopathy patients. J Mol Cell Cardiol 45(2):217–222CrossRefPubMed Lind JM et al (2008) Sex hormone receptor gene variation associated with phenotype in male hypertrophic cardiomyopathy patients. J Mol Cell Cardiol 45(2):217–222CrossRefPubMed
48.
49.
Zurück zum Zitat Elliott P et al (2008) Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29(2):270–276CrossRefPubMed Elliott P et al (2008) Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29(2):270–276CrossRefPubMed
50.
Zurück zum Zitat Kimura Y et al (2016) Pathological features and pathogenesis of the endomyocardial form of restrictive cardiomyopathy in cats. J Comp Pathol 155(2–3):190–198CrossRefPubMed Kimura Y et al (2016) Pathological features and pathogenesis of the endomyocardial form of restrictive cardiomyopathy in cats. J Comp Pathol 155(2–3):190–198CrossRefPubMed
51.
Zurück zum Zitat Fitzpatrick AP et al (1990) Familial restrictive cardiomyopathy with atrioventricular block and skeletal myopathy. Br Heart J 63(2):114–118CrossRefPubMedPubMedCentral Fitzpatrick AP et al (1990) Familial restrictive cardiomyopathy with atrioventricular block and skeletal myopathy. Br Heart J 63(2):114–118CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Kubo T et al (2007) Prevalence, clinical significance, and genetic basis of hypertrophic cardiomyopathy with restrictive phenotype. J Am Coll Cardiol 49(25):2419–2426CrossRefPubMed Kubo T et al (2007) Prevalence, clinical significance, and genetic basis of hypertrophic cardiomyopathy with restrictive phenotype. J Am Coll Cardiol 49(25):2419–2426CrossRefPubMed
53.
Zurück zum Zitat Menon SC et al (2008) Cardiac troponin T mutation in familial cardiomyopathy with variable remodeling and restrictive physiology. Clin Genet 74(5):445–454CrossRefPubMedPubMedCentral Menon SC et al (2008) Cardiac troponin T mutation in familial cardiomyopathy with variable remodeling and restrictive physiology. Clin Genet 74(5):445–454CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Mogensen J et al (2003) Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest 111(2):209–216CrossRefPubMedPubMedCentral Mogensen J et al (2003) Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest 111(2):209–216CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Caleshu C et al (2011) Furthering the link between the sarcomere and primary cardiomyopathies: restrictive cardiomyopathy associated with multiple mutations in genes previously associated with hypertrophic or dilated cardiomyopathy. Am J Med Genet A 155A(9):2229–2235CrossRefPubMed Caleshu C et al (2011) Furthering the link between the sarcomere and primary cardiomyopathies: restrictive cardiomyopathy associated with multiple mutations in genes previously associated with hypertrophic or dilated cardiomyopathy. Am J Med Genet A 155A(9):2229–2235CrossRefPubMed
56.
Zurück zum Zitat Peled Y et al (2014) Titin mutation in familial restrictive cardiomyopathy. Int J Cardiol 171(1):24–30CrossRefPubMed Peled Y et al (2014) Titin mutation in familial restrictive cardiomyopathy. Int J Cardiol 171(1):24–30CrossRefPubMed
57.
Zurück zum Zitat Ackerman MJ et al (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 13(8):1077–1109CrossRefPubMed Ackerman MJ et al (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 13(8):1077–1109CrossRefPubMed
58.
Zurück zum Zitat Gallego-Delgado M et al (2016) Idiopathic restrictive cardiomyopathy is primarily a genetic disease. J Am Coll Cardiol 67(25):3021–3023CrossRefPubMed Gallego-Delgado M et al (2016) Idiopathic restrictive cardiomyopathy is primarily a genetic disease. J Am Coll Cardiol 67(25):3021–3023CrossRefPubMed
59.
Zurück zum Zitat Arbustini E et al (2006) Desmin accumulation restrictive cardiomyopathy and atrioventricular block associated with desmin gene defects. Eur J Heart Fail 8(5):477–483CrossRefPubMed Arbustini E et al (2006) Desmin accumulation restrictive cardiomyopathy and atrioventricular block associated with desmin gene defects. Eur J Heart Fail 8(5):477–483CrossRefPubMed
60.
61.
Zurück zum Zitat Bellmann B et al (2017) Restrictive cardiomyopathy: delayed occurrence after radiotherapy of breast cancer. Wien Klin Wochenschr 129(7–8):278–283CrossRefPubMed Bellmann B et al (2017) Restrictive cardiomyopathy: delayed occurrence after radiotherapy of breast cancer. Wien Klin Wochenschr 129(7–8):278–283CrossRefPubMed
62.
Zurück zum Zitat Gomes AV, Liang J, Potter JD (2005) Mutations in human cardiac troponin I that are associated with restrictive cardiomyopathy affect basal ATPase activity and the calcium sensitivity of force development. J Biol Chem 280(35):30909–30915CrossRefPubMed Gomes AV, Liang J, Potter JD (2005) Mutations in human cardiac troponin I that are associated with restrictive cardiomyopathy affect basal ATPase activity and the calcium sensitivity of force development. J Biol Chem 280(35):30909–30915CrossRefPubMed
63.
Zurück zum Zitat Pinamonti B et al (2001) Prognostic predictors in arrhythmogenic right ventricular cardiomyopathy: results from a 10-year registry. Eur Heart J 32(9):1105–1113CrossRef Pinamonti B et al (2001) Prognostic predictors in arrhythmogenic right ventricular cardiomyopathy: results from a 10-year registry. Eur Heart J 32(9):1105–1113CrossRef
64.
Zurück zum Zitat Marcus FI, Edson S, Towbin JA (2013) Genetics of arrhythmogenic right ventricular cardiomyopathy: a practical guide for physicians. J Am Coll Cardiol 61(19):1945–1948CrossRefPubMed Marcus FI, Edson S, Towbin JA (2013) Genetics of arrhythmogenic right ventricular cardiomyopathy: a practical guide for physicians. J Am Coll Cardiol 61(19):1945–1948CrossRefPubMed
65.
Zurück zum Zitat den Haan AD et al (2009) Comprehensive desmosome mutation analysis in north americans with arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Cardiovasc Genet 2(5):428–435CrossRefPubMedCentral den Haan AD et al (2009) Comprehensive desmosome mutation analysis in north americans with arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Cardiovasc Genet 2(5):428–435CrossRefPubMedCentral
67.
Zurück zum Zitat Bauce B et al (2005) Clinical profile of four families with arrhythmogenic right ventricular cardiomyopathy caused by dominant desmoplakin mutations. Eur Heart J 26(16):1666–1675CrossRefPubMed Bauce B et al (2005) Clinical profile of four families with arrhythmogenic right ventricular cardiomyopathy caused by dominant desmoplakin mutations. Eur Heart J 26(16):1666–1675CrossRefPubMed
68.
Zurück zum Zitat Corrado D, Thiene G (2006) Arrhythmogenic right ventricular cardiomyopathy/dysplasia: clinical impact of molecular genetic studies. Circulation 113(13):1634–1637CrossRefPubMed Corrado D, Thiene G (2006) Arrhythmogenic right ventricular cardiomyopathy/dysplasia: clinical impact of molecular genetic studies. Circulation 113(13):1634–1637CrossRefPubMed
69.
Zurück zum Zitat Delmar M, McKenna WJ (2010) The cardiac desmosome and arrhythmogenic cardiomyopathies: from gene to disease. Circ Res 107(6):700–714CrossRefPubMed Delmar M, McKenna WJ (2010) The cardiac desmosome and arrhythmogenic cardiomyopathies: from gene to disease. Circ Res 107(6):700–714CrossRefPubMed
70.
Zurück zum Zitat Christensen AH et al (2011) Mutation analysis and evaluation of the cardiac localization of TMEM43 in arrhythmogenic right ventricular cardiomyopathy. Clin Genet 80(3):256–264CrossRefPubMed Christensen AH et al (2011) Mutation analysis and evaluation of the cardiac localization of TMEM43 in arrhythmogenic right ventricular cardiomyopathy. Clin Genet 80(3):256–264CrossRefPubMed
71.
Zurück zum Zitat Merner ND et al (2008) Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am J Hum Genet 82(4):809–821CrossRefPubMedPubMedCentral Merner ND et al (2008) Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am J Hum Genet 82(4):809–821CrossRefPubMedPubMedCentral
72.
Zurück zum Zitat Beffagna G et al (2005) Regulatory mutations in transforming growth factor-beta3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc Res 65(2):366–373CrossRefPubMed Beffagna G et al (2005) Regulatory mutations in transforming growth factor-beta3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc Res 65(2):366–373CrossRefPubMed
73.
Zurück zum Zitat Tiso N et al (2001) Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet 10(3):189–194CrossRefPubMed Tiso N et al (2001) Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet 10(3):189–194CrossRefPubMed
74.
Zurück zum Zitat Forleo C et al (2015) Clinical and functional characterization of a novel mutation in lamin a/c gene in a multigenerational family with arrhythmogenic cardiac laminopathy. PLOS ONE 10(4):e0121723CrossRefPubMedPubMedCentral Forleo C et al (2015) Clinical and functional characterization of a novel mutation in lamin a/c gene in a multigenerational family with arrhythmogenic cardiac laminopathy. PLOS ONE 10(4):e0121723CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Taylor M et al (2011) Genetic variation in titin in arrhythmogenic right ventricular cardiomyopathy-overlap syndromes. Circulation 124(8):876–885CrossRefPubMedPubMedCentral Taylor M et al (2011) Genetic variation in titin in arrhythmogenic right ventricular cardiomyopathy-overlap syndromes. Circulation 124(8):876–885CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Hodgkinson KA et al (2005) The impact of implantable cardioverter-defibrillator therapy on survival in autosomal-dominant arrhythmogenic right ventricular cardiomyopathy (ARVD5). J Am Coll Cardiol 45(3):400–408CrossRefPubMedPubMedCentral Hodgkinson KA et al (2005) The impact of implantable cardioverter-defibrillator therapy on survival in autosomal-dominant arrhythmogenic right ventricular cardiomyopathy (ARVD5). J Am Coll Cardiol 45(3):400–408CrossRefPubMedPubMedCentral
77.
Zurück zum Zitat [No authors listed] (1990) Restrictive and electric disturbance in heart muscle diseases. Selected proceedings from the 2nd International Symposium on Cardiomyopathy and Myocarditis, September 14–16, 1988, Tokyo, Japan. Heart Vessels Suppl 5:1–91 [No authors listed] (1990) Restrictive and electric disturbance in heart muscle diseases. Selected proceedings from the 2nd International Symposium on Cardiomyopathy and Myocarditis, September 14–16, 1988, Tokyo, Japan. Heart Vessels Suppl 5:1–91
78.
Zurück zum Zitat Priori SG et al (2001) Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103(2):196–200CrossRefPubMed Priori SG et al (2001) Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103(2):196–200CrossRefPubMed
79.
Zurück zum Zitat Kayvanpour E et al (2017) Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals. Clin Res Cardiol 106(2):127–139CrossRefPubMed Kayvanpour E et al (2017) Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals. Clin Res Cardiol 106(2):127–139CrossRefPubMed
80.
Zurück zum Zitat Ackerman MJ, Marcou CA, Tester DJ (2013) Personalized medicine: genetic diagnosis for inherited cardiomyopathies/channelopathies. Rev Esp Cardiol (Engl Ed) 66(4):298–307CrossRef Ackerman MJ, Marcou CA, Tester DJ (2013) Personalized medicine: genetic diagnosis for inherited cardiomyopathies/channelopathies. Rev Esp Cardiol (Engl Ed) 66(4):298–307CrossRef
81.
Zurück zum Zitat Anan R et al (1994) Prognostic implications of novel beta cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy. J Clin Invest 93(1):280–285CrossRefPubMedPubMedCentral Anan R et al (1994) Prognostic implications of novel beta cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy. J Clin Invest 93(1):280–285CrossRefPubMedPubMedCentral
82.
Zurück zum Zitat Marian AJ, Roberts R (1998) Molecular genetic basis of hypertrophic cardiomyopathy: genetic markers for sudden cardiac death. J Cardiovasc Electrophysiol 9(1):88–99CrossRefPubMed Marian AJ, Roberts R (1998) Molecular genetic basis of hypertrophic cardiomyopathy: genetic markers for sudden cardiac death. J Cardiovasc Electrophysiol 9(1):88–99CrossRefPubMed
83.
Zurück zum Zitat Enjuto M et al (2000) Malignant hypertrophic cardiomyopathy caused by the Arg723Gly mutation in beta-myosin heavy chain gene. J Mol Cell Cardiol 32(12):2307–2313CrossRefPubMed Enjuto M et al (2000) Malignant hypertrophic cardiomyopathy caused by the Arg723Gly mutation in beta-myosin heavy chain gene. J Mol Cell Cardiol 32(12):2307–2313CrossRefPubMed
84.
Zurück zum Zitat Ho CY et al (2015) Diltiazem treatment for pre-clinical hypertrophic cardiomyopathy sarcomere mutation carriers: a pilot randomized trial to modify disease expression. JACC Heart Fail 3(2):180–188CrossRefPubMed Ho CY et al (2015) Diltiazem treatment for pre-clinical hypertrophic cardiomyopathy sarcomere mutation carriers: a pilot randomized trial to modify disease expression. JACC Heart Fail 3(2):180–188CrossRefPubMed
85.
Zurück zum Zitat Ruwald AC et al (2015) Association of competitive and recreational sport participation with cardiac events in patients with arrhythmogenic right ventricular cardiomyopathy: results from the North American multidisciplinary study of arrhythmogenic right ventricular cardiomyopathy. Eur Heart J 36(27):1735–1743CrossRefPubMedPubMedCentral Ruwald AC et al (2015) Association of competitive and recreational sport participation with cardiac events in patients with arrhythmogenic right ventricular cardiomyopathy: results from the North American multidisciplinary study of arrhythmogenic right ventricular cardiomyopathy. Eur Heart J 36(27):1735–1743CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Mearini G et al (2014) Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice. Nat Commun 5:5515CrossRefPubMed Mearini G et al (2014) Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice. Nat Commun 5:5515CrossRefPubMed
87.
Zurück zum Zitat Stillitano F et al (2016) Genomic correction of familial cardiomyopathy in human engineered cardiac tissues. Eur Heart J 37(43):3282–3284CrossRefPubMed Stillitano F et al (2016) Genomic correction of familial cardiomyopathy in human engineered cardiac tissues. Eur Heart J 37(43):3282–3284CrossRefPubMed
88.
Zurück zum Zitat Long C et al (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(6271):400–403CrossRefPubMed Long C et al (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(6271):400–403CrossRefPubMed
Metadaten
Titel
Precision medicine approach to genetic cardiomyopathy
verfasst von
Dr. K. Filonenko
Prof. Dr. H. A. Katus
PD Dr. B. Meder
Publikationsdatum
26.06.2017
Verlag
Springer Medizin
Erschienen in
Herz / Ausgabe 5/2017
Print ISSN: 0340-9937
Elektronische ISSN: 1615-6692
DOI
https://doi.org/10.1007/s00059-017-4592-z

Weitere Artikel der Ausgabe 5/2017

Herz 5/2017 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.