Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 2/2017

04.10.2016 | Original Article

Preclinical in vivo and in vitro comparison of the translocator protein PET ligands [18F]PBR102 and [18F]PBR111

verfasst von: S. Eberl, A. Katsifis, M. A. Peyronneau, L. Wen, D. Henderson, C. Loc’h, I. Greguric, J. Verschuer, T. Pham, P. Lam, F. Mattner, A. Mohamed, M. J. Fulham

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To determine the metabolic profiles of the translocator protein ligands PBR102 and PBR111 in rat and human microsomes and compare their in vivo binding and metabolite uptake in the brain of non-human primates (Papio hamadryas) using PET-CT.

Methods

In vitro metabolic profiles of PBR102 and PBR111 in rat and human liver microsomes were assessed by liquid chromatography–tandem mass spectrometry. [18F]PBR102 and [18F]PBR111 were prepared by nucleophilic substitution of their corresponding p-toluenesulfonyl precursors with [18F]fluoride. List mode PET-CT brain imaging with arterial blood sampling was performed in non-human primates. Blood plasma measurements and metabolite analysis, using solid-phase extraction, provided the metabolite profile and metabolite-corrected input functions for kinetic model fitting. Blocking and displacement PET-CT scans, using PK11195, were performed.

Results

Microsomal analyses identified the O-de-alkylated, hydroxylated and N-de-ethyl derivatives of PBR102 and PBR111 as the main metabolites. The O-de-alkylated compounds were the major metabolites in both species; human liver microsomes were less active than those from rat. Metabolic profiles in vivo in non-human primates and previously published rat experiments were consistent with the microsomal results. PET-CT studies showed that K1 was similar for baseline and blocking studies for both radiotracers; VT was reduced during the blocking study, suggesting low non-specific binding and lack of appreciable metabolite uptake in the brain.

Conclusions

[18F]PBR102 and [18F]PBR111 have distinct metabolic profiles in rat and non-human primates. Radiometabolites contributed to non-specific binding and confounded in vivo brain analysis of [18F]PBR102 in rodents; the impact in primates was less pronounced. Both [18F]PBR102 and [18F]PBR111 are suitable for PET imaging of TSPO in vivo. In vitro metabolite studies can be used to predict in vivo radioligand metabolism and can assist in the design and development of better radioligands.
Literatur
1.
Zurück zum Zitat Bauer J, Sminia T, Wouterlood FG, Dijkstra CD. Phagocytic activity of macrophages and microglial cells during the course of acute and chronic relapsing experimental autoimmune encephalomyelitis. J Neurosci Res. 1994;38:365–75. doi:10.1002/jnr.490380402.CrossRefPubMed Bauer J, Sminia T, Wouterlood FG, Dijkstra CD. Phagocytic activity of macrophages and microglial cells during the course of acute and chronic relapsing experimental autoimmune encephalomyelitis. J Neurosci Res. 1994;38:365–75. doi:10.​1002/​jnr.​490380402.CrossRefPubMed
2.
Zurück zum Zitat Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (translocator protein 18 kDa) in microglia: from pathology to imaging. Prog Neurobiol. 2006;80:308–22.CrossRefPubMedPubMedCentral Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (translocator protein 18 kDa) in microglia: from pathology to imaging. Prog Neurobiol. 2006;80:308–22.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Vowinckel E, Reutens D, Becher B, Verge G, Evans A, Owens T, et al. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurosci Res. 1997;50:345–53.CrossRefPubMed Vowinckel E, Reutens D, Becher B, Verge G, Evans A, Owens T, et al. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurosci Res. 1997;50:345–53.CrossRefPubMed
5.
Zurück zum Zitat Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, et al. Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol. 2005;57:168–75. doi:10.1002/ana.20338.CrossRefPubMed Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, et al. Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol. 2005;57:168–75. doi:10.​1002/​ana.​20338.CrossRefPubMed
6.
Zurück zum Zitat McGeer EG, Singh EA, McGeer PL. Peripheral-type benzodiazepine binding in Alzheimer disease. Alzheimer Dis Assoc Disord. 1988;2:331–6.CrossRefPubMed McGeer EG, Singh EA, McGeer PL. Peripheral-type benzodiazepine binding in Alzheimer disease. Alzheimer Dis Assoc Disord. 1988;2:331–6.CrossRefPubMed
7.
Zurück zum Zitat Hammoud DA, Endres CJ, Chander AR, Guilarte TR, Wong DF, Sacktor NC, et al. Imaging glial cell activation with [C-11]-R-PK11195 in patients with aids. J Neurovirol. 2005;11:346–55.CrossRefPubMed Hammoud DA, Endres CJ, Chander AR, Guilarte TR, Wong DF, Sacktor NC, et al. Imaging glial cell activation with [C-11]-R-PK11195 in patients with aids. J Neurovirol. 2005;11:346–55.CrossRefPubMed
8.
Zurück zum Zitat Messmer K, Reynolds GP. Increased peripheral benzodiazepine binding sites in the brain of patients with Huntington’s disease. Neurosci Lett. 1998;241:53–6.CrossRefPubMed Messmer K, Reynolds GP. Increased peripheral benzodiazepine binding sites in the brain of patients with Huntington’s disease. Neurosci Lett. 1998;241:53–6.CrossRefPubMed
9.
Zurück zum Zitat Pappata S, Levasseur M, Gunn RN, Myers R, Crouzel C, Syrota A, et al. Thalamic microglial activation in ischemic stroke detected in vivo by PET and [C-11]PK11195. Neurology. 2000;55:1052–4.CrossRefPubMed Pappata S, Levasseur M, Gunn RN, Myers R, Crouzel C, Syrota A, et al. Thalamic microglial activation in ischemic stroke detected in vivo by PET and [C-11]PK11195. Neurology. 2000;55:1052–4.CrossRefPubMed
11.
Zurück zum Zitat Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, et al. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov. 2010;9:971–88. doi:10.1038/nrd3295.CrossRefPubMed Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, et al. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov. 2010;9:971–88. doi:10.​1038/​nrd3295.CrossRefPubMed
13.
Zurück zum Zitat Peyronneau MA, Saba W, Goutal S, Damont A, Dolle F, Kassiou M, et al. Metabolism and quantification of [18F]DPA-714, a new TSPO positron emission tomography radioligand. Drug Metab Dispos. 2013;41:122–31. doi:10.1124/dmd.112.046342.CrossRefPubMed Peyronneau MA, Saba W, Goutal S, Damont A, Dolle F, Kassiou M, et al. Metabolism and quantification of [18F]DPA-714, a new TSPO positron emission tomography radioligand. Drug Metab Dispos. 2013;41:122–31. doi:10.​1124/​dmd.​112.​046342.CrossRefPubMed
14.
Zurück zum Zitat Katsifis A, Loc’h C, Henderson D, Bourdier T, Pham T, Greguric I, et al. A rapid solid-phase extraction method for measurement of non-metabolised peripheral benzodiazepine receptor ligands, [18F]PBR102 and [18F]PBR111, in rat and primate plasma. Nucl Med Biol. 2011;38:137–48. doi:10.1016/j.nucmedbio.2010.07.008.CrossRefPubMed Katsifis A, Loc’h C, Henderson D, Bourdier T, Pham T, Greguric I, et al. A rapid solid-phase extraction method for measurement of non-metabolised peripheral benzodiazepine receptor ligands, [18F]PBR102 and [18F]PBR111, in rat and primate plasma. Nucl Med Biol. 2011;38:137–48. doi:10.​1016/​j.​nucmedbio.​2010.​07.​008.CrossRefPubMed
15.
Zurück zum Zitat Wilson AA, McCormick P, Kapur S, Willeit M, Garcia A, Hussey D, et al. Radiosynthesis and evaluation of [11C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography. J Med Chem. 2005;48:4153–60. doi:10.1021/jm050155n.CrossRefPubMed Wilson AA, McCormick P, Kapur S, Willeit M, Garcia A, Hussey D, et al. Radiosynthesis and evaluation of [11C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography. J Med Chem. 2005;48:4153–60. doi:10.​1021/​jm050155n.CrossRefPubMed
16.
Zurück zum Zitat Fookes CJ, Pham TQ, Mattner F, Greguric I, Loc’h C, Liu X, et al. Synthesis and biological evaluation of substituted [18F]imidazo[1,2-a]pyridines and [18F]pyrazolo[1,5-a]pyrimidines for the study of the peripheral benzodiazepine receptor using positron emission tomography. J Med Chem. 2008;51:3700–12.CrossRefPubMed Fookes CJ, Pham TQ, Mattner F, Greguric I, Loc’h C, Liu X, et al. Synthesis and biological evaluation of substituted [18F]imidazo[1,2-a]pyridines and [18F]pyrazolo[1,5-a]pyrimidines for the study of the peripheral benzodiazepine receptor using positron emission tomography. J Med Chem. 2008;51:3700–12.CrossRefPubMed
17.
Zurück zum Zitat Van Camp N, Boisgard R, Kuhnast B, Theze B, Viel T, Gregoire MC, et al. In vivo imaging of neuroinflammation: a comparative study between [F-18]PBR111, [C-11]CLINME and [C-11]PK11195 in an acute rodent model. Eur J Nucl Med Mol Imaging. 2010;37:962–72.CrossRefPubMed Van Camp N, Boisgard R, Kuhnast B, Theze B, Viel T, Gregoire MC, et al. In vivo imaging of neuroinflammation: a comparative study between [F-18]PBR111, [C-11]CLINME and [C-11]PK11195 in an acute rodent model. Eur J Nucl Med Mol Imaging. 2010;37:962–72.CrossRefPubMed
18.
Zurück zum Zitat Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32:1–5. doi:10.1038/jcbfm.2011.147.CrossRefPubMed Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32:1–5. doi:10.​1038/​jcbfm.​2011.​147.CrossRefPubMed
20.
Zurück zum Zitat Hilton J, Yokoi F, Dannals RF, Ravert HT, Szabo Z, Wong DF. Column-switching HPLC for the analysis of plasma in PET imaging studies. Nucl Med Biol. 2000;27:627–30.CrossRefPubMed Hilton J, Yokoi F, Dannals RF, Ravert HT, Szabo Z, Wong DF. Column-switching HPLC for the analysis of plasma in PET imaging studies. Nucl Med Biol. 2000;27:627–30.CrossRefPubMed
21.
Zurück zum Zitat Shetty HU, Zoghbi SS, Simeon FG, Liow JS, Brown AK, Kannan P, et al. Radiodefluorination of 3-fluoro-5-(2-(2-[18F](fluoromethyl)-thiazol-4-yl)ethynyl)benzonitrile ([18F]SP203), a radioligand for imaging brain metabotropic glutamate subtype-5 receptors with positron emission tomography, occurs by glutathionylation in rat brain. J Pharmacol Exp Ther. 2008;327:727–35. doi:10.1124/jpet.108.143347.CrossRefPubMed Shetty HU, Zoghbi SS, Simeon FG, Liow JS, Brown AK, Kannan P, et al. Radiodefluorination of 3-fluoro-5-(2-(2-[18F](fluoromethyl)-thiazol-4-yl)ethynyl)benzonitrile ([18F]SP203), a radioligand for imaging brain metabotropic glutamate subtype-5 receptors with positron emission tomography, occurs by glutathionylation in rat brain. J Pharmacol Exp Ther. 2008;327:727–35. doi:10.​1124/​jpet.​108.​143347.CrossRefPubMed
22.
Zurück zum Zitat Yokoi T, Iida H, Itoh H, Kanno I. A new graphic plot analysis for cerebral blood flow and partition coefficient with iodine-123-iodoamphetamine and dynamic SPECT validation studies using oxygen-15-water and PET. J Nucl Med. 1993;34:498–505.PubMed Yokoi T, Iida H, Itoh H, Kanno I. A new graphic plot analysis for cerebral blood flow and partition coefficient with iodine-123-iodoamphetamine and dynamic SPECT validation studies using oxygen-15-water and PET. J Nucl Med. 1993;34:498–505.PubMed
24.
Zurück zum Zitat Knust EJ, Kupfernagel C, Stocklin G. Long-chain F-18 fatty acids for the study of regional metabolism in heart and liver; odd-even effects of metabolism in mice. J Nucl Med. 1979;20:1170–5.PubMed Knust EJ, Kupfernagel C, Stocklin G. Long-chain F-18 fatty acids for the study of regional metabolism in heart and liver; odd-even effects of metabolism in mice. J Nucl Med. 1979;20:1170–5.PubMed
25.
Zurück zum Zitat Zoghbi SS, Shetty HU, Ichise M, Fujita M, Imaizumi M, Liow JS, et al. PET imaging of the dopamine transporter with 18F-FECNT: a polar radiometabolite confounds brain radioligand measurements. J Nucl Med. 2006;47:520–7.PubMed Zoghbi SS, Shetty HU, Ichise M, Fujita M, Imaizumi M, Liow JS, et al. PET imaging of the dopamine transporter with 18F-FECNT: a polar radiometabolite confounds brain radioligand measurements. J Nucl Med. 2006;47:520–7.PubMed
26.
Zurück zum Zitat Fonnum F, Johnsen A, Hassel B. Use of fluorocitrate and fluoroacetate in the study of brain metabolism. Glia. 1997;21:106–13.CrossRefPubMed Fonnum F, Johnsen A, Hassel B. Use of fluorocitrate and fluoroacetate in the study of brain metabolism. Glia. 1997;21:106–13.CrossRefPubMed
28.
29.
Zurück zum Zitat Peyronneau MA, Saba W, Dolle F, Goutal S, Coulon C, Bottlaender M, et al. Difficulties in dopamine transporter radioligand PET analysis: the example of LBT-999 using [18F] and [11C] labelling: part II: metabolism studies. Nucl Med Biol. 2012;39:347–59. doi:10.1016/j.nucmedbio.2011.09.006.CrossRefPubMed Peyronneau MA, Saba W, Dolle F, Goutal S, Coulon C, Bottlaender M, et al. Difficulties in dopamine transporter radioligand PET analysis: the example of LBT-999 using [18F] and [11C] labelling: part II: metabolism studies. Nucl Med Biol. 2012;39:347–59. doi:10.​1016/​j.​nucmedbio.​2011.​09.​006.CrossRefPubMed
30.
Zurück zum Zitat Zhang MR, Maeda J, Ogawa M, Noguchi J, Ito T, Yoshida Y, et al. Development of a new radioligand, N-(5-fluoro-2-phenoxyphenyl)-N-(2-[18F]fluoroethyl-5-methoxybenzyl)acetamide, for PET imaging of peripheral benzodiazepine receptor in primate brain. J Med Chem. 2004;47:2228–35.CrossRefPubMed Zhang MR, Maeda J, Ogawa M, Noguchi J, Ito T, Yoshida Y, et al. Development of a new radioligand, N-(5-fluoro-2-phenoxyphenyl)-N-(2-[18F]fluoroethyl-5-methoxybenzyl)acetamide, for PET imaging of peripheral benzodiazepine receptor in primate brain. J Med Chem. 2004;47:2228–35.CrossRefPubMed
32.
Zurück zum Zitat Briard E, Zoghbi SS, Simeon FG, Imaizumi M, Gourley JP, Shetty HU, et al. Single-step high-yield radiosynthesis and evaluation of a sensitive, F-18-labeled ligand for imaging brain peripheral benzodiazepine receptors with PET. J Med Chem. 2009;52:688–99.CrossRefPubMedPubMedCentral Briard E, Zoghbi SS, Simeon FG, Imaizumi M, Gourley JP, Shetty HU, et al. Single-step high-yield radiosynthesis and evaluation of a sensitive, F-18-labeled ligand for imaging brain peripheral benzodiazepine receptors with PET. J Med Chem. 2009;52:688–99.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Katsifis A, Mattner F, Dikic B, Papazian V. Synthesis of substituted [123I]imidazo[1,2-a]pyridines as potential probes for the study of the peripheral benzodiazepine receptors using SPECT. Radiochim Acta. 2000;88:229–32.CrossRef Katsifis A, Mattner F, Dikic B, Papazian V. Synthesis of substituted [123I]imidazo[1,2-a]pyridines as potential probes for the study of the peripheral benzodiazepine receptors using SPECT. Radiochim Acta. 2000;88:229–32.CrossRef
34.
Zurück zum Zitat Trapani G, Franco M, Latrofa A, Ricciardi L, Carotti A, Serra M, et al. Novel 2-phenylimidazo[1,2-a]pyridine derivatives as potent and selective ligands for peripheral benzodiazepine receptors: synthesis, binding affinity, and in vivo studies. J Med Chem. 1999;42:3934–41.CrossRefPubMed Trapani G, Franco M, Latrofa A, Ricciardi L, Carotti A, Serra M, et al. Novel 2-phenylimidazo[1,2-a]pyridine derivatives as potent and selective ligands for peripheral benzodiazepine receptors: synthesis, binding affinity, and in vivo studies. J Med Chem. 1999;42:3934–41.CrossRefPubMed
35.
Zurück zum Zitat Yui J, Maeda J, Kumata K, Kawamura K, Yanamoto K, Hatori A, et al. 18F-FEAC and 18F-FEDAC: PET of the monkey brain and imaging of translocator protein (18 kDa) in the infarcted rat brain. J Nucl Med. 2010;51:1301–9. doi:10.2967/jnumed.109.072223.CrossRefPubMed Yui J, Maeda J, Kumata K, Kawamura K, Yanamoto K, Hatori A, et al. 18F-FEAC and 18F-FEDAC: PET of the monkey brain and imaging of translocator protein (18 kDa) in the infarcted rat brain. J Nucl Med. 2010;51:1301–9. doi:10.​2967/​jnumed.​109.​072223.CrossRefPubMed
36.
Zurück zum Zitat Saba W, Goutal S, Kuhnast B, Dolle F, Auvity S, Fontyn Y, et al. Differential influence of propofol and isoflurane anesthesia in a non-human primate on the brain kinetics and binding of [18F]DPA-714, a positron emission tomography imaging marker of glial activation. Eur J Neurosci. 2015;42:1738–45. doi:10.1111/ejn.12946.CrossRefPubMed Saba W, Goutal S, Kuhnast B, Dolle F, Auvity S, Fontyn Y, et al. Differential influence of propofol and isoflurane anesthesia in a non-human primate on the brain kinetics and binding of [18F]DPA-714, a positron emission tomography imaging marker of glial activation. Eur J Neurosci. 2015;42:1738–45. doi:10.​1111/​ejn.​12946.CrossRefPubMed
37.
Zurück zum Zitat Imaizumi M, Briard E, Zoghbi SS, Gourley JP, Hong J, Musachio JL, et al. Kinetic evaluation in nonhuman primates of two new PET ligands for peripheral benzodiazepine receptors in brain. Synapse. 2007;61:595–605. doi:10.1002/syn.20394.CrossRefPubMed Imaizumi M, Briard E, Zoghbi SS, Gourley JP, Hong J, Musachio JL, et al. Kinetic evaluation in nonhuman primates of two new PET ligands for peripheral benzodiazepine receptors in brain. Synapse. 2007;61:595–605. doi:10.​1002/​syn.​20394.CrossRefPubMed
38.
39.
Zurück zum Zitat Guo Q, Colasanti A, Owen DR, Onega M, Kamalakaran A, Bennacef I, et al. Quantification of the specific translocator protein signal of 18F-PBR111 in healthy humans: a genetic polymorphism effect on in vivo binding. J Nucl Med. 2013;54:1915–23. doi:10.2967/jnumed.113.121020.CrossRefPubMed Guo Q, Colasanti A, Owen DR, Onega M, Kamalakaran A, Bennacef I, et al. Quantification of the specific translocator protein signal of 18F-PBR111 in healthy humans: a genetic polymorphism effect on in vivo binding. J Nucl Med. 2013;54:1915–23. doi:10.​2967/​jnumed.​113.​121020.CrossRefPubMed
Metadaten
Titel
Preclinical in vivo and in vitro comparison of the translocator protein PET ligands [18F]PBR102 and [18F]PBR111
verfasst von
S. Eberl
A. Katsifis
M. A. Peyronneau
L. Wen
D. Henderson
C. Loc’h
I. Greguric
J. Verschuer
T. Pham
P. Lam
F. Mattner
A. Mohamed
M. J. Fulham
Publikationsdatum
04.10.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 2/2017
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-016-3517-z

Weitere Artikel der Ausgabe 2/2017

European Journal of Nuclear Medicine and Molecular Imaging 2/2017 Zur Ausgabe