Skip to main content
main-content

01.01.2019 | Systems-Level Quality Improvement | Ausgabe 1/2018

Journal of Medical Systems 1/2018

Prediction of Hemodialysis Timing Based on LVW Feature Selection and Ensemble Learning

Zeitschrift:
Journal of Medical Systems > Ausgabe 1/2018
Autoren:
Chang-zhu Xiong, Minglian Su, Zitao Jiang, Wei Jiang
Wichtige Hinweise
This article is part of the Topical Collection on Systems-Level Quality Improvement

Abstract

We propose an improved model based on LVW embedded model feature extractor and ensemble learning for improving prediction accuracy of hemodialysis timing in this paper. Due to this drawback caused by feature extraction models, we adopt an enhanced LVW embedded model to search the feature subset by stochastic strategy, which can find the best feature combination that are most beneficial to learner performance. In the model application, we present an improved integrated learners for model fusion to reduce errors caused by overfitting problem of the single classifier. We run several state-of-the-art Q&A methods as contrastive experiments. The experimental results show that the ensemble learning model based on LVW has better generalization ability (97.04%) and lower standard error (± 0.04). We adopt the model to make high-precision predictions of hemodialysis timing, and the experimental results have shown that our framework significantly outperforms several strong baselines. Our model provides strong clinical decision support for physician diagnosis and has important clinical implications.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2018

Journal of Medical Systems 1/2018 Zur Ausgabe