Skip to main content
main-content

23.05.2018 | Original Article | Ausgabe 6/2018

Annals of Nuclear Medicine 6/2018

Prediction of tumor differentiation using sequential PET/CT and MRI in patients with breast cancer

Zeitschrift:
Annals of Nuclear Medicine > Ausgabe 6/2018
Autoren:
Joon Ho Choi, Ilhan Lim, Woo Chul Noh, Hyun-Ah Kim, Min-Ki Seong, Seonah Jang, Hyesil Seol, Hansol Moon, Byung Hyun Byun, Byung Il Kim, Chang Woon Choi, Sang Moo Lim

Abstract

Objective

The aim of this study is to assess tumor differentiation using parameters from sequential positron emission tomography/computed tomography (PET/CT) and magnetic resonance imaging (MRI) in patients with breast cancer.

Methods

This retrospective study included 78 patients with breast cancer. All patients underwent sequential PET/CT and MRI. For fluorodeoxyglucose (FDG)-PET image analysis, the maximum standardized uptake value (SUVmax) of FDG was assessed at both 1 and 2 h and metabolic tumor volume (MTV) and total lesion glycolysis (TLG). The kinetic analysis of dynamic contrast-enhanced MRI parameters was performed using dynamic enhancement curves. We assessed diffusion-weighted imaging (DWI)–MRI parameters regarding apparent diffusion coefficient (ADC) values. Histologic grades 1 and 2 were classified as low-grade, and grade 3 as high-grade tumor.

Results

Forty-five lesions of 78 patients were classified as histologic grade 3, while 26 and 7 lesions were grade 2 and grade 1, respectively. Patients with high-grade tumors showed significantly lower ADC-mean values than patients with low-grade tumors (0.99 ± 0.19 vs.1.12 ± 0.32, p = 0.007). With respect to SUVmax1, MTV2.5, and TLG2.5, patients with high-grade tumors showed higher values than patients with low-grade tumors: SUVmax1 (7.92 ± 4.5 vs.6.19 ± 3.05, p = 0.099), MTV2.5 (7.90 ± 9.32 vs.4.38 ± 5.10, p = 0.095), and TLG2.5 (40.83 ± 59.17 vs.19.66 ± 26.08, p = 0.082). However, other parameters did not reveal significant differences between low-grade and high-grade malignancies. In receiver-operating characteristic (ROC) curve analysis, ADC-mean values showed the highest area under the curve of 0.681 (95%CI 0.566–0.782) for assessing high-grade malignancy.

Conclusions

Lower ADC-mean values may predict the poor differentiation of breast cancer among diverse PET–MRI functional parameters.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt e.Med zum Sonderpreis bestellen!

Sichern Sie sich jetzt Ihr e.Med-Abo und sparen Sie 50 %!

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2018

Annals of Nuclear Medicine 6/2018 Zur Ausgabe
  1. Sie können e.Med Radiologie 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.

  2. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.