Skip to main content

08.05.2017 | Breast Oncology | Ausgabe 9/2017

Annals of Surgical Oncology 9/2017

Preoperative Prediction of Node-Negative Disease After Neoadjuvant Chemotherapy in Patients Presenting with Node-Negative or Node-Positive Breast Cancer

Annals of Surgical Oncology > Ausgabe 9/2017
MD, MS Brittany L. Murphy, MS Tanya L. Hoskin, BS Courtney Day N. (Heins), PhD, MPH Elizabeth B. Habermann, MD Judy C. Boughey
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1245/​s10434-017-5872-9) contains supplementary material, which is available to authorized users.
This work has not previously been submitted for publication but was presented as a poster presentation at the Society of Surgical Oncology Annual Cancer Symposium, Seattle, WA, USA, 15–18 March 2017.



Axillary node status after neoadjuvant chemotherapy (NAC) influences the axillary surgical staging procedure as well as recommendations regarding reconstruction and radiation.


Our aim was to construct a clinical preoperative prediction model to identify the likelihood of patients being node negative after NAC.


Using the National Cancer Database (NCDB) from January 2010 to December 2012, we identified cT1–T4c, N0–N3 breast cancer patients treated with NAC. The effects of patient and tumor factors on pathologic node status were assessed by multivariable logistic regression separately for clinically node negative (cN0) and clinically node positive (cN+) disease, and two models were constructed. Model performance was validated in a cohort of NAC patients treated at our institution (January 2013–July 2016), and model discrimination was assessed by estimating the area under the curve (AUC).


Of 16,153 NCDB patients, 6659 (41%) were cN0 and 9494 (59%) were cN+. Factors associated with pathologic nodal status and included in the models were patient age, tumor grade, biologic subtype, histology, clinical tumor category, and, in cN+ patients only, clinical nodal category. The validation dataset included 194 cN0 and 180 cN+ patients. The cN0 model demonstrated good discrimination, with an AUC of 0.73 (95% confidence interval [CI] 0.72–0.74) in the NCDB and 0.77 (95% CI 0.68–0.85) in the external validation, while the cN+ patient model AUC was 0.71 (95% CI 0.70–0.72) in the NCDB and 0.74 (95% CI 0.67–0.82) in the external validation.


We constructed two models that showed good discrimination for predicting ypN0 status following NAC in cN0 and cN+ patients. These clinically useful models can guide surgical planning after NAC.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Weitere Produktempfehlungen anzeigen
Supplementary material 1 (DOCX 39 kb)
Supplementary material 2 (DOCX 69 kb)
Über diesen Artikel

Weitere Artikel der Ausgabe 9/2017

Annals of Surgical Oncology 9/2017 Zur Ausgabe

Health Services Research and Global Oncology

Global Forum of Cancer Surgeons: Declaration of Intent

  1. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

  2. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

Neu im Fachgebiet Chirurgie

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Chirurgie und bleiben Sie gut informiert – ganz bequem per eMail.