Skip to main content
Erschienen in: Ophthalmology and Therapy 5/2023

Open Access 15.06.2023 | ORIGINAL RESEARCH

Preoperative Treatment of Meibomian Gland Dysfunction with a Vectored Thermal Pulsation System Prior to Extended Depth of Focus IOL Implantation

verfasst von: Cynthia Matossian, Daniel H. Chang, Jeffrey Whitman, Thomas E. Clinch, Jerry Hu, Leilei Ji, David Murakami, Ying Wang, Caroline A. Blackie

Erschienen in: Ophthalmology and Therapy | Ausgabe 5/2023

Abstract

Introduction

Patients implanted with a range-of-vision intraocular lens (IOL) (multifocal or extended depth of focus, EDOF) may be more susceptible to visual disturbances from poor tear film quality, and prophylactic treatment of meibomian gland dysfunction (MGD) has been recommended. The purpose was to evaluate whether vectored thermal pulsation (LipiFlow™) treatment prior to cataract surgery with a range-of-vision IOL safely improves postoperative outcomes.

Methods

This is a prospective, randomized, open-label, crossover, multicenter study of patients with mild-to-moderate MGD and cataract. The test group underwent LipiFlow treatment prior to cataract surgery and implantation of an EDOF IOL, while the control group did not. Both groups were evaluated 3 months postoperatively, after which the control group received LipiFlow treatment (crossover). The control group was re-evaluated 4 months postoperatively.

Results

A total of 121 subjects were randomized, with 117 eyes in the test group and 115 eyes in the control group. At 3 months after surgery, the test group had a significantly greater improvement from baseline in total meibomian gland score compared with the control group (P = 0.046). At 1 month after surgery, the test group had a significant decrease in corneal (P = 0.04) and conjunctival (P = 0.002) staining compared to the control group. At 3 months after surgery, the test group had significantly lower incidence of being bothered by halos compared with the control group (P = 0.019). The control group had a significantly lower incidence of being bothered by multiple or double vision compared with the test group (P = 0.016). After crossover, patients had significant improvement in vision (P = 0.03) and total meibomian gland score (P < 0.0001). No safety concerns or relevant safety findings were uncovered.

Conclusion

Presurgical LipiFlow treatment of patients implanted with range-of-vision IOLs improved meibomian gland function and postoperative ocular surface health. This supports guidelines recommending proactive diagnosis and management of MGD in patients with cataracts to improve patient experience.

Trial Registration

The study was registered on www.​clinicaltrials.​gov (NCT03708367).
Key Summary Points
Why carry out this study?
Patients requiring cataract surgery can have meibomian gland dysfunction (MGD) without presenting with dry eye symptoms.
Failure to address ocular surface disease (OSD) preoperatively could lead to refractive misses, fluctuating vision, induced higher-order aberrations, bothersome ocular symptoms, and new or worse OSD symptoms postoperatively.
This is the first study to evaluate the effect of treating MGD with a vectored thermal pulsation system (LipiFlow) prior to cataract removal and implantation of a range-of-vision IOL.
What was learned from this study?
This study shows measurable positive impact of LipiFlow treatment on visual symptoms in patients implanted with range-of-vision IOLs.
The use of LipiFlow before cataract surgery could optimize patient expectations from range-of-vision IOLs.
This study validates the recommendations of recent clinical consensus guidelines to proactively diagnose and treat ocular surface disease, even in the absence of dry eye symptoms, in patients with a cataract prior rather than post cataract surgery.

Introduction

Meibomian gland dysfunction (MGD) is defined as chronic diffuse abnormality of the meibomian glands (MG) and characterized by terminal duct obstruction and/or changes in glandular secretion [1]. MGD reduces availability of meibum to the lid margin and tear film. Thus, MGD can alter the tear film, causing eye irritation, inflammation, dry eye, and ocular surface disease (OSD) [1]. MG function and a healthy lipid layer are vital for ocular surface health [2].
Aging is associated with alterations in MG secretions with or without ocular symptoms or OSD diagnosis [35]. Accordingly, asymptomatic dry eye disease and OSD occur in up to 60–80% of patients presenting for cataract surgery [6]. Gupta et al. reported that 57% of patients presenting for cataract surgery had no previous diagnosis of OSD, but 81% had at least one abnormal tear film test, suggesting that OSD is often overlooked/underdiagnosed in this population [6]. This is a concern because abnormal tear film and/or corneal surface can cause errors in presurgical keratometric and topographic measurements [7, 8]. This can lead to IOL calculation errors, refractive misses, residual ametropia, and ultimately dissatisfaction in postoperative outcomes [6, 8]. A survey of clinicians reported that more than 90% of respondents felt that mild-to-moderate dry eye affected post-cataract surgery satisfaction [8]. Thus, MGD and OSD of any severity can lead to suboptimal visual outcomes after cataract surgery.
The American Society of Cataract and Refractive Surgery (ASCRS) conducted a survey of its membership and learned of educational gaps related to managing OSD in patients undergoing cataract and refractive surgery. The ASCRS Cornea Clinical Committee published guidelines, and recommends identifying and treating OSD prior to cataract surgery regardless of the presence of symptoms [8]. The Committee acknowledges that addressing OSD preoperatively can be cumbersome; however, they state that “its importance cannot be underestimated.” The committee concluded that failure to address OSD preoperatively could lead to refractive misses, fluctuating vision, induced higher-order aberrations, and new or worse OSD symptoms postoperatively [8]. Further, the committee recommends that any case of OSD, whether visually significant or not, should be prophylactically treated to prevent postoperative worsening.
The commonly recommended treatment of MGD is a twice-daily regimen of warm compresses and lid hygiene/massage. However, elderly patients often have poor compliance with these at-home treatments, and effective manual gland expression can be difficult [8]. An alternate treatment is vectored thermal pulsation (LipiFlow™; Johnson & Johnson Vision, Irvine, CA, USA), which applies constant heat and a sequence of pressure pulsations to evacuate static oils from the upper and lower MGs simultaneously and to improve glandular flow. The temperature safely and effectively heats the gland contents without causing thermal injury [2, 9]. Prior clinical studies demonstrate safety, effectiveness, and clinical utility of treatment with the LipiFlow in patients with MGD and dry eye symptoms [1012]. LipiFlow is more effective than the commonly recommended treatment and the effectiveness is rapid, only requiring a single 12-min in-office procedure [2, 1214]. As opposed to manual gland expression, LipiFlow causes an awareness of pressure without causing pain [13].
According to the ASCRS consensus guidelines, patients implanted with range-of-vision IOLs (i.e., multifocal or extended depth of focus, EDOF) may be more susceptible to visual disturbances from poor tear film or other OSDs and preoperative optimization of the tear film is valuable [8, 15]. Hence, we hypothesized that preoperative treatment of MGD with a vectored thermal pulsation system would help promote better postsurgical meibomian gland function, and improve ocular health and visual quality. Thus, the purpose of this study was to evaluate whether LipiFlow treatment prior to cataract surgery with Tecnis™ Symfony™ EDOF IOL implantation in patients with mild-to-moderate MGD safely improves postoperative outcomes.

Methods

Study Design and Patients

This was a prospective, randomized, open-label, crossover multicenter study conducted at five study sites in the USA. Prior to cataract surgery, the test group underwent LipiFlow treatment while the control group did not. Three months postoperatively, both groups were evaluated for clinical outcomes; then the control group received LipiFlow treatment as the crossover group. The control group was then evaluated at 4 months after surgery (1 month post LipiFlow treatment) for clinical outcomes. The study protocol was reviewed and approved by Salus Institutional Review Board in accordance with the Declaration of Helsinki and the International Council for Harmonization Guideline for Good Clinical Practice. All patients provided written informed consent and HIPAA regulations were followed. The study was registered on www.​clinicaltrials.​gov (NCT03708367).
Included patients were adults at least 22 years of age with bilateral mild to moderate MGD (defined as a score of 15 or less on a scale of 0 to 45), none to moderate dry eye symptoms bilaterally [defined as total score 0 to 15 on the standard patient evaluation of eye dryness (SPEED) questionnaire], and scheduled for bilateral cataract surgery with Tecnis Symfony IOL implantation. Key exclusion criteria were irregular corneal astigmatism; pupil or zonular abnormalities; having a systemic disease that causes dry eye; unwillingness/inability to abstain from using systemic antihistamines, systemic medications known to cause dryness, or prescription medications to treat MGD or dry eye; having prior intraocular, oculoplastic, corneal, or refractive surgery procedure; having ocular trauma, ocular infection, recurrent/active ocular inflammation, or punctal plugs or occlusion; eyelid abnormalities that affect lid function; having moderate to severe (grade 2–4) allergic, vernal, or giant papillary conjunctivitis; and pregnant or breast feeding.

Study Procedures

Patients were randomized 1:1 to receive the LipiFlow treatment preoperatively (test group) or after the 3-month postoperative visit (control group). Treatment with the LipiFlow system was conducted per the LipiFlow System Instructions for Use [16]. Patients were instructed on how to perform blinking exercises for 1 month after LipiFlow treatment to facilitate the flow of oils from the MGs into the tear film. Patients were instructed not to use any MGD or dry eye prescription medications or other treatments during the study (except over-the-counter artificial tears, ocular lubricants, ointments, emollients, or omega-3 dietary supplements). Except for LipiFlow treatment, no other MGD or dry eye treatment was prescribed or administered to patients throughout the study. Two to four weeks prior to cataract surgery, the test group received preoperative LipiFlow treatment according to manufacturer’s instructions and as reported by others [13, 16]. All subjects in both arms had bilateral cataract surgery via standard small-incision phacoemulsification and implantation of the Tecnis Symphony Non-Toric or Toric Extended Range of Vision IOL (Models ZXR00, ZXT150, ZXT225, ZXT300, and ZXT375).
The test and control groups were examined preoperatively to establish a baseline, and study assessments were collected at 1 and 3 months after surgery. The control group was also examined 1 month following the crossover/postoperative LipiFlow treatment (= 4-month postoperative visit). The following were assessed: visual acuity, manifest refraction spherical equivalent (MRSE), contrast acuity, visual symptoms via the Patient-Reported Visual Symptom Questionnaire (PRVSQ), biomicroscopic slit-lamp findings, ocular/visual symptom assessment (non-directed, spontaneous), corneal surface staining via fluorescein dye, conjunctival staining via lissamine green dye, complications, and adverse events (AEs). MG function was measured on the basis of secretion characterization via an MG Evaluator diagnostic instrument (Johnson & Johnson Vision, Irvine, CA) as described in the manufacturer’s instructions [17] and slit-lamp. Gland function was scored 0 = no secretion to 3 = clear liquid oil secretion, and the sum of scores for 15 glands in the lower eyelid was used to calculate the total MG secretion score (higher score indicates better gland function). Meibomian glands yielding liquid secretion (MGYLS) is a measure of gland expressibility, and was calculated as the count of the number of 15 glands with grade 2 or 3 function (total score range 0–15, and the higher the number the better the MG function). Tear breakup time (TBUT) was measured as an average of three measures, with a higher number indicating better tear film stability. Eyelid margin was evaluated via slit lamp or digital images from LipiView™ II Ocular Surface Interferometer (Johnson & Johnson Vision, Irvine, CA) digital imaging. The frequency and severity of dry eye symptoms were assessed via the SPEED questionnaire, with frequency scored 0 = never to 3 = constant and severity scored 0 = no problems to 4 = intolerable. The maximum SPEED score was 28 points, and a lower total score indicated less frequent/less severe symptoms. Although the study was not masked, to maintain consistency, one individual at each site conducted all study-related vision testing.

Outcome Measures and Data Analysis

The co-primary effectiveness endpoints were (1) mean monocular uncorrected distance visual acuity (UCDVA) at 3 months after surgery; (2) rate of refractive predictability at 3 months after surgery; (3) rate of bothersome ocular symptoms (PRVSQ) at 3 months after surgery; and (4) the mean change in total MG score in the test group compared to the control group from baseline to 1 month after surgery. In addition, the mean change from baseline to 1 month after surgery was evaluated for MGYLS, ocular surface stain grade, TBUT, and eyelid margin evaluation. The mean change from baseline to 3 months after surgery was evaluated for SPEED score and total MG score. In the control group, the change from 3 to 4 months after surgery (i.e., before vs. after crossover) was evaluated for UCDVA, BCDVA, total MG score, and total SPEED score. Safety was assessed by monitoring AEs and medical/lens findings.
The sample size determination was based on the primary endpoint of UCDVA. There was 90% power to detect a 1-line or greater difference in mean UCDVA between the test and control groups with 55 subjects in each group. This assumed one-sided two-sample t test with an alpha of 0.05 and standard deviation of 1.6 lines. Considering a 20% screen failure/dropout rate, 69 subjects per group were planned for enrollment. No more than 30% of enrolled subjects with no dry eye symptoms were permitted at each site. Continuous and categorical variables were summarized with descriptive statistics and frequencies and percentages. The mean change in total MG score was compared between groups at 1 month after surgery. All other key study endpoints were evaluated at 3 months after surgery. Additional endpoints were evaluated at 1 and 3 months after surgery, and at 4 months after surgery for the crossover control group only. Missing data were not imputed. Statistically significant difference was recorded when P ≤ 0.05. Data were analyzed using SAS (v9.4, SAS Institute).

Results

A total of 121 subjects were randomized, with 117 eyes treated in the test group and 115 eyes treated in the control group. One subject in each group was lost to follow-up. The demographics were similar between groups (Table 1). The mean age of the total population was 65.2 ± 7.7 years, 59.0% (69/117) were women, and 76.9% (90/117) were White.
Table 1
Demographics
Parameter
Test group (N = 59)
Control group (N = 58)
Total (N = 117)
P value
Age (years)
 Mean ± SD
65.1 ± 7.5
65.2 ± 8.0
65.2 ± 7.7
0.970
 Range
39, 79
48, 84
39, 84
 
Sex, n (%)
 Male
25 (42.2)
23 (39.7)
48 (41.0)
0.852
 Female
34 (57.6)
35 (60.3)
69 (59.0)
 
Race, n (%)
 White (Caucasian)
48 (81.4)
42 (72.4)
90 (76.9)
0.559
 Asian (including Indian)
3 (5.1)
4 (6.9)
7 (6.0)
 
 Black or African American
8 (13.6)
12 (20.7)
20 (17.1)
 
N number of patients in treatment group, n number of patients in specified category, SD standard deviation
Percentages are calculated as (n/N) × 100. P value is for test vs. control group

Visual Outcomes

A comparison of the visual outcomes at 3 months is presented in Table 2. As expected, the mean monocular UCDVA at 3 months was not significantly different between groups (co-primary endpoint). At the 3-month postoperative visit, the test group had significantly better mean monocular BCDVA than the control group (P = 0.0495; − 0.03 ± 0.09 vs. − 0.05 ± 0.08 logMAR, respectively), while the mean binocular BCDVA was similar between groups. The rate of refractive predictability (i.e., within 0.50 D and 1.00 D of target refraction) at 3 months was similar between groups, and both groups had mean achieved MRSE of − 0.24 D at 3 months (co-primary endpoint). At the 3-month visit, contrast acuity was similar between groups.
Table 2
Visual outcomes at 3 months after surgery
Parameter
Test group (N = 116)
Control group (N = 114)
P value
Monocular UCDVA, n
116
114
 
 Mean logMAR ± SD
0.08 ± 0.15
0.07 ± 0.13
0.416
 95% CL for mean
[0.06, 0.11]
[0.04, 0.09]
 
Monocular BCDVA, n
116
114
 
 Mean logMAR ± SD
− 0.03 ± 0.09
− 0.05 ± 0.08
0.0495
 95% CL for mean
[− 0.05, − 0.01]
[− 0.07, − 0.04]
 
Binocular BCDVA, n
58
57
 
 Mean logMAR ± SD
− 0.08 ± 0.08
− 0.10 ± 0.07
NA
 95% CL for mean
[− 0.10, − 0.06]
[− 0.12, − 0.08]
 
Binocular contrast acuity, n
58
57
 
 Mean logMAR ± SD
0.29 ± 0.15
0.29 ± 0.11
NA
 95% CL for mean
[0.25, 0.33]
[0.26, 0.32]
 
Achieved MRSE
116
114
 
 Mean ± SD
− 0.24 ± 0.48
− 0.24 ± 0.35
NA
 95% CI
[− 0.32, − 0.15]
[− 0.31, − 0.18]
 
 ± 0.50 D of target, n (%)
85 (73.3)
94 (82.5)
NA
 95% CI
[0.64, 0.81
[0.74, 0.89]
 
 ± 1.00 D of target, n (%)
109 (94.0)
112 (98.2)
NA
 95% CI
[0.88, 0.98]
[0.94, 1.00]
 
Percentages are calculated as (n/N) × 100
Achieved MRSE = Postoperative MRSE − target MRSE
BCDVA best corrected distance visual acuity, CI confidence interval, CL confidence limit, MRSE manifest refraction spherical equivalent, N number of patients in treatment group, n number of patients in specified category, NA not available, SD standard deviation, UCDVA uncorrected distance visual acuity

Ocular Symptoms

The rate of bothersome ocular symptoms is presented in Table 3 (co-primary endpoint). The test group had a significantly lower incidence of being bothered by halos compared with the control group (P = 0.019; 58.6% vs. 78.95%, respectively). The control group had a significantly lower incidence of being bothered by multiple or double vision compared with the test group (P = 0.016; 8.8% vs. 25.9%, respectively). There were no significant differences between groups in the following bothersome symptoms: starbursts, sensitivity to light, glare related to scattered light, and poor low-light vision.
Table 3
PRVSQ rating at 3 months after surgery
Parameter
Test group, n (%)
Control group, n (%)
P value
Had halos over the last 7 days
34 (58.62)
45 (78.95)
0.019
 Were bothered by halos
23 (39.66)
28 (49.12)
0.307
 Had a lot of difficulty with, or did not do something, because of halos
4 (6.9)
7 (12.28)
0.326
Had multiple or double vision over the last 7 days
15 (25.86)
5 (8.77)
0.016
 Were bothered by multiple or double vision
11 (18.97)
4 (7.02)
0.057
 Had a lot of difficulty with, or did not do something, because of multiple or double vision
3 (5.17)
1 (1.75)
0.317
Q questionPRVSQ Patient-Reported Visual Symptom Questionnaire

Ocular Surface Assessment

The total MG score change from baseline to the 1-month postoperative visit was not significantly different between groups (co-primary outcome, Table 4). However, at 3 months after surgery, the test group had a significantly larger improvement from baseline in total MG score compared with the control group (P = 0.046; 7.3 ± 9.3 vs. 4.7 ± 10.1, respectively). The test group had an improvement in SPEED outcomes but was not statistically different from the control group.
Table 4
Ocular surface assessment
Parameter
Test group
Control group
P value
Total meibomian gland score change from baseline to 1 month after surgery, n
114
114
 
 Mean ± SD
4.8 ± 8.2
3.9 ± 8.3
0.41
 95% CL for mean
[3.3, 6.3]
[2.3, 5.4]
 
Total meibomian gland score change from baseline to 3 months after surgery, n
114
114
 
 Mean ± SD
7.3 ± 9.3
4.7 ± 10.1
0.046
 95% CL for mean
[5.6, 9.1]
[2.9, 6.6]
 
SPEED score change from baseline to 3 months after surgery, n
58
57
 
 Mean ± SD
− 2.1 ± 5.3
− 1.5 ± 5.6
0.60
 95% CL for mean
[− 3.5, − 0.7]
[− 3.0, 0.0]
 
CL confidence limit, n number of patients in specified category, SD standard deviation, SPEED standard patient evaluation of eye dryness

Anterior Ocular Health

Table 5 summarizes the mean change from baseline to 1 month after surgery in anterior ocular health outcomes. At 1 month after surgery, the test group had a significant decrease in corneal and conjunctival staining compared to the control group (corneal: P = 0.04; − 0.57 ± 2.33 vs. 0.20 ± 3.19, respectively and conjunctival: P = 0.002; − 1.2 ± 3.8 vs. 0.45 ± 4.03, respectively). There were no significant between-group differences in the mean change in MGYLS, eyelid margin evaluation, and TBUT at 1 month after surgery.
Table 5
Anterior ocular health scores: change from baseline to 1 month after surgery
Parameter
Test group
Control group
P value
MGYLS, n
114
114
 
 Mean ± SD
1.6 ± 3.1
1.1 ± 3.3
0.17
 95% CL for mean
[1.1, 2.2]
[0.5, 1.7]
 
Eyelid margin evaluation, n
114
114
 
 Mean ± SD
0.0 ± 0.4
0.1 ± 0.5
0.89
 95% CL for mean
[0.0, 0.1]
[0.0, 0.2]
 
TBUT, n
112
114
 
 Mean ± SD
0.69 ± 4.63
0.06 ± 3.67
0.26
 95% CL for mean
[− 0.18, 1.56]
[− 0.62, 0.74]
 
Degree of corneal staining, n
116
114
 
 Mean ± SD
− 0.57 ± 2.33
0.20 ± 3.19
0.04
 95% CL for mean
[− 1.00, − 0.14]
[− 0.39, 0.79]
 
Degree of conjunctival staining, n
115
114
 
 Mean ± SD
− 1.2 ± 3.8
0.45 ± 4.03
0.002
 95% CL for mean
[− 1.90, − 0.50]
[− 0.30, 1.20]
 
CL confidence limit, MGYLS meibomian glands yielding liquid secretion, n number of patients in specified category, SD standard deviation, TBUT tear breakup time

Crossover Outcomes

The outcomes in the control group after postoperative LipiFlow treatment are summarized in Table 6. Monocular UCDVA significantly improved at the 4-month visit compared with the 3-month visit (P = 0.03; 0.05 ± 0.12 vs. 0.07 ± 0.13 logMAR, respectively), while monocular and binocular BCDVA remained unchanged. The total MG score was significantly improved at the 4-month visit compared with the 3-month visit (P < 0.0001, 16.1 ± 11.5 vs. 12.0 ± 10.6, respectively) and total SPEED score improved at the 4-month visit compared with the 3-month visit; however, the difference was not statistically significant.
Table 6
Outcomes in the control group after postoperative LipiFlow treatment (4-month visit)
Parameter
3 months
4 months
Differencea
Monocular UCDVA, n
114
112
 
 Mean ± SD
0.07 ± 0.13
0.05 ± 0.12
− 0.02 ± 0.08*
 95% CL for mean
[0.04, 0.09]
[0.03, 0.08]
[− 0.03, 0.0]
Monocular BCDVA, n
114
112
 
 Mean ± SD
− 0.05 ± 0.08
− 0.05 ± 0.08
0.0 ± 0.06
 95% CL for mean
[− 0.07, 0.04]
[− 0.06, 0.03]
[− 0.01, 0.02]
Binocular BCDVA, n
57
56
 
 Mean ± SD
− 0.01 ± 0.07
− 0.10 ± 0.07
0.0 ± 0.05
 95% CL for mean
[− 0.12, − 0.08]
[− 0.12, − 0.08]
[− 0.01, 0.01]
Total meibomian gland score, n
112
112
112
 Mean ± SD
12.0 ± 10.6
16.1 ± 11.5
4.1 ± 11.0**
 95% CL for mean
[10.0, 14.0]
[13.9, 18.2]
[2.1, 6.2]
Total SPEED score
56
56
56
 Mean ± SD
6.5 ± 5.1
5.3 ± 4.8
− 1.2 ± 5.6
 95% CL for mean
[5.1, 7.9]
[4.0, 6.6]
[− 2.7, 0.3]
Percentages are calculated as (n/N) × 100. A higher total MG secretion score indicates better gland function. A lower total SPEED score indicates less frequent/less severe symptoms
BCDVA best corrected distance visual acuity, CL confidence limit, N number of patients in treatment group, n number of patients in specified category, SD standard deviation, SPEED standard patient evaluation of eye dryness, UCDVA uncorrected distance visual acuity
*P = 0.03, **P < 0.0001
aDifference = 4 months − 3 months

Safety

Ocular serious AEs (SAEs) occurred in 1/59 subjects (1.7%) in the test group (cystoid macular edema = 1 eye) and 4/58 subjects (6.9%) of the control group (cystoid macular edema = 3 eyes, anterior capsular phimosis = 1 eye). None of the ocular SAEs were related to the study devices. The test group had no AEs; 12.1% (7/58) of the control group had AEs and all were categorized as undesirable optical phenomena. Rates of anterior segment, anterior chamber, and posterior segment findings were similar between the groups.

Discussion

In patients with MGD, inflammation and other obvious signs of pathology may be absent; thus, MGD diagnosis may be overlooked [18]. Prophylactic treatment of MGD is recommended because there is an increased risk of worsening quality of MG secretions, decrease in meibum expressibility, and increase in dry eye symptoms after cataract surgery [6, 10, 19]. To our knowledge, this is the first study to evaluate visual outcomes and safety of treating MGD with a vectored thermal pulsation system prior to cataract removal and implantation of a range-of-vision IOL. Results of the co-primary endpoints show that LipiFlow treatment prior to cataract surgery with Symfony IOL implantation had no negative impact on 3-month postoperative objective visual outcome assessments. At 3 months after surgery, there was no difference in mean monocular UCDVA between study and control groups, and both groups achieved similar MRSE. In addition, the control group had no notable change in MRSE from 3 to 4 months after receiving postoperative LipiFlow treatment. However, there were notable differences in the rate of subjective bothersome ocular symptoms. Halos are the most frequently reported ocular symptom after presbyopia-correcting IOL implantation [20]. As anticipated, the test group had a significantly lower incidence of bothersome halos 3 months after surgery, which may be attributed to a healthier tear film post-LipiFlow treatment and less subsequent light scatter (i.e., fewer halos). In contrast, the control group reported a significantly lower incidence of multiple or double vision compared to the test group (Table 3). This finding could be attributed to the difficultly patients have in recognizing and understanding the difference between blur/shadowing of a letter and diplopia [21]. Shippman et al. reported that many patients who present with symptoms of double vision do not have diplopia [21]. Thus, it is possible that the patients had difficulty interpreting the PRVSQ multiple/double vision questions, and that the patients did not have true diplopia. Although 25.86% of the test group reported multiple/double vision over the last 7 days, PRVSQ Q3E data revealed that only 5.17% of patients reported that the multiple/double vision was causing difficulty. This response was not significantly different from the control group (P = 0.317). This suggests that the patients noticed the visual disturbance, but it did not affect day-to-day activities.
No safety concerns or relevant safety findings were uncovered. Everything was routine and as expected after cataract surgery. Both groups had similar surgeries and postsurgery treatment, so it would be expected that all eyes have some surgery-induced dry eye [11, 22]. The healing process varies between patients, and the healing process affects dry eye and MGD. One month after surgery may have been too soon to examine changes in the eyelid margin, total MG score, and MGYLS, thereby explaining the lack of significant difference between groups at this timepoint (Table 5). In contrast, at 3 months, the test group had a significantly larger improvement than the control group in total MG score (Table 4). The improvements from baseline in both SPEED scores and TBUT were greater in the test group than the control group; however, the between-group differences were not statistically significant. This may be attributed to either environmental factors [23], which are known to impact tear film and drive symptoms, or to the timepoint for evaluation. Park et al. reported that a significant between-group difference in TBUT following LipiFlow and cataract surgery with a monofocal IOL was not evident until 3 months postsurgery [19]. Despite the study limitation of evaluating the anterior ocular health only at 1 month, the test group had significantly less corneal and conjunctival staining than the control group (Table 5), which indicates that the test group had a better ocular surface environment.
A study evaluating the effect of LipiFlow treatment prior to cataract surgery with implantation of a monofocal IOL concluded that severity of MGD at baseline was correlated with greater improvement in expressibility (MGYLS) and quality of meibum at 3 months after surgery [19]. It is noteworthy that our study excluded patients with severe MGD, whereas the Park et al. study did not. We similarly demonstrated a significant improvement in meibum quality at 3 months after surgery in the test group, but the lack of significant difference in MGYLS in our study could be related to the assessment at 1 month or that our study population excluded patients with severe MGD.
The ASCRS Cornea Clinical Committee concluded that ocular surface health cannot be maintained or rehabilitated in the absence of healthy MG function because MGs are the foundation of a healthy tear film, stable vision, and ocular comfort [8]. Dissatisfaction with visual outcomes following multifocal lens implantation can be caused by dry eye [24]. The ASCRS Committee concluded that patients who are dissatisfied with their visual outcomes following a range-of-vision IOL implantation should be examined and treated for OSD before undergoing Nd:YAG capsulotomy or IOL exchange [8]. Our data supports this suggestion; patients in the crossover group who had MG treatment after cataract surgery had significant improvement in UCDVA and total MG score (Table 6).
Optimal functioning of range-of-vision IOLs requires best astigmatic correction because as little as 0.50 D of astigmatism could result in blurry vision, halos, and ghosting [25]. Unstable tear film affects the quality of optical surface reflections from the cornea, which compromises keratometry and can affect the accuracy of measurement of the magnitude and axis of astigmatism [25]. Matossian et al. evaluated LipiFlow treatment prior to cataract surgery with a monofocal IOL in patients with MGD-associated dry eye. The study concluded that stabilization of the tear film following LipiFlow treatment altered the magnitude of astigmatism, emphasizing the importance of managing dry eye prior to determining the surgical plan for astigmatism management. This is especially true when implanting a range-of-vision IOL.
This study has some limitations. The baseline characteristic of having visually significant OSD was not collected; thus, there was no subgroup analysis evaluating patients who had visually significant OSD versus visually non-significant OSD. Possibly, the differences between test and control groups may have been larger if subgrouped by visually significant OSD. One of the co-primary endpoints was an evaluation of bothersome ocular symptoms as assessed by the PRVSQ. However, PRVSQ was not designed to evaluate patients after cataract surgery. PRVSQ was self-administered by the patients to minimize any effect of the doctor–patient relationship. Some studies show that improvement in meibomian function following LipiFlow may not be seen until several months post-treatment and treatment may improve over time [11, 12, 19]. In the present study, 1 month was chosen as the primary timepoint because postoperative drops were discontinued at 1 month. Greater improvements in MGD outcomes may have occurred beyond the duration of assessment. Nonetheless, significantly less corneal and conjunctival staining in the test group at 1 month indicates a better ocular surface environment.
Despite the study limitations, the study has a robust study design and demonstrates the value of preoperative and postoperative LipiFlow treatment. A benefit of the study design is that not all patients had dry eye symptoms; therefore, the study included a mixed population (up to 30% could be asymptomatic), which is reminiscent of a real-world practice. Note that all patients were assessed as having MGD in both eyes as per the study protocol.

Conclusion

Presurgical LipiFlow treatment of patients implanted with range-of-vision IOLs improved meibomian gland function and improved postoperative anterior ocular health. In addition, LipiFlow treatment reduced postoperative reports of halos and had measurable improvements in visual acuity. These findings support the ASCRS guidelines recommending the proactive diagnosis and management of MGD in patients with cataracts by assessing all preoperative patients for MGD and proactively treating MGD prior to surgery to improve patient experience. The use of LipiFlow before cataract surgery could optimize patient satisfaction from a range-of-vision IOL by producing a healthier more stable tear film to better support range-of-vision IOL outcomes.

Acknowledgements

We thank the participants of this study.

Funding

Sponsorship for this study was funded by Johnson & Johnson Vision, Irvine, CA, USA. The study sponsor funded the journal’s Rapid Service Fee.

Medical Writing/Editorial Assistance

Writing assistance was provided by Heather S. Oliff, PhD of Science Consulting Group, LLC. Support for this assistance was provided by Johnson & Johnson Vision, Irvine, CA, USA.

Author Contributions

Study conception and design was conducted by Caroline A Blackie and Leilei Ji. Study conduct was performed by Cynthia Matossian, Daniel H Chang, Jeffrey Whitman, Thomas E Clinch, and Jerry Hu. Material preparation and data analysis were performed by Leilei Ji, David Murakami, Ying Wang, and Caroline A Blackie. All authors commented on all versions of the manuscript. All authors read and approved the final manuscript.

Prior Presentation

The data has been previously shared at the ASCRS annual meeting, Las Vegas, NV, July 2021.

Disclosures

Cynthia Matossian has received speaker honoraria from and is a consultant to Johnson & Johnson Vision. Daniel H Chang has received research grants and speaker honoraria from and is a consultant to Johnson & Johnson Vision. Jeffrey Whitman is a consultant to Alcon Laboratories, Johnson & Johnson Vision, and Bausch + Lomb; received speaker honorarium from Johnson & Johnson Vision and Bausch + Lomb; and received research grants from Johnson & Johnson Vision, Alcon Laboratories, Staar Surgical, RxSight, Allergan, and BVI Medical. Thomas E Clinch has received research grants from Alcon Laboratories and Johnson & Johnson Vision; and speaker honoraria from Johnson & Johnson Vision, and is a consultant to Johnson & Johnson Vision. Jerry Hu is a consultant to and received research grants from Johnson & Johnson Vision. Leilei Ji, David Murakami, Ying Wang, and Caroline A Blackie are employees of Johnson & Johnson Surgical Vision Inc.

Compliance with Ethics Guidelines

This study was conducted in accordance with U.S. Code of Federal Regulations, the Declaration of Helsinki, ISO 14155 and all other applicable laws and regulations. This study received approval from Salus Institutional Review Board.

Data Availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by-nc/​4.​0/​.
Literatur
1.
Zurück zum Zitat Nichols KK, Foulks GN, Bron AJ, et al. The international workshop on meibomian gland dysfunction: executive summary. Invest Ophthalmol Vis Sci. 2011;52(4):1922–9.CrossRefPubMedPubMedCentral Nichols KK, Foulks GN, Bron AJ, et al. The international workshop on meibomian gland dysfunction: executive summary. Invest Ophthalmol Vis Sci. 2011;52(4):1922–9.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Blackie CA, Carlson AN, Korb DR. Treatment for meibomian gland dysfunction and dry eye symptoms with a single-dose vectored thermal pulsation: a review. Curr Opin Ophthalmol. 2015;26(4):306–13.CrossRefPubMed Blackie CA, Carlson AN, Korb DR. Treatment for meibomian gland dysfunction and dry eye symptoms with a single-dose vectored thermal pulsation: a review. Curr Opin Ophthalmol. 2015;26(4):306–13.CrossRefPubMed
3.
Zurück zum Zitat Sullivan BD, Evans JE, Dana MR, Sullivan DA. Influence of aging on the polar and neutral lipid profiles in human meibomian gland secretions. Arch Ophthalmol. 2006;124(9):1286–92.CrossRefPubMed Sullivan BD, Evans JE, Dana MR, Sullivan DA. Influence of aging on the polar and neutral lipid profiles in human meibomian gland secretions. Arch Ophthalmol. 2006;124(9):1286–92.CrossRefPubMed
4.
Zurück zum Zitat Den S, Shimizu K, Ikeda T, Tsubota K, Shimmura S, Shimazaki J. Association between meibomian gland changes and aging, sex, or tear function. Cornea. 2006;25(6):651–5.CrossRefPubMed Den S, Shimizu K, Ikeda T, Tsubota K, Shimmura S, Shimazaki J. Association between meibomian gland changes and aging, sex, or tear function. Cornea. 2006;25(6):651–5.CrossRefPubMed
5.
Zurück zum Zitat Hykin PG, Bron AJ. Age-related morphological changes in lid margin and meibomian gland anatomy. Cornea. 1992;11(4):334–42.CrossRefPubMed Hykin PG, Bron AJ. Age-related morphological changes in lid margin and meibomian gland anatomy. Cornea. 1992;11(4):334–42.CrossRefPubMed
6.
Zurück zum Zitat Gupta PK, Drinkwater OJ, VanDusen KW, Brissette AR, Starr CE. Prevalence of ocular surface dysfunction in patients presenting for cataract surgery evaluation. J Cataract Refract Surg. 2018;44(9):1090–6.CrossRefPubMed Gupta PK, Drinkwater OJ, VanDusen KW, Brissette AR, Starr CE. Prevalence of ocular surface dysfunction in patients presenting for cataract surgery evaluation. J Cataract Refract Surg. 2018;44(9):1090–6.CrossRefPubMed
7.
Zurück zum Zitat Epitropoulos AT, Matossian C, Berdy GJ, Malhotra RP, Potvin R. Effect of tear osmolarity on repeatability of keratometry for cataract surgery planning. J Cataract Refract Surg. 2015;41(8):1672–7.CrossRefPubMed Epitropoulos AT, Matossian C, Berdy GJ, Malhotra RP, Potvin R. Effect of tear osmolarity on repeatability of keratometry for cataract surgery planning. J Cataract Refract Surg. 2015;41(8):1672–7.CrossRefPubMed
8.
Zurück zum Zitat Starr CE, Gupta PK, Farid M, et al. An algorithm for the preoperative diagnosis and treatment of ocular surface disorders. J Cataract Refract Surg. 2019;45(5):669–84.CrossRefPubMed Starr CE, Gupta PK, Farid M, et al. An algorithm for the preoperative diagnosis and treatment of ocular surface disorders. J Cataract Refract Surg. 2019;45(5):669–84.CrossRefPubMed
9.
Zurück zum Zitat Bzovey B, Ngo W. Eyelid warming devices: safety, efficacy, and place in therapy. Clin Optom (Auckl). 2022;14:133–47.CrossRefPubMed Bzovey B, Ngo W. Eyelid warming devices: safety, efficacy, and place in therapy. Clin Optom (Auckl). 2022;14:133–47.CrossRefPubMed
10.
Zurück zum Zitat Schallhorn CS, Schallhorn JM, Hannan S, Schallhorn SC. Effectiveness of an eyelid thermal pulsation procedure to treat recalcitrant dry eye symptoms after laser vision correction. J Refract Surg. 2017;33(1):30–6.CrossRefPubMed Schallhorn CS, Schallhorn JM, Hannan S, Schallhorn SC. Effectiveness of an eyelid thermal pulsation procedure to treat recalcitrant dry eye symptoms after laser vision correction. J Refract Surg. 2017;33(1):30–6.CrossRefPubMed
11.
Zurück zum Zitat Zhao Y, Li J, Xue K, et al. Preoperative management of MGD with vectored thermal pulsation before cataract surgery: a prospective, controlled clinical trial. Semin Ophthalmol. 2021;36(1–2):2–8.CrossRefPubMed Zhao Y, Li J, Xue K, et al. Preoperative management of MGD with vectored thermal pulsation before cataract surgery: a prospective, controlled clinical trial. Semin Ophthalmol. 2021;36(1–2):2–8.CrossRefPubMed
12.
Zurück zum Zitat Meng Z, Chu X, Zhang C, et al. Efficacy and safety evaluation of a single thermal pulsation system treatment (LipiFlow®) on meibomian gland dysfunction: a randomized controlled clinical trial. Int Ophthalmol. 2023;43(4):1175–84. Meng Z, Chu X, Zhang C, et al. Efficacy and safety evaluation of a single thermal pulsation system treatment (LipiFlow®) on meibomian gland dysfunction: a randomized controlled clinical trial. Int Ophthalmol. 2023;43(4):1175–84.
13.
Zurück zum Zitat Lane SS, DuBiner HB, Epstein RJ, et al. A new system, the LipiFlow, for the treatment of meibomian gland dysfunction. Cornea. 2012;31(4):396–404.CrossRefPubMed Lane SS, DuBiner HB, Epstein RJ, et al. A new system, the LipiFlow, for the treatment of meibomian gland dysfunction. Cornea. 2012;31(4):396–404.CrossRefPubMed
14.
Zurück zum Zitat Pang SP, Chen YT, Tam KW, Lin IC, Loh EW. Efficacy of vectored thermal pulsation and warm compress treatments in meibomian gland dysfunction: a meta-analysis of randomized controlled trials. Cornea. 2019;38(6):690–7.CrossRefPubMed Pang SP, Chen YT, Tam KW, Lin IC, Loh EW. Efficacy of vectored thermal pulsation and warm compress treatments in meibomian gland dysfunction: a meta-analysis of randomized controlled trials. Cornea. 2019;38(6):690–7.CrossRefPubMed
15.
Zurück zum Zitat He X, Huang AS, Jeng BH. Optimizing the ocular surface prior to cataract surgery. Curr Opin Ophthalmol. 2022;33(1):9–14.CrossRefPubMed He X, Huang AS, Jeng BH. Optimizing the ocular surface prior to cataract surgery. Curr Opin Ophthalmol. 2022;33(1):9–14.CrossRefPubMed
16.
Zurück zum Zitat LipiFlow thermal pulsation system instructions for use. Johnson & Johnson Vision Care; 2021. LipiFlow thermal pulsation system instructions for use. Johnson & Johnson Vision Care; 2021.
17.
Zurück zum Zitat Meibomian Gland Evaluator Model MGE-1001 Package Insert. Johnson & Johnson Surgical Vision; 2021. Meibomian Gland Evaluator Model MGE-1001 Package Insert. Johnson & Johnson Surgical Vision; 2021.
18.
Zurück zum Zitat Blackie CA, Korb DR, Knop E, Bedi R, Knop N, Holland EJ. Nonobvious obstructive meibomian gland dysfunction. Cornea. 2010;29(12):1333–45.CrossRefPubMed Blackie CA, Korb DR, Knop E, Bedi R, Knop N, Holland EJ. Nonobvious obstructive meibomian gland dysfunction. Cornea. 2010;29(12):1333–45.CrossRefPubMed
19.
Zurück zum Zitat Park J, Yoo YS, Shin K, et al. Effects of LipiFlow treatment prior to cataract surgery: a prospective, randomized, controlled study. Am J Ophthalmol. 2021;230:264–75.CrossRefPubMed Park J, Yoo YS, Shin K, et al. Effects of LipiFlow treatment prior to cataract surgery: a prospective, randomized, controlled study. Am J Ophthalmol. 2021;230:264–75.CrossRefPubMed
20.
Zurück zum Zitat Kohnen T, Herzog M, Hemkeppler E, et al. Visual performance of a quadrifocal (trifocal) intraocular lens following removal of the crystalline lens. Am J Ophthalmol. 2017;184:52–62.CrossRefPubMed Kohnen T, Herzog M, Hemkeppler E, et al. Visual performance of a quadrifocal (trifocal) intraocular lens following removal of the crystalline lens. Am J Ophthalmol. 2017;184:52–62.CrossRefPubMed
21.
Zurück zum Zitat Shippman S, Heiser L, Cohen KR, Hall L. “Double vision” as a presenting symptom in adults without acquired or long-standing strabismus. Am Orthopt J. 2008;58:92–8.CrossRefPubMed Shippman S, Heiser L, Cohen KR, Hall L. “Double vision” as a presenting symptom in adults without acquired or long-standing strabismus. Am Orthopt J. 2008;58:92–8.CrossRefPubMed
22.
Zurück zum Zitat Sitompul R, Sancoyo GS, Hutauruk JA, Gondhowiardjo TD. Sensitivity change in cornea and tear layer due to incision difference on cataract surgery with either manual small-incision cataract surgery or phacoemulsification. Cornea. 2008;27(Suppl 1):S13–8.CrossRefPubMed Sitompul R, Sancoyo GS, Hutauruk JA, Gondhowiardjo TD. Sensitivity change in cornea and tear layer due to incision difference on cataract surgery with either manual small-incision cataract surgery or phacoemulsification. Cornea. 2008;27(Suppl 1):S13–8.CrossRefPubMed
23.
Zurück zum Zitat Schaumberg DA, Nichols JJ, Papas EB, Tong L, Uchino M, Nichols KK. The international workshop on meibomian gland dysfunction: report of the subcommittee on the epidemiology of, and associated risk factors for, MGD. Invest Ophthalmol Vis Sci. 2011;52(4):1994–2005.CrossRefPubMedPubMedCentral Schaumberg DA, Nichols JJ, Papas EB, Tong L, Uchino M, Nichols KK. The international workshop on meibomian gland dysfunction: report of the subcommittee on the epidemiology of, and associated risk factors for, MGD. Invest Ophthalmol Vis Sci. 2011;52(4):1994–2005.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Woodward MA, Randleman JB, Stulting RD. Dissatisfaction after multifocal intraocular lens implantation. J Cataract Refract Surg. 2009;35(6):992–7.CrossRefPubMedPubMedCentral Woodward MA, Randleman JB, Stulting RD. Dissatisfaction after multifocal intraocular lens implantation. J Cataract Refract Surg. 2009;35(6):992–7.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Matossian C. Impact of thermal pulsation treatment on astigmatism management and outcomes in meibomian gland dysfunction patients undergoing cataract surgery. Clin Ophthalmol. 2020;14:2283–9.CrossRefPubMedPubMedCentral Matossian C. Impact of thermal pulsation treatment on astigmatism management and outcomes in meibomian gland dysfunction patients undergoing cataract surgery. Clin Ophthalmol. 2020;14:2283–9.CrossRefPubMedPubMedCentral
Metadaten
Titel
Preoperative Treatment of Meibomian Gland Dysfunction with a Vectored Thermal Pulsation System Prior to Extended Depth of Focus IOL Implantation
verfasst von
Cynthia Matossian
Daniel H. Chang
Jeffrey Whitman
Thomas E. Clinch
Jerry Hu
Leilei Ji
David Murakami
Ying Wang
Caroline A. Blackie
Publikationsdatum
15.06.2023
Verlag
Springer Healthcare
Erschienen in
Ophthalmology and Therapy / Ausgabe 5/2023
Print ISSN: 2193-8245
Elektronische ISSN: 2193-6528
DOI
https://doi.org/10.1007/s40123-023-00740-x

Weitere Artikel der Ausgabe 5/2023

Ophthalmology and Therapy 5/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.