Skip to main content
Erschienen in: European Radiology 8/2020

02.04.2020 | Cardiac

Pressure-flow curve derived from coronary CT angiography for detection of significant hemodynamic stenosis

verfasst von: Xinzhou Xie, Didi Wen, Ruichen Zhang, Qian Tao, Ce Wang, Songyun Xie, Hui Liu, Minwen Zheng

Erschienen in: European Radiology | Ausgabe 8/2020

Einloggen, um Zugang zu erhalten

Abstract

Objectives

Coronary CT angiography (cCTA) has been used to non-invasively assess both the anatomical and hemodynamic significance of coronary stenosis. The current study investigated a new CFD-based method of evaluating pressure-flow curves across a stenosis to further enhance the diagnostic value of cCTA imaging.

Methods

Fifty-eight patients who underwent both cCTA imaging and invasive coronary angiography (ICA) with fractional flow reserve (FFR) within 2 weeks were enrolled. The pressure-flow curve–derived parameters, viscous friction (VF) and expansion loss (EL), were compared with conventional cCTA parameters including percent area stenosis (AS) and minimum lumen area (MLA) by receiver operating characteristic (ROC) curve analysis. FFR ≤ 0.80 was used to indicate ischemia-causing stenosis. Correlations between FFR and other measurements were calculated by Spearman’s rank correlation coefficient (rho).

Results

Sixty-eight stenoses from 58 patients were analyzed. VF, EL, and AS were significantly larger in the group of FFR ≤ 0.8 while smaller MLA values were observed. The ROC-AUC of VF (0.91, 95% CI 0.81–0.96) was better than that of AS (change in AUC (ΔAUC) 0.27, p < 0.05) and MLA (ΔAUC 0.17, p < 0.05), and ROC-AUC of EL (0.90, 95%CI 0.80–0.96) was also better than that of AS (ΔAUC 0.26, p < 0.05) and MLA (ΔAUC 0.16, p < 0.05). FFR values correlated well with VF (rho = − 0.74 (95% CI − 0.83 to − 0.61, p < 0.0001) and EL (rho = − 0.74 (95% CI − 0.83 to − 0.61, p < 0.0001).

Conclusion

Pressure-flow curve–derived parameters enhance the diagnostic value of cCTA examination.

Key Points

• Pressure-flow curve derived from cCTA can assess coronary lesion severity.
• VF and EL are superior to cCTA alone for indicating ischemic lesions.
• Pressure-flow curve derived from cCTA may assist in clinical decision-making.
Literatur
1.
Zurück zum Zitat Pijls NHJ, Sels J-WEM (2012) Functional measurement of coronary stenosis. J Am Coll Cardiol 59:1045–1057CrossRef Pijls NHJ, Sels J-WEM (2012) Functional measurement of coronary stenosis. J Am Coll Cardiol 59:1045–1057CrossRef
2.
Zurück zum Zitat Fearon WF, Nishi T, De Bruyne B et al (2018) Clinical outcomes and cost-effectiveness of fractional flow reserve-guided percutaneous coronary intervention in patients with stable coronary artery disease: three-year follow-up of the FAME 2 trial (Fractional Flow Reserve Versus Angiography for Multive). Circulation 137:480–487CrossRef Fearon WF, Nishi T, De Bruyne B et al (2018) Clinical outcomes and cost-effectiveness of fractional flow reserve-guided percutaneous coronary intervention in patients with stable coronary artery disease: three-year follow-up of the FAME 2 trial (Fractional Flow Reserve Versus Angiography for Multive). Circulation 137:480–487CrossRef
3.
Zurück zum Zitat Tonino PAL, De Bruyne B, Pijls NHJ et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:213–224CrossRef Tonino PAL, De Bruyne B, Pijls NHJ et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:213–224CrossRef
4.
Zurück zum Zitat De Bruyne B, Fearon WF, Pijls NHJ et al (2014) Fractional flow reserve–guided PCI for stable coronary artery disease. N Engl J Med 371:1208–1217CrossRef De Bruyne B, Fearon WF, Pijls NHJ et al (2014) Fractional flow reserve–guided PCI for stable coronary artery disease. N Engl J Med 371:1208–1217CrossRef
5.
Zurück zum Zitat Pothineni NV, Shah NS, Rochlani Y et al (2016) U.S. trends in inpatient utilization of fractional flow reserve and percutaneous coronary intervention. J Am Coll Cardiol 67:732–733CrossRef Pothineni NV, Shah NS, Rochlani Y et al (2016) U.S. trends in inpatient utilization of fractional flow reserve and percutaneous coronary intervention. J Am Coll Cardiol 67:732–733CrossRef
6.
Zurück zum Zitat Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336CrossRef Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336CrossRef
7.
Zurück zum Zitat Meijboom WB, Meijs MFL, Schuijf JD et al (2008) Diagnostic accuracy of 64-slice computed tomography coronary angiography. A prospective, multicenter, multivendor study. J Am Coll Cardiol 52:2135–2144CrossRef Meijboom WB, Meijs MFL, Schuijf JD et al (2008) Diagnostic accuracy of 64-slice computed tomography coronary angiography. A prospective, multicenter, multivendor study. J Am Coll Cardiol 52:2135–2144CrossRef
8.
Zurück zum Zitat Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease. Results from the prospective multicenter ACCURACY. J Am Coll Cardiol 52:1724–1732CrossRef Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease. Results from the prospective multicenter ACCURACY. J Am Coll Cardiol 52:1724–1732CrossRef
9.
Zurück zum Zitat Douglas PS, Hoffmann U, Patel MR et al (2015) Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med 372:1291–1300CrossRef Douglas PS, Hoffmann U, Patel MR et al (2015) Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med 372:1291–1300CrossRef
10.
Zurück zum Zitat Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 61:2233–2241CrossRef Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 61:2233–2241CrossRef
11.
Zurück zum Zitat Ashikaga H, Coppola BA, Yamazaki KG et al (2008) Changes in regional myocardial volume during the cardiac cycle: implications for transmural blood flow and cardiac structure. Am J Physiol Heart Circ Physiol 295:610–618CrossRef Ashikaga H, Coppola BA, Yamazaki KG et al (2008) Changes in regional myocardial volume during the cardiac cycle: implications for transmural blood flow and cardiac structure. Am J Physiol Heart Circ Physiol 295:610–618CrossRef
12.
Zurück zum Zitat Mejía-Rentería H, Lauri FM, Lee JM et al (2019) Interindividual variations in the adenosine-induced hemodynamics during fractional flow reserve evaluation: implications for the use of quantitative flow ratio in assessing intermediate coronary stenoses. J Am Heart Assoc 8:e012906PubMedPubMedCentral Mejía-Rentería H, Lauri FM, Lee JM et al (2019) Interindividual variations in the adenosine-induced hemodynamics during fractional flow reserve evaluation: implications for the use of quantitative flow ratio in assessing intermediate coronary stenoses. J Am Heart Assoc 8:e012906PubMedPubMedCentral
13.
Zurück zum Zitat Young DF, Tsai FY (1973) Flow characteristics in models of arterial stenoses — I. Steady flow. J Biomech 6:395–402CrossRef Young DF, Tsai FY (1973) Flow characteristics in models of arterial stenoses — I. Steady flow. J Biomech 6:395–402CrossRef
14.
Zurück zum Zitat Xie X, Zheng M, Wen D, Li Y, Xie S (2018) A new CFD based non‑invasive method for functional diagnosis of coronary stenosis. Biomed Eng Online 17:36 Xie X, Zheng M, Wen D, Li Y, Xie S (2018) A new CFD based non‑invasive method for functional diagnosis of coronary stenosis. Biomed Eng Online 17:36
15.
Zurück zum Zitat De Bruyne B, Pijls NH, Barbata E et al (2003) Intracoronary and intravenous adenosine 5′-triphosphate, adenosine, papaverine, and contrast medium to assess fractional flow reserve in humans. Circulation 107:1877–1883CrossRef De Bruyne B, Pijls NH, Barbata E et al (2003) Intracoronary and intravenous adenosine 5′-triphosphate, adenosine, papaverine, and contrast medium to assess fractional flow reserve in humans. Circulation 107:1877–1883CrossRef
16.
Zurück zum Zitat DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRef DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRef
17.
Zurück zum Zitat Van Mieghem CAG (2017) CT as gatekeeper of invasive coronary angiography in patients with suspected CAD. Cardiovasc Diagn Ther 7:189–195CrossRef Van Mieghem CAG (2017) CT as gatekeeper of invasive coronary angiography in patients with suspected CAD. Cardiovasc Diagn Ther 7:189–195CrossRef
18.
Zurück zum Zitat Meijboom WB, Van Mieghem CAG, van Pelt N et al (2008) Comprehensive assessment of coronary artery Stenoses. Computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 52:636–643CrossRef Meijboom WB, Van Mieghem CAG, van Pelt N et al (2008) Comprehensive assessment of coronary artery Stenoses. Computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 52:636–643CrossRef
19.
Zurück zum Zitat Koo BK, Erglis A, Doh JH et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noni). J Am Coll Cardiol 58:1989–1997CrossRef Koo BK, Erglis A, Doh JH et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noni). J Am Coll Cardiol 58:1989–1997CrossRef
20.
Zurück zum Zitat Nakazato R, Park HB, Berman DS et al (2013) Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity: results from the DeFACTO study. Circ Cardiovasc Imaging 6:881–889CrossRef Nakazato R, Park HB, Berman DS et al (2013) Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity: results from the DeFACTO study. Circ Cardiovasc Imaging 6:881–889CrossRef
21.
Zurück zum Zitat Norgaard BL, Leipsic J, Gaur S et al (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 63:1145–1155CrossRef Norgaard BL, Leipsic J, Gaur S et al (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 63:1145–1155CrossRef
22.
Zurück zum Zitat Yu M, Lu Z, Shen C et al (2019) The best predictor of ischemic coronary stenosis: subtended myocardial volume, machine learning–based FFR CT, or high-risk plaque features? Eur Radiol 29:3647–3657CrossRef Yu M, Lu Z, Shen C et al (2019) The best predictor of ischemic coronary stenosis: subtended myocardial volume, machine learning–based FFR CT, or high-risk plaque features? Eur Radiol 29:3647–3657CrossRef
23.
Zurück zum Zitat Coenen A, Kim Y-H, Kruk M et al (2018) Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography–based fractional flow reserve. Circ Cardiovasc Imaging 11:e007217CrossRef Coenen A, Kim Y-H, Kruk M et al (2018) Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography–based fractional flow reserve. Circ Cardiovasc Imaging 11:e007217CrossRef
24.
Zurück zum Zitat Han H, Bae YG, Hwang ST et al (2019) Computationally simulated fractional flow reserve from coronary computed tomography angiography based on fractional myocardial mass. Int J Cardiovasc Imaging 35:185–193CrossRef Han H, Bae YG, Hwang ST et al (2019) Computationally simulated fractional flow reserve from coronary computed tomography angiography based on fractional myocardial mass. Int J Cardiovasc Imaging 35:185–193CrossRef
26.
Zurück zum Zitat Celeng C, Leiner T, Maurovich-Horvat P et al (2019) Anatomical and functional computed tomography for diagnosing hemodynamically significant coronary artery disease. JACC Cardiovasc Imaging 12:1316–1325CrossRef Celeng C, Leiner T, Maurovich-Horvat P et al (2019) Anatomical and functional computed tomography for diagnosing hemodynamically significant coronary artery disease. JACC Cardiovasc Imaging 12:1316–1325CrossRef
27.
Zurück zum Zitat Cook CM, Petraco R, Shun-Shin MJ et al (2017) Diagnostic accuracy of computed tomography-derived fractional flow reserve a systematic review. JAMA Cardiol 2:803–810CrossRef Cook CM, Petraco R, Shun-Shin MJ et al (2017) Diagnostic accuracy of computed tomography-derived fractional flow reserve a systematic review. JAMA Cardiol 2:803–810CrossRef
28.
Zurück zum Zitat Petraco R, Sen S, Nijjer S et al (2013) Fractional flow reserve-guided revascularization: practical implications of a diagnostic gray zone and measurement variability on clinical decisions. JACC Cardiovasc Interv 6:222–225CrossRef Petraco R, Sen S, Nijjer S et al (2013) Fractional flow reserve-guided revascularization: practical implications of a diagnostic gray zone and measurement variability on clinical decisions. JACC Cardiovasc Interv 6:222–225CrossRef
29.
Zurück zum Zitat Ko BS, Cameron JD, Munnur RK et al (2017) Noninvasive CT-derived FFR based on structural and fluid analysis: a comparison with invasive FFR for detection of functionally significant stenosis. JACC Cardiovasc Imaging 10:663–673CrossRef Ko BS, Cameron JD, Munnur RK et al (2017) Noninvasive CT-derived FFR based on structural and fluid analysis: a comparison with invasive FFR for detection of functionally significant stenosis. JACC Cardiovasc Imaging 10:663–673CrossRef
30.
Zurück zum Zitat Banerjee RK, Ashtekar KD, Effat MA et al (2009) Concurrent assessment of epicardial coronary artery stenosis and microvascular dysfunction using diagnostic endpoints derived from fundamental fluid dynamics principles. J Invasive Cardiol 21:511–517PubMed Banerjee RK, Ashtekar KD, Effat MA et al (2009) Concurrent assessment of epicardial coronary artery stenosis and microvascular dysfunction using diagnostic endpoints derived from fundamental fluid dynamics principles. J Invasive Cardiol 21:511–517PubMed
31.
Zurück zum Zitat Banerjee RK, Ashtekar KD, Helmy TA, Effat MA, Back LH, Khoury SF (2008) Hemodynamic diagnostics of epicardial coronary stenoses: in-vitro experimental and computational study. Biomed Eng Online 7:24 Banerjee RK, Ashtekar KD, Helmy TA, Effat MA, Back LH, Khoury SF (2008) Hemodynamic diagnostics of epicardial coronary stenoses: in-vitro experimental and computational study. Biomed Eng Online 7:24
32.
Zurück zum Zitat Kolli KK, Effat MA, Peelukhana SV et al (2014) Hyperemia-free delineation of epicardial and microvascular impairments using a basal index. Ann Biomed Eng 42:1681–1690CrossRef Kolli KK, Effat MA, Peelukhana SV et al (2014) Hyperemia-free delineation of epicardial and microvascular impairments using a basal index. Ann Biomed Eng 42:1681–1690CrossRef
33.
Zurück zum Zitat Kolli KK, van de Hoef TP, Effat MA et al (2016) Diagnostic cutoff for pressure drop coefficient in relation to fractional flow reserve and coronary flow reserve: a patient-level analysis. Catheter Cardiovasc Interv 87:273–282CrossRef Kolli KK, van de Hoef TP, Effat MA et al (2016) Diagnostic cutoff for pressure drop coefficient in relation to fractional flow reserve and coronary flow reserve: a patient-level analysis. Catheter Cardiovasc Interv 87:273–282CrossRef
34.
Zurück zum Zitat Hebbar UU, Effat MA, Peelukhana SV, Arif I, Banerjee RK (2017) Delineation of epicardial stenosis in patients with microvascular disease using pressure drop coefficient: a pilot outcome study. World J Cardiol 9:813–821 Hebbar UU, Effat MA, Peelukhana SV, Arif I, Banerjee RK (2017) Delineation of epicardial stenosis in patients with microvascular disease using pressure drop coefficient: a pilot outcome study. World J Cardiol 9:813–821
35.
Zurück zum Zitat Anagnostopoulos CD, Siogkas PK, Liga R et al (2019) Characterization of functionally significant coronary artery disease by a coronary computed tomography angiography-based index: a comparison with positron emission tomography. Eur Heart J Cardiovasc Imaging 0:1–9 Anagnostopoulos CD, Siogkas PK, Liga R et al (2019) Characterization of functionally significant coronary artery disease by a coronary computed tomography angiography-based index: a comparison with positron emission tomography. Eur Heart J Cardiovasc Imaging 0:1–9
36.
Zurück zum Zitat Siogkas PK, Anagnostopoulos CD, Liga R et al (2019) Noninvasive CT-based hemodynamic assessment of coronary lesions derived from fast computational analysis: a comparison against fractional flow reserve. Eur Radiol 29:2117–2126CrossRef Siogkas PK, Anagnostopoulos CD, Liga R et al (2019) Noninvasive CT-based hemodynamic assessment of coronary lesions derived from fast computational analysis: a comparison against fractional flow reserve. Eur Radiol 29:2117–2126CrossRef
Metadaten
Titel
Pressure-flow curve derived from coronary CT angiography for detection of significant hemodynamic stenosis
verfasst von
Xinzhou Xie
Didi Wen
Ruichen Zhang
Qian Tao
Ce Wang
Songyun Xie
Hui Liu
Minwen Zheng
Publikationsdatum
02.04.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 8/2020
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-020-06821-w

Weitere Artikel der Ausgabe 8/2020

European Radiology 8/2020 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.