Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2021

Open Access 01.12.2021 | Letter to the Editor

Prevalence and reclassification of BRCA1 and BRCA2 variants in a large, unselected Chinese Han breast cancer cohort

verfasst von: Yun Liu, Honglian Wang, Xin Wang, Jiaqi Liu, Junjian Li, Xiang Wang, Yun Zhang, Zhigang Bai, Qinghua Zhou, Ying Wu, Yi Shen, Xiaoling Weng, Fatao Liu, Jiancheng Guo, Lijun Di, Olivier Gires, Zhongtao Zhang, Yiding Chen, Hongxia Wang

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2021

Abstract

Accurate interpretation of BRCA1/2 variants is critical for risk assessment and precise treatment of breast cancer (BC). Hence, the establishment of an ethnicity-based BRCA1/2 variant database of the Chinese population is of paramount importance. In this study, panel-based sequencing served to detect BRCA1/2 variants in a Chinese multicenter cohort of 21,216 BC patients and 6434 healthy controls. Overall, the percentage of subjects carrying pathogenic variants was 5.5% (1174/21,216) in BC patients and 1.1% (71/6434) in healthy controls. We identified 13 pathogenic variants as high-frequency variants that had a frequency of > 0.45‰ in BC patients (≥ 10 in 21,216 patients), none of which has been reported in Caucasians. Pathogenic BRCA1/2 variants correlated with younger onset age, higher frequencies of bilateral and triple-negative BC (TNBC), invasive carcinomas, high histological grades, and family history of BC and other cancers. Furthermore, the percentage of the subjects carrying VUS was 9.8% (2071/21,216) in BC patients and 6.9% (446/6434) in healthy controls. Based on our cohort study, we unambiguously reclassified 7 out of the 858 VUS resulting in lower VUS ratio in patients (from 9.8 to 7.9%) as well as in healthy control (from 6.9 to 5.3%). We also re-analyzed the 100 variants in 13 exons (2–5 and 15–23) of the BRCA1 genes using a functional assay (saturation genome editing; SGE). 55 of the 59 VUS had distinct status in the SGE study: 24 (43.6%) were pathogenic, and 31 (56.4%) were benign. Strong ethnicity-specific occurrences of pathogenic BRCA1/2 variants were identified in the Chinese population. Hence, the findings provide rationale and sequencing information for the implementation of BRCA1/2 variants tailored to the Chinese population into clinical risk assessment.
Begleitmaterial
Hinweise
Yun Liu, Honglian Wang, and Xin Wang have contributed equally to this work

Supplementary information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13045-020-01010-0.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BC
Breast cancer
VUS
Variants of uncertain significance
SGE
Saturation genome editing
TNBC
Triple negative breast cancer
SNV
Single-nucleotide variants
To the Editor,
Accurate interpretation of BRCA1 and BRCA2 variants is important for risk assessment and treatment of BC. Currently, available databases of BRCA1/2 variants are mainly derived from the Caucasian population and may not be suitable for use in the Chinese population due to considerable ethnic differences. In a previous study, Sun et al. examined BRCA1/2 variants in 8085 Chinese BC patients, however without the inclusion of healthy controls in the study [1]. During a period from 10-01-2015 to 12-15-2018, we collected 21,216 unselected Chinese BC patients and 6434 healthy controls in 19 medical centers in 11 Chinese provinces (Additional file 1: Fig. S1). Subjects and methods are shown in detail in the Additional file 2. Panel-based sequencing identified a total of 1958 BRAC1/2 variants. Based on the ClinVar database (clinvar_20171002.vcf.gz) and ACMG guidelines, 532 (27.2%) variants are pathogenic, 858 (43.8%) are VUS, and the remaining 568 variants (29.0%) are benign (Additional file 3: Table S1).
Percentages of the subjects carrying pathogenic variants were 5.5% (1174/21,216) in BC patients and 1.1% (71/6434) in healthy controls (Additional file 3: Table S1). A complete list is presented in Additional file 4: Table S2. The following 13 pathogenic variants had a frequency of > 0.45‰ in BC patients (≥ 10 in 21,216 patients): p.Cys328fs, p.Asn704fs, p.Ser1862fs, and p.Ile1845fs in BRCA1; p.Ala938fs, p.Gln1037*, p.Ser1722fs, p.Tyr1894*, p.Leu1908fs, p.Glu2198fs, p.Ser2378*, p.Pro2802fs, and p.Thr3033fs in BRCA2. Among these 13 variants, 8 variants are reported for the first time as high-frequency variants, none has been reported as high-frequency variants in Caucasians, one (p.Cys328fs) has been reported at high frequency in Korean patients [2] (Fig. 1), and the remaining 4 variants (p.Ser1862fs, p.Ile1845fs, p.Gln1037*, p.Tyr1894*) have been reported at high-frequency in other Chinese studies [1, 3].
In comparison with patients without BRCA1/2 pathogenic variants (n = 16,472), both the patients carrying BRCA1 (n = 404) and BRCA2 pathogenic variants (n = 544) were younger, and more likely of having higher histological grade, having invasive carcinoma vs. ductal carcinoma, and having a family history of BC. BRCA1 pathogenic variants were associated with TNBC and bilateral lesions, whereas BRCA2 pathogenic variants were associated with Luminal B type (Additional file 5: Fig. S2 and Additional file 6: Table S3).
Percentages of the subjects carrying VUS were 9.8% (2071/21,216) in BC patients and 6.9% (446/6434) in healthy controls (Additional file 3: Table S1). 7 out of the 858 VUS had > 0.1% allele frequency in the entire cohort and no statistical difference between the patients and controls in our cohort, and thus were re-grouped into benign variants (Additional file 7: Table S4). The re-classification resulted in lower VUS ratio in patients (from 9.8 to 7.9%) and healthy controls (from 6.9 to 5.3%).
We next re-analyzed the 100 variants in 13 exons (2–5 and 15–23) of the BRCA1 gene using a functional assay (saturation genome editing; SGE), as reported by Findlay et al. [4]. Under the ClinVar database and ACMG guidelines, 38 were pathogenic, 59 were VUS, and the remaining 3 were benign. 2 of the 38 pathogenic variants had distinct status in the Findlay study: one was VUS and another was benign. 55 of the 59 VUS had distinct status in the Findlay study: 24 (43.6%) were pathogenic, and 31 (56.4%) were benign (Additional file 8: Table S5). Notably, the 24 pathogenic variants under the functional assay were detected in BC patients only in our cohort. All 3 benign variants were also considered benign in the Findlay study .
In comparison with the 101 BC patients having VUS in the 13 BRCA1 exons under the ClinVar database and ACMG guidelines, subjects re-grouped to pathogenic variants by SGE (24 variants, 38 pts) had higher rate of TNBC (50% vs 34.3%, p = 0.465), higher rate of early onset (36.8% vs. 26.7%, p = 0.516), and higher rate of having family history of BC (15.8% vs 8.9%, p = 0.465). In contrast, subjects re-grouped from VUS to benign (31 variants, 58 pts) had a lower rate of TNBC (24.3% vs 34.3%, p = 0.569), lower rate of early onset (20.7% vs 26.7%, p = 0.630), and lower rate of family history of BC (5.2% vs 8.9%, p = 0.626) (Table 1).
Table 1
Distribution proportion of 3 groups of BRCA1 variants carriers clinical characteristics
Variables
Re-Pathogenic
VUS
P1-value
Re-Benign
P2-value
No. of subjects
38
101
 
58
 
Age at entry
46.47
47.96
 
49.01
 
Age at diagnosis
44.76
46.27
 
47.22
 
Early onset breast cancer
36.84% (14/38)
26.73% (27/101)
0.516
20.69% (12/58)
0.630
Location of cancer
(both sides/one side)
0 (0/23)
1.47% (1/68)
1
2.38% (1/42)
1
Luminal A breast cancer
0 (0/28)
8.57% (6/70)
0.290
13.51% (5/37)
0.699
Luminal B breast cancer
42.86% (12/28)
50% (35/70)
0.853
54.05% (20/37)
0.959
Triple negative breast cancer
50% (14/28)
34.29% (24/70)
0.465
24.32% (9/37)
0.569
HER2-positive breast cancer
7.14% (2/28)
7.14% (5/70)
1
8.11% (3/37)
1
Family history of breast cancer
15.79% (6/38)
8.91% (9/101)
0.465
5.17% (3/58)
0.626
Family history of other cancers
18.42% (7/38)
15.84% (16/101)
0.956
15.52% (9/58)
1
VUS: Detected in our study and located in 13 exons (2–5 and 15–23) of the BRCA1 genes under the ClinVar database and ACMG guidelines
Re-Pathogenic: Above-mentioned VUS, re-grouped to pathogenic variants by SGE
Re-benign: Above-mentioned VUS, re-grouped to benign variants by SGE
Early onset breast cancer: Breast cancer was determined by an age ≤ 40 years at diagnosis
In summary, the current study demonstrated distinct BRCA1/2 variant profiles in Chinese patients with BC, as well as healthy donors, and suggested testing based on hotspots in Caucasian patients/population is not appropriate. Hence, there is a need to develop a classification system that categorizes the known variants into pathogenic, VUS, and benign in the Chinese population. The biological impact of variants in the literature, allele frequency in the Chinese patients, and the general Chinese population should be incorporated into this classification system.

Supplementary information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13045-020-01010-0.

Acknowledgements

None.
The study was approved by the Ethics Committee of all the hospitals involved and was performed according to the Declaration of Helsinki Principles.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Anhänge

Supplementary Information

Literatur
1.
Zurück zum Zitat Sun J, Meng H, Yao L, Lv M, Bai J, Zhang J, et al. Germline mutations in cancer susceptibility genes in a large series of unselected breast cancer patients. Clin Cancer Res. 2017;23(20):6113–9.CrossRef Sun J, Meng H, Yao L, Lv M, Bai J, Zhang J, et al. Germline mutations in cancer susceptibility genes in a large series of unselected breast cancer patients. Clin Cancer Res. 2017;23(20):6113–9.CrossRef
2.
Zurück zum Zitat Kang E, Seong MW, Park SK, Lee JW, Lee J, Kim LS, et al. The prevalence and spectrum of BRCA1 and BRCA2 mutations in Korean population: recent update of the Korean Hereditary Breast Cancer (KOHBRA) study. Breast Cancer Res Treat. 2015;151(1):157–68.CrossRef Kang E, Seong MW, Park SK, Lee JW, Lee J, Kim LS, et al. The prevalence and spectrum of BRCA1 and BRCA2 mutations in Korean population: recent update of the Korean Hereditary Breast Cancer (KOHBRA) study. Breast Cancer Res Treat. 2015;151(1):157–68.CrossRef
3.
Zurück zum Zitat Bhaskaran SP, Chandratre K, Gupta H, Zhang L, Wang X, Cui J, et al. Germline variation in BRCA1/2 is highly ethnic-specific: evidence from over 30,000 Chinese hereditary breast and ovarian cancer patients. Int J Cancer. 2019;145(4):962–73.CrossRef Bhaskaran SP, Chandratre K, Gupta H, Zhang L, Wang X, Cui J, et al. Germline variation in BRCA1/2 is highly ethnic-specific: evidence from over 30,000 Chinese hereditary breast and ovarian cancer patients. Int J Cancer. 2019;145(4):962–73.CrossRef
4.
Zurück zum Zitat Findlay GM, Daza RM, Martin B, Zhang MD, Leith AP, Gasperini M, et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature. 2018;562(7726):217–22.CrossRef Findlay GM, Daza RM, Martin B, Zhang MD, Leith AP, Gasperini M, et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature. 2018;562(7726):217–22.CrossRef
Metadaten
Titel
Prevalence and reclassification of BRCA1 and BRCA2 variants in a large, unselected Chinese Han breast cancer cohort
verfasst von
Yun Liu
Honglian Wang
Xin Wang
Jiaqi Liu
Junjian Li
Xiang Wang
Yun Zhang
Zhigang Bai
Qinghua Zhou
Ying Wu
Yi Shen
Xiaoling Weng
Fatao Liu
Jiancheng Guo
Lijun Di
Olivier Gires
Zhongtao Zhang
Yiding Chen
Hongxia Wang
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2021
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-020-01010-0

Weitere Artikel der Ausgabe 1/2021

Journal of Hematology & Oncology 1/2021 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.