Skip to main content
Erschienen in: Graefe's Archive for Clinical and Experimental Ophthalmology 10/2018

07.07.2018 | Retinal Disorders

Prevalences of segmentation errors and motion artifacts in OCT-angiography differ among retinal diseases

verfasst von: J. L. Lauermann, A. K. Woetzel, M. Treder, M. Alnawaiseh, C. R. Clemens, N. Eter, Florian Alten

Erschienen in: Graefe's Archive for Clinical and Experimental Ophthalmology | Ausgabe 10/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To assess the prevalences of segmentation errors and motion artifacts in optical coherence tomography angiography (OCT-A) in different retinal diseases

Methods

In a retrospective analysis, multimodal retinal imaging including OCT-A was performed in one eye of 57 healthy controls (50.96 ± 22.4 years) and 149 patients (66.42 ± 14.1 years) affected by different chorioretinal diseases: early/intermediate age-related macular degeneration (AMD; n = 26), neovascular AMD (nAMD; n = 22), geographic atrophy due to AMD (GA; n = 6), glaucoma (n = 28), central serous chorioretinopathy (CSC; n = 14), epiretinal membrane (EM; n = 26), retinal vein occlusion (RVO; n = 11), and retinitis pigmentosa (RP; n = 16). Central 3 × 3 mm2 OCT-A imaging was performed with active eye-tracking (AngioVue, Optovue). Best-corrected visual acuity (BCVA) and signal strength index (SSI) were recorded. Images were independently evaluated by two graders using the OCT-A motion artifact score (MAS; scores I–IV) as well as a newly introduced segmentation accuracy score (SAS; score I–IIB).

Results

Mean SSI was 63.67 ± 9.2 showing a negative correlation with increasing age (rSp = − 0.42, p < 0.001, n = 206). In the healthy cohort, mean MAS was 1.45 ± 0.8 and segmentation was accurate (SAS I) in all eyes. In eyes with retinal pathologies, mean MAS was 2.1 ± 0.9 (p < 0.001). Lowest MAS was observed in GA (2.67 ± 0.5) and RVO (2.45 ± 1.1). Compared to an accurate segmentation in 100% in healthy subjects, 34.2% (n = 51) of all patients showed highest segmentation quality (p < 0.001). 63.8% showed segmentation errors in more than 5% of all single b-scans in one (SAS IIA, n = 58) or at least two (SAS IIB, n = 40) segmentation boundaries. Highest percentages of inaccurate segmentation (SAS IIA or IIB) were observed in the nAMD group (90.1%). The inner plexiform layer was the segmentation boundary most prone to inaccurate segmentation in all pathologies compared to the inner limiting membrane (ILM) and retinal pigment epithelium (RPE) segmentation layer. Incorrect ILM segmentation was only seen in patients with EM.

Conclusions

Prior to both qualitative and quantitative analysis, OCT-A images must be carefully reviewed as motion artifacts and segmentation errors in current OCT-A technology are frequent particularly in pathologically altered maculae.
Literatur
1.
Zurück zum Zitat Jia Y, Bailey ST, Hwang TS et al (2015) Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A 112:E2395–E2402CrossRefPubMedPubMedCentral Jia Y, Bailey ST, Hwang TS et al (2015) Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A 112:E2395–E2402CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Cole ED, Ferrara D, Novais EA, Louzada RN, Waheed NK (2016) Clinical trial endpoints for optical coherence tomography angiography in neovascular age-related macular degeneration. Retina 36(Suppl 1):S83–S92CrossRefPubMed Cole ED, Ferrara D, Novais EA, Louzada RN, Waheed NK (2016) Clinical trial endpoints for optical coherence tomography angiography in neovascular age-related macular degeneration. Retina 36(Suppl 1):S83–S92CrossRefPubMed
3.
Zurück zum Zitat Say EA, Ferenczy S, Magrath GN, Samara WA, Khoo CT, Shields CL (2017) Image quality and artifacts on optical coherence tomography angiography: comparison of pathologic and paired fellow eyes in 65 patients with unilateral choroidal melanoma treated with plaque radiotherapy. Retina 37(9):1660–1673CrossRefPubMed Say EA, Ferenczy S, Magrath GN, Samara WA, Khoo CT, Shields CL (2017) Image quality and artifacts on optical coherence tomography angiography: comparison of pathologic and paired fellow eyes in 65 patients with unilateral choroidal melanoma treated with plaque radiotherapy. Retina 37(9):1660–1673CrossRefPubMed
4.
Zurück zum Zitat Sadda SR, Wu Z, Walsh AC et al (2006) Errors in retinal thickness measurements obtained by optical coherence tomography. Ophthalmology 113:285–293CrossRefPubMed Sadda SR, Wu Z, Walsh AC et al (2006) Errors in retinal thickness measurements obtained by optical coherence tomography. Ophthalmology 113:285–293CrossRefPubMed
5.
Zurück zum Zitat Al-Sheikh M, Ghasemi Falavarjani K, Akil H, Sadda SR (2017) Impact of image quality on OCT angiography based quantitative measurements. Int J Retina Vitreous 3:13CrossRefPubMedPubMedCentral Al-Sheikh M, Ghasemi Falavarjani K, Akil H, Sadda SR (2017) Impact of image quality on OCT angiography based quantitative measurements. Int J Retina Vitreous 3:13CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Lauermann JL, Treder M, Heiduschka P, Clemens CR, Eter N, Alten F (2017) Impact of eye-tracking technology on OCT-angiography imaging quality in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 255:1535–1542CrossRefPubMed Lauermann JL, Treder M, Heiduschka P, Clemens CR, Eter N, Alten F (2017) Impact of eye-tracking technology on OCT-angiography imaging quality in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 255:1535–1542CrossRefPubMed
8.
Zurück zum Zitat Lumbroso B, Huang D, Jia Y, Rispoli M, Romano A, Waheed NK (2015) Clinical OCT angiography atlas. Jaypee Brothers Medical Publishers, New DelhiCrossRef Lumbroso B, Huang D, Jia Y, Rispoli M, Romano A, Waheed NK (2015) Clinical OCT angiography atlas. Jaypee Brothers Medical Publishers, New DelhiCrossRef
9.
Zurück zum Zitat Alten F, Lauermann JL, Clemens CR, Heiduschka P, Eter N (2017) Signal reduction in choriocapillaris and segmentation errors in spectral domain OCT angiography caused by soft drusen. Graefes Arch Clin Exp Ophthalmol 255(12):2347–2355CrossRefPubMed Alten F, Lauermann JL, Clemens CR, Heiduschka P, Eter N (2017) Signal reduction in choriocapillaris and segmentation errors in spectral domain OCT angiography caused by soft drusen. Graefes Arch Clin Exp Ophthalmol 255(12):2347–2355CrossRefPubMed
10.
Zurück zum Zitat Ghasemi Falavarjani K, Al-Sheikh M, Akil H, Sadda SR (2017) Image artefacts in swept-source optical coherence tomography angiography. Br J Ophthalmol 101(5):564–568CrossRefPubMed Ghasemi Falavarjani K, Al-Sheikh M, Akil H, Sadda SR (2017) Image artefacts in swept-source optical coherence tomography angiography. Br J Ophthalmol 101(5):564–568CrossRefPubMed
11.
Zurück zum Zitat Han IC, Jaffe GJ (2010) Evaluation of artifacts associated with macular spectral-domain optical coherence tomography. Ophthalmology 117:1177–89.e4CrossRefPubMed Han IC, Jaffe GJ (2010) Evaluation of artifacts associated with macular spectral-domain optical coherence tomography. Ophthalmology 117:1177–89.e4CrossRefPubMed
12.
Zurück zum Zitat Kraus MF, Potsaid B, Mayer MA et al (2012) Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns. Biomed Opt Express 3(6):1182–1199CrossRefPubMedPubMedCentral Kraus MF, Potsaid B, Mayer MA et al (2012) Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns. Biomed Opt Express 3(6):1182–1199CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Uji A, Balasubramanian S, Lei J, Baghdasaryan E, Al-Sheikh M, Sadda SR (2017) Choriocapillaris imaging using multiple en face optical coherence tomography angiography image averaging. JAMA Ophthalmol 135:1197–1204CrossRefPubMed Uji A, Balasubramanian S, Lei J, Baghdasaryan E, Al-Sheikh M, Sadda SR (2017) Choriocapillaris imaging using multiple en face optical coherence tomography angiography image averaging. JAMA Ophthalmol 135:1197–1204CrossRefPubMed
14.
Zurück zum Zitat Decroos FC, Stinnett SS, Heydary CS, Burns RE, Jaffe GJ (2013) Reading center characterization of central retinal vein occlusion using optical coherence tomography during the COPERNICUS trial. Transl Vis Sci Technol 2(7):7CrossRefPubMedPubMedCentral Decroos FC, Stinnett SS, Heydary CS, Burns RE, Jaffe GJ (2013) Reading center characterization of central retinal vein occlusion using optical coherence tomography during the COPERNICUS trial. Transl Vis Sci Technol 2(7):7CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Spaide RF, Curcio CA (2017) Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in normal eyes. JAMA Ophthalmol 135:259–262CrossRefPubMed Spaide RF, Curcio CA (2017) Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in normal eyes. JAMA Ophthalmol 135:259–262CrossRefPubMed
16.
Zurück zum Zitat Linderman R, Salmon AE, Strampe M, Russillo M, Khan J, Carroll J (2017) Assessing the accuracy of foveal avascular zone measurements using optical coherence tomography angiography: segmentation and scaling. Transl Vis Sci Technol 6(3):16CrossRefPubMedPubMedCentral Linderman R, Salmon AE, Strampe M, Russillo M, Khan J, Carroll J (2017) Assessing the accuracy of foveal avascular zone measurements using optical coherence tomography angiography: segmentation and scaling. Transl Vis Sci Technol 6(3):16CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Zhang M, Hwang TS, Campbell JP, Bailey ST, Wilson DJ, Huang D, Jia Y (2016) Projection-resolved optical coherence tomographic angiography. Biomed Opt Express 7(3):816–828CrossRefPubMedPubMedCentral Zhang M, Hwang TS, Campbell JP, Bailey ST, Wilson DJ, Huang D, Jia Y (2016) Projection-resolved optical coherence tomographic angiography. Biomed Opt Express 7(3):816–828CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Wang J, Zhang M, Hwang TS, Bailey ST, Huang D, Wilson DJ, Jia Y (2017) Reflectance-based projection-resolved optical coherence tomography angiography [invited]. Biomed Opt Express 8(3):1536–1548CrossRefPubMedPubMedCentral Wang J, Zhang M, Hwang TS, Bailey ST, Huang D, Wilson DJ, Jia Y (2017) Reflectance-based projection-resolved optical coherence tomography angiography [invited]. Biomed Opt Express 8(3):1536–1548CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Fenner BJ, Tan GS, Tan AC, Yeo IY, Wong TY, Cheung GC (2017) Identification of imaging features that determine quality and repeatability of retinal capillary plexus density measurements in OCT angiography. Br J Ophthalmol 102(4):509–514PubMed Fenner BJ, Tan GS, Tan AC, Yeo IY, Wong TY, Cheung GC (2017) Identification of imaging features that determine quality and repeatability of retinal capillary plexus density measurements in OCT angiography. Br J Ophthalmol 102(4):509–514PubMed
21.
Zurück zum Zitat Shields CL, Say EA, Samara WA, Khoo CT, Mashayekhi A, Shields JA (2016) Optical coherence tomography angiography of the macula after plaque radiotherapy of choroidal melanoma: comparison of irradiated versus nonirradiated eyes in 65 patients. Retina 36(8):1493e1505CrossRef Shields CL, Say EA, Samara WA, Khoo CT, Mashayekhi A, Shields JA (2016) Optical coherence tomography angiography of the macula after plaque radiotherapy of choroidal melanoma: comparison of irradiated versus nonirradiated eyes in 65 patients. Retina 36(8):1493e1505CrossRef
22.
Zurück zum Zitat Jeoung JW, Choi YJ, Park KH, Kim DM (2013) Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 54:4422–4429CrossRefPubMed Jeoung JW, Choi YJ, Park KH, Kim DM (2013) Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 54:4422–4429CrossRefPubMed
23.
Zurück zum Zitat Mwanza JC, Durbin MK, Budenz DL et al (2012) Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology 119:1151–1158CrossRefPubMed Mwanza JC, Durbin MK, Budenz DL et al (2012) Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology 119:1151–1158CrossRefPubMed
24.
Zurück zum Zitat Kim HJ, Lee SY, Park KH, Kim DM, Jeoung JW (2016) Glaucoma diagnostic ability of layer-by-layer segmented ganglion cell complex by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 57:4799–4805CrossRefPubMed Kim HJ, Lee SY, Park KH, Kim DM, Jeoung JW (2016) Glaucoma diagnostic ability of layer-by-layer segmented ganglion cell complex by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 57:4799–4805CrossRefPubMed
25.
Zurück zum Zitat Nelis P, Alten F, Clemens CR, Heiduschka P, Eter N (2017) Quantification of changes in foveal capillary architecture caused by idiopathic epiretinal membrane using OCT angiography. Graefes Arch Clin Exp Ophthalmol 255:1319–1324CrossRefPubMed Nelis P, Alten F, Clemens CR, Heiduschka P, Eter N (2017) Quantification of changes in foveal capillary architecture caused by idiopathic epiretinal membrane using OCT angiography. Graefes Arch Clin Exp Ophthalmol 255:1319–1324CrossRefPubMed
26.
Zurück zum Zitat Rogala J, Zangerl B, Assaad N, Fletcher EL, Kalloniatis M, Nivison-Smith L (2015) In vivo quantification of retinal changes associated with drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci 56:1689–1700CrossRefPubMed Rogala J, Zangerl B, Assaad N, Fletcher EL, Kalloniatis M, Nivison-Smith L (2015) In vivo quantification of retinal changes associated with drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci 56:1689–1700CrossRefPubMed
28.
Zurück zum Zitat Louzada RN, de Carlo TE, Adhi M et al (2017) Optical coherence tomography angiography artifacts in retinal pigment epithelial detachment. Can J Ophthalmol 52(4):419–424CrossRefPubMed Louzada RN, de Carlo TE, Adhi M et al (2017) Optical coherence tomography angiography artifacts in retinal pigment epithelial detachment. Can J Ophthalmol 52(4):419–424CrossRefPubMed
29.
Zurück zum Zitat Lang A, Carass A, Bittner AK, Ying HS, Prince JL (2017) Improving graph-based OCT segmentation for severe pathology in retinitis pigmentosa patients. Proc SPIE Int Soc Opt Eng 10137 Lang A, Carass A, Bittner AK, Ying HS, Prince JL (2017) Improving graph-based OCT segmentation for severe pathology in retinitis pigmentosa patients. Proc SPIE Int Soc Opt Eng 10137
30.
Zurück zum Zitat Spaide RF (2016) Volume-rendered optical coherence tomography of retinal vein occlusion pilot study. Am J Ophthalmol 165:133–144CrossRefPubMed Spaide RF (2016) Volume-rendered optical coherence tomography of retinal vein occlusion pilot study. Am J Ophthalmol 165:133–144CrossRefPubMed
31.
Zurück zum Zitat Iida Y, Muraoka Y, Ooto S, Suzuma K, Murakami T, Iida-Miwa Y, Ghashut R, Tsujikawa A (2017) Morphologic and functional retinal vessel changes in branch retinal vein occlusion: an optical coherence tomography angiography study. Am J Ophthalmol 182:168–179CrossRefPubMed Iida Y, Muraoka Y, Ooto S, Suzuma K, Murakami T, Iida-Miwa Y, Ghashut R, Tsujikawa A (2017) Morphologic and functional retinal vessel changes in branch retinal vein occlusion: an optical coherence tomography angiography study. Am J Ophthalmol 182:168–179CrossRefPubMed
32.
Zurück zum Zitat Niu S, Chen Q, de Sisternes L, Rubin DL, Zhang W, Liu Q (2014) Automated retinal layers segmentation in SD-OCT images using dual gradient and spatial correlation smoothness constraint. Comput Biol Med 54:116–128CrossRefPubMed Niu S, Chen Q, de Sisternes L, Rubin DL, Zhang W, Liu Q (2014) Automated retinal layers segmentation in SD-OCT images using dual gradient and spatial correlation smoothness constraint. Comput Biol Med 54:116–128CrossRefPubMed
33.
Zurück zum Zitat Treder M, Lauermann JL, Eter N (2018) Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefes Arch Clin Exp Ophthalmol 256(2):259–265CrossRefPubMed Treder M, Lauermann JL, Eter N (2018) Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefes Arch Clin Exp Ophthalmol 256(2):259–265CrossRefPubMed
34.
Zurück zum Zitat Bogunovic H, Waldstein S, Schlegl T, Langs G, Sadeghipour A, Liu X, Gerendas B, Osborne A, Schmidt-Erfurth U (2017) Prediction of anti-VEGF treatment requirements in neovascular AMD using a machine learning approach. Invest Ophthalmol Vis Sci 58:3240–4248CrossRefPubMed Bogunovic H, Waldstein S, Schlegl T, Langs G, Sadeghipour A, Liu X, Gerendas B, Osborne A, Schmidt-Erfurth U (2017) Prediction of anti-VEGF treatment requirements in neovascular AMD using a machine learning approach. Invest Ophthalmol Vis Sci 58:3240–4248CrossRefPubMed
35.
Zurück zum Zitat de Sisternes L, Jonna G, Moss J, Marmor MF, Leng T, Rubin DL (2017) Automated intraretinal segmentation of SD-OCT images in normal and age-related macular degeneration eyes. Biomed Opt Express 8(3):1926–1949CrossRefPubMedPubMedCentral de Sisternes L, Jonna G, Moss J, Marmor MF, Leng T, Rubin DL (2017) Automated intraretinal segmentation of SD-OCT images in normal and age-related macular degeneration eyes. Biomed Opt Express 8(3):1926–1949CrossRefPubMedPubMedCentral
Metadaten
Titel
Prevalences of segmentation errors and motion artifacts in OCT-angiography differ among retinal diseases
verfasst von
J. L. Lauermann
A. K. Woetzel
M. Treder
M. Alnawaiseh
C. R. Clemens
N. Eter
Florian Alten
Publikationsdatum
07.07.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Graefe's Archive for Clinical and Experimental Ophthalmology / Ausgabe 10/2018
Print ISSN: 0721-832X
Elektronische ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-018-4053-2

Weitere Artikel der Ausgabe 10/2018

Graefe's Archive for Clinical and Experimental Ophthalmology 10/2018 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.