Skip to main content
Erschienen in: Journal of Natural Medicines 1/2019

13.11.2018 | Note

Preventive agents for neurodegenerative diseases from resin of Dracaena cochinchinensis attenuate LPS-induced microglia over-activation

verfasst von: Yingzhan Tang, Guangyue Su, Ning Li, Wenjie Li, Gang Chen, Ru Chen, Di Zhou, Yue Hou

Erschienen in: Journal of Natural Medicines | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Our previous research revealed resin of Dracaena cochinchinensis as a candidate for therapy of neurodegenerative diseases. In the present study, the material basis of Chinese Dragon’s blood and the primary mechanism of the effective components are discussed. Multiple chromatography and spectra analysis were utilized to identify effective constituents. The production of NO was determined using nitrite assay in BV-2 microglial cells stimulated with lipopolysaccharide (LPS). Cell viability was tested using MTT assay. The mRNA level of inducible nitric oxide synthase (iNOS) was investigated by quantitative real-time PCR (qRT-PCR), and the production of IL-6 and TNF-α in the cell supernatants was tested by ELISA. The bioassay-directed separation of the effective extract of D. cochinchinensis afforded two new compounds, a stilbene-flavane dimer (2) and a quinoid flavonoid (11), in addition to 25 known compounds. The evaluation of their anti-neuroinflammatory activities showed that 5, 9, 12, 13, and 14 could exhibit significant anti-neuroinflammatory effects without cytotoxities at the tested concentration, compared to a positive control, minocycline (21.87 ± 2.36 µM). A primary mechanistic study revealed that the effective components could inhibit over-activation of microglial through decreasing the expressions of iNOS, proinflammatory cytokines IL-6 and TNF-α in LPS- induced BV2 microglial cells. Chalcone 9, homoisoflavane 5 and flavone 1214 are considered to be responsible for the anti-neuroinflammatory effects of Chinese Dragon’s blood. These could inhibit neuroinflammation by reducing the expressions of iNOS, IL-6 and TNF-α in over-activated microglial. Furthermore, the SAR is briefly discussed.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Prince M, Prina M, Guerchet M (2013) Journey of caring: an analysis of long-term care for dementia. World Alzheimer Report 19 Sep 2013 Prince M, Prina M, Guerchet M (2013) Journey of caring: an analysis of long-term care for dementia. World Alzheimer Report 19 Sep 2013
2.
Zurück zum Zitat Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, Tanner CM (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68:384–386PubMedCrossRef Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, Tanner CM (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68:384–386PubMedCrossRef
3.
4.
Zurück zum Zitat Barrientos RM, Kitt MM, Watkins LR, Maier SF (2015) Neuroinflammation in the normal aging hippocampus. Neuroscience 309:84–99PubMedCrossRef Barrientos RM, Kitt MM, Watkins LR, Maier SF (2015) Neuroinflammation in the normal aging hippocampus. Neuroscience 309:84–99PubMedCrossRef
5.
Zurück zum Zitat Kumar H, Lim HW, More SV, Kim BW, Koppula S, Kim IS, Choi DK (2012) The role of free radicals in the aging brain and Parkinson’s disease: convergence and parallelism. Int J Mol Sci 13:10478–10504PubMedPubMedCentralCrossRef Kumar H, Lim HW, More SV, Kim BW, Koppula S, Kim IS, Choi DK (2012) The role of free radicals in the aging brain and Parkinson’s disease: convergence and parallelism. Int J Mol Sci 13:10478–10504PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Nakajima K, Kohsaka S (1998) Functional roles of microglia in the central nervous system. Hum Cell 11:141–155PubMed Nakajima K, Kohsaka S (1998) Functional roles of microglia in the central nervous system. Hum Cell 11:141–155PubMed
7.
Zurück zum Zitat Suzumura A, Takeuchi H, Zhang G, Kuno R, Mizuno T (2006) Roles of gliaderived cytokines on neuronal degeneration and regeneration. Ann N Y Acad Sci 1088:219–229PubMedCrossRef Suzumura A, Takeuchi H, Zhang G, Kuno R, Mizuno T (2006) Roles of gliaderived cytokines on neuronal degeneration and regeneration. Ann N Y Acad Sci 1088:219–229PubMedCrossRef
8.
Zurück zum Zitat Perry VH, Nicoll JA, Holmes C (2001) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193–201CrossRef Perry VH, Nicoll JA, Holmes C (2001) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193–201CrossRef
9.
Zurück zum Zitat Li N, Ma ZJ, Li MJ, Xing YC, Hou Y (2014) Natural potential therapeutic agents of neurodegenerative diseases from the traditional herbal medicine Chinese Dragon’s blood. J Ethnopharmacol 152:508–521PubMedCrossRef Li N, Ma ZJ, Li MJ, Xing YC, Hou Y (2014) Natural potential therapeutic agents of neurodegenerative diseases from the traditional herbal medicine Chinese Dragon’s blood. J Ethnopharmacol 152:508–521PubMedCrossRef
10.
Zurück zum Zitat Yi T, Chen HB, Zhao ZZ, Yu ZL, Jiang ZH (2011) Comparison of the chemical profiles and anti-platelet aggregation effects of two “Dragon’s Blood” drugs used in traditional Chinese medicine. J Ethnopharmacol 133:796–802PubMedCrossRef Yi T, Chen HB, Zhao ZZ, Yu ZL, Jiang ZH (2011) Comparison of the chemical profiles and anti-platelet aggregation effects of two “Dragon’s Blood” drugs used in traditional Chinese medicine. J Ethnopharmacol 133:796–802PubMedCrossRef
11.
Zurück zum Zitat Xin N, Li YJ, Li Y, Dai RJ, Meng WW, Chen Y, Schlappi M, Deng YL (2011) Dragon’s blood extract has antithrombotic properties, affecting platelet aggregation functions and anticoagulation activities. J Ethnopharmacol 135:510–514PubMedCrossRef Xin N, Li YJ, Li Y, Dai RJ, Meng WW, Chen Y, Schlappi M, Deng YL (2011) Dragon’s blood extract has antithrombotic properties, affecting platelet aggregation functions and anticoagulation activities. J Ethnopharmacol 135:510–514PubMedCrossRef
12.
Zurück zum Zitat Miller MJS, MacNaughton WK, Zhang XJ, Thompson JH, Charbonnet RM, Bobrowski P, Lao J, Trentacosti AM, Sandoval M (2000) Treatment of gastric ulcers and diarrhea with the Amazonian herbal medicine sangre de grado. Am J Physiol Gastrointest Liver Physiol 279:192–200CrossRef Miller MJS, MacNaughton WK, Zhang XJ, Thompson JH, Charbonnet RM, Bobrowski P, Lao J, Trentacosti AM, Sandoval M (2000) Treatment of gastric ulcers and diarrhea with the Amazonian herbal medicine sangre de grado. Am J Physiol Gastrointest Liver Physiol 279:192–200CrossRef
13.
Zurück zum Zitat Risco E, Ghia F, Vila R, Iglesias J, Alvarez E, Canigueral S (2003) Immunomodulatory activity and chemical characterisation of sangre de drago (Dragon’s blood) from Croton lechleri. Planta Med 69:785–794PubMedCrossRef Risco E, Ghia F, Vila R, Iglesias J, Alvarez E, Canigueral S (2003) Immunomodulatory activity and chemical characterisation of sangre de drago (Dragon’s blood) from Croton lechleri. Planta Med 69:785–794PubMedCrossRef
14.
Zurück zum Zitat Edward HGM, de Oliveira LFC, Quye A (2001) Raman spectroscopy of coloured resins used in antiquity: dragon’s blood and related substances. Spectrochim Acta Part A Mol Biomol Spectrosc 57:2831–2842CrossRef Edward HGM, de Oliveira LFC, Quye A (2001) Raman spectroscopy of coloured resins used in antiquity: dragon’s blood and related substances. Spectrochim Acta Part A Mol Biomol Spectrosc 57:2831–2842CrossRef
15.
Zurück zum Zitat Ubillas R, Jolad SD, Bruening RC (1999) SP-303, an antiviral oligomeric proanthocyanidin from the latex of Croton lechleri (Sangre de Drago). Phytomedicine 1:77–106CrossRef Ubillas R, Jolad SD, Bruening RC (1999) SP-303, an antiviral oligomeric proanthocyanidin from the latex of Croton lechleri (Sangre de Drago). Phytomedicine 1:77–106CrossRef
16.
Zurück zum Zitat Gupta D, Bleakley B, Gupta RK (2008) Dragon’s blood: botany, chemistry and therapeutic uses. J Ethnopharmacol 115:361–380PubMedCrossRef Gupta D, Bleakley B, Gupta RK (2008) Dragon’s blood: botany, chemistry and therapeutic uses. J Ethnopharmacol 115:361–380PubMedCrossRef
17.
Zurück zum Zitat Rossia D, Guerrinia A, Paganettoa G, Bernacchiaa G, Confortib F, Stattib G, Maiettia S, Poppia I, Tacchinia M, Sacchettia G (2013) Croton lechleri Müll Arg. (Euphorbiaceae) stem bark essential oil as possible mutagen-protective food ingredient against heterocyclic amines from cooked food. Food Chem 139:439–447CrossRef Rossia D, Guerrinia A, Paganettoa G, Bernacchiaa G, Confortib F, Stattib G, Maiettia S, Poppia I, Tacchinia M, Sacchettia G (2013) Croton lechleri Müll Arg. (Euphorbiaceae) stem bark essential oil as possible mutagen-protective food ingredient against heterocyclic amines from cooked food. Food Chem 139:439–447CrossRef
18.
Zurück zum Zitat Alonso-Castro AJ, Ortiz-Sanchez E, Domínguez F, López-Toledo G, Chávezd M, Ortiz-Tellob ADJ, García-Carrancáb A (2012) Antitumor effect of Croton lechleri Mull. Arg. (Euphorbiaceae). J Ethnopharmacol 140:438–442PubMedCrossRef Alonso-Castro AJ, Ortiz-Sanchez E, Domínguez F, López-Toledo G, Chávezd M, Ortiz-Tellob ADJ, García-Carrancáb A (2012) Antitumor effect of Croton lechleri Mull. Arg. (Euphorbiaceae). J Ethnopharmacol 140:438–442PubMedCrossRef
19.
Zurück zum Zitat Montopoli M, Bertin R, Chen Z, Bolcato J, Caparrotta L, Froldi G (2012) Croton lechleri sap and isolated alkaloid taspine exhibit inhibition against human melanoma SK23 and colon cancer HT29 cell lines. J Ethnopharmacol 144:747–753PubMedCrossRef Montopoli M, Bertin R, Chen Z, Bolcato J, Caparrotta L, Froldi G (2012) Croton lechleri sap and isolated alkaloid taspine exhibit inhibition against human melanoma SK23 and colon cancer HT29 cell lines. J Ethnopharmacol 144:747–753PubMedCrossRef
20.
Zurück zum Zitat Zheng QA, Li H, Zhang Y, Yang C (2004) Flavonoids from the resin of Dracaena cochinchinensis. Helv Chim Acta 87:1167–1171CrossRef Zheng QA, Li H, Zhang Y, Yang C (2004) Flavonoids from the resin of Dracaena cochinchinensis. Helv Chim Acta 87:1167–1171CrossRef
21.
Zurück zum Zitat Chen P, Yang JS (2007) Flavonol galactoside caffeiate ester and homoisoflavones from Caesalpinia millettii HOOK. et ARN. Chem Pharm Bull 55:655–657CrossRef Chen P, Yang JS (2007) Flavonol galactoside caffeiate ester and homoisoflavones from Caesalpinia millettii HOOK. et ARN. Chem Pharm Bull 55:655–657CrossRef
22.
Zurück zum Zitat Ichikawa K, Kitaoka M, Taki M, Takaishi S, Iijima Y, Boriboon M, Akiyama T (1993) Retrodihydrochalcones and homoisoflavones isolated from Thai medicinal plant Dracaena loureiri and their estrogen agonist activity. Planta Med 63:540–543CrossRef Ichikawa K, Kitaoka M, Taki M, Takaishi S, Iijima Y, Boriboon M, Akiyama T (1993) Retrodihydrochalcones and homoisoflavones isolated from Thai medicinal plant Dracaena loureiri and their estrogen agonist activity. Planta Med 63:540–543CrossRef
23.
Zurück zum Zitat Yang Y, Huang SX, Zhao YM, Zhao QS, Sun HD (2005) Flavonoids from Lycoris aurea. Nat Prod Res Dev 17:539–541 Yang Y, Huang SX, Zhao YM, Zhao QS, Sun HD (2005) Flavonoids from Lycoris aurea. Nat Prod Res Dev 17:539–541
24.
Zurück zum Zitat Ji S, Li Z, Song W, Wang Y, Liang W (2016) Bioactive constituents of Glycyrrhiza uralensis (Licorice): discovery of the effective components of a traditional herbal medicine. J Nat Prod 79:281–292PubMedCrossRef Ji S, Li Z, Song W, Wang Y, Liang W (2016) Bioactive constituents of Glycyrrhiza uralensis (Licorice): discovery of the effective components of a traditional herbal medicine. J Nat Prod 79:281–292PubMedCrossRef
25.
Zurück zum Zitat Hao Q, Saito Y, Matsuo Y, Li HZ, Tanaka T (2015) Chalcane-stilbene conjugates and oligomeric flavonoids from Chinese Dragon’s blood produced from Dracaena cochinchinensis. Phytochemistry 119:76–82PubMedCrossRef Hao Q, Saito Y, Matsuo Y, Li HZ, Tanaka T (2015) Chalcane-stilbene conjugates and oligomeric flavonoids from Chinese Dragon’s blood produced from Dracaena cochinchinensis. Phytochemistry 119:76–82PubMedCrossRef
26.
Zurück zum Zitat Jiang WJ, Daikonya A, Ohkawara M, Nemoto T, Noritake R (2017) Structure-activity relationship of the inhibitory effects of flavonoids on nitric oxide production in RAW264.7 cells. Bioorg Med Chem 25:779–788PubMedCrossRef Jiang WJ, Daikonya A, Ohkawara M, Nemoto T, Noritake R (2017) Structure-activity relationship of the inhibitory effects of flavonoids on nitric oxide production in RAW264.7 cells. Bioorg Med Chem 25:779–788PubMedCrossRef
27.
Zurück zum Zitat Masek A, Chrzescijanska E, Latos M, Zaborski M (2016) Influence of hydroxyl substitution on flavanone antioxidants properties. Food Chem 215:501–507PubMedCrossRef Masek A, Chrzescijanska E, Latos M, Zaborski M (2016) Influence of hydroxyl substitution on flavanone antioxidants properties. Food Chem 215:501–507PubMedCrossRef
28.
Zurück zum Zitat Hauteville M, Rakotovao M, Duclos MC, Voirin B (1998) ChemInform abstract: synthesis of 5-hydroxy-6- and 8-methylflavones and their ultraviolet spectral differentiation. Phytochemistry 48:547–553CrossRef Hauteville M, Rakotovao M, Duclos MC, Voirin B (1998) ChemInform abstract: synthesis of 5-hydroxy-6- and 8-methylflavones and their ultraviolet spectral differentiation. Phytochemistry 48:547–553CrossRef
29.
Zurück zum Zitat Xiao TS, Wang Q, Jiang LL, Jiang JQ, Li YB (2013) Chemical constituents of Artemisia anomala. Chin Tradit Herb Drugs 44:515–518 Xiao TS, Wang Q, Jiang LL, Jiang JQ, Li YB (2013) Chemical constituents of Artemisia anomala. Chin Tradit Herb Drugs 44:515–518
30.
Zurück zum Zitat Zheng SS, Wu T, Wang ZT (2011) Chemical constituents from the roots of Hedysarum polybotrys. Chin J Chin Mater Med 36:2350–2352 Zheng SS, Wu T, Wang ZT (2011) Chemical constituents from the roots of Hedysarum polybotrys. Chin J Chin Mater Med 36:2350–2352
31.
Zurück zum Zitat Huang YL, Chen CC (2011) Two tannins from Phyllanthus tenellus. J Nat Prod 61:523–524CrossRef Huang YL, Chen CC (2011) Two tannins from Phyllanthus tenellus. J Nat Prod 61:523–524CrossRef
32.
Zurück zum Zitat Chen PD, Liang JY (2006) Chemical constituents in Populus davidiana. Chin Tradit Herb Drugs 37:816–818 Chen PD, Liang JY (2006) Chemical constituents in Populus davidiana. Chin Tradit Herb Drugs 37:816–818
33.
Zurück zum Zitat Yang WQ, Wang HC, Wang WJ, Wang Y, Zhang XQ, Ye W (2011) Chemical constituents from the fruits of Areca catechu. J Chin Med Mater 35:400–403 Yang WQ, Wang HC, Wang WJ, Wang Y, Zhang XQ, Ye W (2011) Chemical constituents from the fruits of Areca catechu. J Chin Med Mater 35:400–403
34.
Zurück zum Zitat Frau J, Muñoz F, Glossman-Mitnik D (2016) A molecular electron density theory study of the chemical reactivity of cis- and trans-Resveratrol. Molecules 21:1650–1663PubMedCentralCrossRef Frau J, Muñoz F, Glossman-Mitnik D (2016) A molecular electron density theory study of the chemical reactivity of cis- and trans-Resveratrol. Molecules 21:1650–1663PubMedCentralCrossRef
35.
Zurück zum Zitat Wang YN, Lin S, Chen MH, Jiang BY, Guo QL, Zhu CG, Wang SJ, Yang YC, Shi JG (2012) Chemical constituents from aqueous extract of Gastrodia elata. Chin J Chin Mater Med 37:1775–1781 Wang YN, Lin S, Chen MH, Jiang BY, Guo QL, Zhu CG, Wang SJ, Yang YC, Shi JG (2012) Chemical constituents from aqueous extract of Gastrodia elata. Chin J Chin Mater Med 37:1775–1781
36.
Zurück zum Zitat Song QY, Fu YB, Liu J, Zheng D, Han L, Huang XS (2011) Chemical constituents from Angelica sinensis. Chin Tradit Herb Drugs 42:1900–1904 Song QY, Fu YB, Liu J, Zheng D, Han L, Huang XS (2011) Chemical constituents from Angelica sinensis. Chin Tradit Herb Drugs 42:1900–1904
37.
Zurück zum Zitat Viñas-Bravo O, Merino-Montiel P, Romero-López A, Montiel-Smith S, Meza-Reyes S (2015) Epimerization of C-22 in (25R)- and (25S)-sapogenins. Steroids 93:60–67PubMedCrossRef Viñas-Bravo O, Merino-Montiel P, Romero-López A, Montiel-Smith S, Meza-Reyes S (2015) Epimerization of C-22 in (25R)- and (25S)-sapogenins. Steroids 93:60–67PubMedCrossRef
38.
Zurück zum Zitat Yang L, Feng F, Gao Y (2009) Chemical constituents from herb of Solanum lyratum. Chin J Chin Mater Med 34:1805–1808 Yang L, Feng F, Gao Y (2009) Chemical constituents from herb of Solanum lyratum. Chin J Chin Mater Med 34:1805–1808
39.
Zurück zum Zitat Penkov S, Kaptan D, Erkut C, Sarov M, Mende F (2015) Integration of carbohydrate metabolism and redox state controls dauer larva formation in Caenorhabditis elegans. Nat Commun 20:8060CrossRef Penkov S, Kaptan D, Erkut C, Sarov M, Mende F (2015) Integration of carbohydrate metabolism and redox state controls dauer larva formation in Caenorhabditis elegans. Nat Commun 20:8060CrossRef
40.
Zurück zum Zitat Chau VM, Tien DN, Nguyen HD, Phan VK (2009) Unusual 22S-spirostane steroids from Dracaena cambodiana. et ARN. Nat Prod Commun 4:1197–1200 Chau VM, Tien DN, Nguyen HD, Phan VK (2009) Unusual 22S-spirostane steroids from Dracaena cambodiana. et ARN. Nat Prod Commun 4:1197–1200
41.
Zurück zum Zitat Hou Y, Li GX, Wang J, Pan YN, Jiao K, Du J, Chen R, Wang B, Li N (2017) Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways. Sci Rep 7:45105CrossRef Hou Y, Li GX, Wang J, Pan YN, Jiao K, Du J, Chen R, Wang B, Li N (2017) Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways. Sci Rep 7:45105CrossRef
42.
Zurück zum Zitat Zhou D, Wei HY, Jiang Z, Li XZ, Jiao K, Jia XG, Hou Y, Li N (2017) Natural potential neuroinflammatory inhibitors from Alhagi sparsifolia Shap. Bioorg Med Chem Lett 27:973–978PubMedCrossRef Zhou D, Wei HY, Jiang Z, Li XZ, Jiao K, Jia XG, Hou Y, Li N (2017) Natural potential neuroinflammatory inhibitors from Alhagi sparsifolia Shap. Bioorg Med Chem Lett 27:973–978PubMedCrossRef
43.
Zurück zum Zitat Zhou D, Zhang YH, Jiang Z, Hou Y, Jiao K, Yan CY, Li N (2017) Biotransformation of isofraxetin-6-O-β-d-glucopyranoside by Angelica sinensis (Oliv.) Diels callus. Bioorg Med Chem Lett 27:248–253PubMedCrossRef Zhou D, Zhang YH, Jiang Z, Hou Y, Jiao K, Yan CY, Li N (2017) Biotransformation of isofraxetin-6-O-β-d-glucopyranoside by Angelica sinensis (Oliv.) Diels callus. Bioorg Med Chem Lett 27:248–253PubMedCrossRef
44.
Zurück zum Zitat Xing YC, Li N, Zhou D, Chen G, Jiao K, Wang WL, Si YY, Hou Y (2017) Sesquiterpene coumarins from Ferula sinkiangensis act as neuroinflammation inhibitors. Planta Med 83:135–142PubMed Xing YC, Li N, Zhou D, Chen G, Jiao K, Wang WL, Si YY, Hou Y (2017) Sesquiterpene coumarins from Ferula sinkiangensis act as neuroinflammation inhibitors. Planta Med 83:135–142PubMed
45.
Zurück zum Zitat Zhou D, Li N, Zhang YH, Yan CY, Jiao K, Sun Y, Ni H, Lin B, Hou Y (2016) Biotransformation of neuro-inflammation inhibitor Kellerin by Angelica sinensis (Oliv.) Diels callus. RSC Adv 6:97302–97312CrossRef Zhou D, Li N, Zhang YH, Yan CY, Jiao K, Sun Y, Ni H, Lin B, Hou Y (2016) Biotransformation of neuro-inflammation inhibitor Kellerin by Angelica sinensis (Oliv.) Diels callus. RSC Adv 6:97302–97312CrossRef
46.
Zurück zum Zitat Li N, Wang Y, Li XZ, Zhang H, Zhou D, Wang WL, Li W, Zhang XR, Li XY, Hou Y, Meng DL (2016) Bioactive phenols as potential neuroinflammation inhibitors from the leaves of Xanthoceras sorbifolia Bunge. Bioorg Med Chem Lett 26:5018–5023PubMedCrossRef Li N, Wang Y, Li XZ, Zhang H, Zhou D, Wang WL, Li W, Zhang XR, Li XY, Hou Y, Meng DL (2016) Bioactive phenols as potential neuroinflammation inhibitors from the leaves of Xanthoceras sorbifolia Bunge. Bioorg Med Chem Lett 26:5018–5023PubMedCrossRef
47.
Zurück zum Zitat Hou Y, Li N, Xie GB, Wang J, Yuan Q, Jia CC, Liu X, Li GX, Tang YZ, Wang B (2015) Pterostilbene exerts anti- neuro inflammatory effect on lipopolysaccharide-activated microglia via inhibition of MAPK signalling pathways. J Funct Foods 19:676–687CrossRef Hou Y, Li N, Xie GB, Wang J, Yuan Q, Jia CC, Liu X, Li GX, Tang YZ, Wang B (2015) Pterostilbene exerts anti- neuro inflammatory effect on lipopolysaccharide-activated microglia via inhibition of MAPK signalling pathways. J Funct Foods 19:676–687CrossRef
48.
Zurück zum Zitat Li N, Meng DL, Pan Y, Cui QL, Li GX, Ni H, Sun Y, Qing DG, Jia XG, Pan YN, Hou Y (2015) Anti-neuroinflammatory and NQO1 inducing activity of natural phytochemicals from Coreopsis tinctoria. J Funct Foods 17:837–846CrossRef Li N, Meng DL, Pan Y, Cui QL, Li GX, Ni H, Sun Y, Qing DG, Jia XG, Pan YN, Hou Y (2015) Anti-neuroinflammatory and NQO1 inducing activity of natural phytochemicals from Coreopsis tinctoria. J Funct Foods 17:837–846CrossRef
49.
Zurück zum Zitat Li JY, Jiang Z, Li XZ, Hou Y, Liu F, Li N, Liu X, Yang LH, Chen G (2015) Natural therapeutic agents for neurodegenerative diseases from a traditional herbal medicine Pongamia pinnata (L.) Pierre. Bioorg Med Chem Lett 25:53–58PubMedCrossRef Li JY, Jiang Z, Li XZ, Hou Y, Liu F, Li N, Liu X, Yang LH, Chen G (2015) Natural therapeutic agents for neurodegenerative diseases from a traditional herbal medicine Pongamia pinnata (L.) Pierre. Bioorg Med Chem Lett 25:53–58PubMedCrossRef
50.
Zurück zum Zitat Henn A, Lund S, Hedtjarn M, Schrattenholz A, Porzgen P, Leist M (2009) The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. Altex 26:83–94PubMedCrossRef Henn A, Lund S, Hedtjarn M, Schrattenholz A, Porzgen P, Leist M (2009) The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. Altex 26:83–94PubMedCrossRef
51.
Zurück zum Zitat Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA 100:8514–8519PubMedCrossRefPubMedCentral Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA 100:8514–8519PubMedCrossRefPubMedCentral
52.
Zurück zum Zitat Gao HM, Hong JS (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29:357–365PubMedPubMedCentralCrossRef Gao HM, Hong JS (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29:357–365PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Hou Y, Xie G, Miao F, Ding L, Mou Y, Wang L, Su G, Chen G, Yang J, Wu C (2014) Pterostilbene attenuates lipopolysaccharide-induced learning and memory impairment possibly via inhibiting microglia activation and protecting neuronal injury in mice. Prog Neuropsychopharmacol Biol Psychiatry 3(54):92–102CrossRef Hou Y, Xie G, Miao F, Ding L, Mou Y, Wang L, Su G, Chen G, Yang J, Wu C (2014) Pterostilbene attenuates lipopolysaccharide-induced learning and memory impairment possibly via inhibiting microglia activation and protecting neuronal injury in mice. Prog Neuropsychopharmacol Biol Psychiatry 3(54):92–102CrossRef
54.
Zurück zum Zitat Hou Y, Xie G, Liu X, Li G, Jia C, Xu J, Wang B (2016) Minocycline protects against lipopolysaccharide-induced cognitive impairment in mice. Psychopharmacology (Berl) 233(5):905–916CrossRef Hou Y, Xie G, Liu X, Li G, Jia C, Xu J, Wang B (2016) Minocycline protects against lipopolysaccharide-induced cognitive impairment in mice. Psychopharmacology (Berl) 233(5):905–916CrossRef
55.
Zurück zum Zitat Das A, Chai JC, Kim SH, Lee YS, Park KS, Jung KH, Chai YG (2015) Transcriptome sequencing of microglial cells stimulated with TLR3 and TLR4 ligands. BMC Genom 16:517CrossRef Das A, Chai JC, Kim SH, Lee YS, Park KS, Jung KH, Chai YG (2015) Transcriptome sequencing of microglial cells stimulated with TLR3 and TLR4 ligands. BMC Genom 16:517CrossRef
56.
Zurück zum Zitat Lyu SA, Lee SY, Lee SJ, Son SW, Kim MO, Kim GY, Kim YH, Yoon HJ, Kim H, Park DI, Ko WS (2006) Seungma-galgeun-tang attenuates proinflammatory activities through the inhibition of NF-kappaB signal pathway in the BV-2 microglial cells. J Ethnopharmacol 107(1):59–66PubMedCrossRef Lyu SA, Lee SY, Lee SJ, Son SW, Kim MO, Kim GY, Kim YH, Yoon HJ, Kim H, Park DI, Ko WS (2006) Seungma-galgeun-tang attenuates proinflammatory activities through the inhibition of NF-kappaB signal pathway in the BV-2 microglial cells. J Ethnopharmacol 107(1):59–66PubMedCrossRef
57.
Zurück zum Zitat Yu DK, Lee B, Kwon M, Yoon N, Shin T, Kim NG, Choi JS, Kim HR (2015) Phlorofucofuroeckol B suppresses inflammatory responses by down-regulating nuclear factor κB activation via Akt, ERK, and JNK in LPS-stimulated microglial cells. Int Immunopharmacol 28(2):1068–1075PubMedCrossRef Yu DK, Lee B, Kwon M, Yoon N, Shin T, Kim NG, Choi JS, Kim HR (2015) Phlorofucofuroeckol B suppresses inflammatory responses by down-regulating nuclear factor κB activation via Akt, ERK, and JNK in LPS-stimulated microglial cells. Int Immunopharmacol 28(2):1068–1075PubMedCrossRef
58.
Zurück zum Zitat Nan L, Liu BW, Ren WZ, Liu JX, Li SN, Fu SP, Zeng YL, Xu SY, Yan X, Gao YJ, Liu DF, Wang W (2016) GLP-2 attenuates LPS-induced inflammation in BV-2 cells by inhibiting ERK1/2, JNK1/2 and NF-κB signaling pathways. Int J Mol Sci 17(2):190–200CrossRef Nan L, Liu BW, Ren WZ, Liu JX, Li SN, Fu SP, Zeng YL, Xu SY, Yan X, Gao YJ, Liu DF, Wang W (2016) GLP-2 attenuates LPS-induced inflammation in BV-2 cells by inhibiting ERK1/2, JNK1/2 and NF-κB signaling pathways. Int J Mol Sci 17(2):190–200CrossRef
59.
Zurück zum Zitat Huang B, He D, Chen G, Ran X, Guo W, Kan X, Wang W, Liu D, Fu S, Liu J (2018) alpha-Cyperone inhibits LPS-induced inflammation in BV-2 cells through activation of Akt/Nrf2/HO-1 and suppression of the NF-kappaB pathway. Food Funct 9(5):2735–2743PubMedCrossRef Huang B, He D, Chen G, Ran X, Guo W, Kan X, Wang W, Liu D, Fu S, Liu J (2018) alpha-Cyperone inhibits LPS-induced inflammation in BV-2 cells through activation of Akt/Nrf2/HO-1 and suppression of the NF-kappaB pathway. Food Funct 9(5):2735–2743PubMedCrossRef
60.
Zurück zum Zitat Morales-Serna JA, Jiménez A, Estrada-Reyes R, Marquez C, Cárdenas J, Salmón M (2010) Homoisoflavanones from Agave tequilana weber. Molecules 15:3295–3301PubMedPubMedCentralCrossRef Morales-Serna JA, Jiménez A, Estrada-Reyes R, Marquez C, Cárdenas J, Salmón M (2010) Homoisoflavanones from Agave tequilana weber. Molecules 15:3295–3301PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE (2009) Gaussian 09, revision A02. Gaussian Inc, Wallingford Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE (2009) Gaussian 09, revision A02. Gaussian Inc, Wallingford
62.
Zurück zum Zitat OʼBoyle NM, Tenderholt A, Langner KM (2009) Cclib: a library for package independent computational chemistry algorithms. J Comput Chem 29:839–845CrossRef OʼBoyle NM, Tenderholt A, Langner KM (2009) Cclib: a library for package independent computational chemistry algorithms. J Comput Chem 29:839–845CrossRef
Metadaten
Titel
Preventive agents for neurodegenerative diseases from resin of Dracaena cochinchinensis attenuate LPS-induced microglia over-activation
verfasst von
Yingzhan Tang
Guangyue Su
Ning Li
Wenjie Li
Gang Chen
Ru Chen
Di Zhou
Yue Hou
Publikationsdatum
13.11.2018
Verlag
Springer Singapore
Erschienen in
Journal of Natural Medicines / Ausgabe 1/2019
Print ISSN: 1340-3443
Elektronische ISSN: 1861-0293
DOI
https://doi.org/10.1007/s11418-018-1266-y

Weitere Artikel der Ausgabe 1/2019

Journal of Natural Medicines 1/2019 Zur Ausgabe