Skip to main content
Erschienen in: Inflammation 1/2018

10.10.2017 | ORIGINAL ARTICLE

Preventive and Therapeutic Effects of Thymol in a Lipopolysaccharide-Induced Acute Lung Injury Mice Model

verfasst von: Limei Wan, Dongmei Meng, Hong Wang, Shanhe Wan, Shunjun Jiang, Shanshan Huang, Li Wei, Pengjiu Yu

Erschienen in: Inflammation | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

Acute lung injury (ALI) is a life-threatening syndrome which causes a high mortality rate worldwide. In traditional medicine, lots of aromatic plants—such as some Thymus species—are used for treatment of various lung diseases including pertussis, bronchitis, and asthma. Thymol, one of the primary active constituent derived from Thymus vulgaris (thyme), has been reported to exhibit potent anti-microbial, anti-oxidant, and anti-inflammatory activities in vivo and in vitro. The present study aims to investigate the protective effects of thymol in lipopolysaccharide (LPS)-induced lung injury mice model. In LPS-challenged mice, treatment with thymol (100 mg/kg) before or after LPS challenge significantly improved pathological changes in lung tissues. Thymol also inhibited the LPS-induced inflammatory cells influx, TNF-α and IL-6 releases, and protein concentration in bronchoalveolar lavage fluid (BALF). Additionally, thymol markedly inhibited LPS-induced elevation of MDA and MPO levels, as well as reduction of SOD activity. Further study demonstrated that thymol effectively inhibited the NF-κB activation in the lung. Taken together, these results suggested that thymol might be useful in the therapy of acute lung injury.
Literatur
1.
Zurück zum Zitat Butt, Y., A. Kurdowska, and T.C. Allen. 2016. Acute lung injury: a clinical and molecular review. Archives of Pathology & Laboratory Medicine 140: 345–350.CrossRef Butt, Y., A. Kurdowska, and T.C. Allen. 2016. Acute lung injury: a clinical and molecular review. Archives of Pathology & Laboratory Medicine 140: 345–350.CrossRef
2.
Zurück zum Zitat Blondonnet, R., J.M. Constantin, V. Sapin, and M. Jabaudon. 2016. A pathophysiologic approach to biomarkers in acute respiratory distress syndrome. Disease Markers 2016: 3501373.CrossRefPubMedPubMedCentral Blondonnet, R., J.M. Constantin, V. Sapin, and M. Jabaudon. 2016. A pathophysiologic approach to biomarkers in acute respiratory distress syndrome. Disease Markers 2016: 3501373.CrossRefPubMedPubMedCentral
3.
4.
Zurück zum Zitat Papazian, L., C.S. Calfee, D. Chiumello, C.E. Luyt, N.J. Meyer, H. Sekiguchi, M.A. Matthay, and G.U. Meduri. 2016. Diagnostic workup for ARDS patients. Intensive Care Medicine 42: 674–685.CrossRefPubMed Papazian, L., C.S. Calfee, D. Chiumello, C.E. Luyt, N.J. Meyer, H. Sekiguchi, M.A. Matthay, and G.U. Meduri. 2016. Diagnostic workup for ARDS patients. Intensive Care Medicine 42: 674–685.CrossRefPubMed
5.
Zurück zum Zitat Lee KY. 2017. Pneumonia, acute respiratory distress syndrome, and early immune-modulator therapy. International Journal of Molecular Sciences 18. Lee KY. 2017. Pneumonia, acute respiratory distress syndrome, and early immune-modulator therapy. International Journal of Molecular Sciences 18.
6.
Zurück zum Zitat Chen, H., C. Bai, and X. Wang. 2010. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Review of Respiratory Medicine 4: 773–783.CrossRefPubMed Chen, H., C. Bai, and X. Wang. 2010. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Review of Respiratory Medicine 4: 773–783.CrossRefPubMed
7.
Zurück zum Zitat Matute-Bello, G., C.W. Frevert, and T.R. Martin. 2008. Animal models of acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 295: L379–L399.CrossRefPubMedPubMedCentral Matute-Bello, G., C.W. Frevert, and T.R. Martin. 2008. Animal models of acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 295: L379–L399.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Zhong, L.L., H.Y. Chen, W.C. Cho, X.M. Meng, and Y. Tong. 2012. The efficacy of Chinese herbal medicine as an adjunctive therapy for colorectal cancer: a systematic review and meta-analysis. Complementary Therapies in Medicine 20: 240–252.CrossRefPubMed Zhong, L.L., H.Y. Chen, W.C. Cho, X.M. Meng, and Y. Tong. 2012. The efficacy of Chinese herbal medicine as an adjunctive therapy for colorectal cancer: a systematic review and meta-analysis. Complementary Therapies in Medicine 20: 240–252.CrossRefPubMed
9.
Zurück zum Zitat Sun, J., K. Zhang, W.J. Xiong, G.Y. Yang, Y.J. Zhang, C.C. Wang, L. Lai, M. Han, J. Ren, G. Lewith, and J.P. Liu. 2016. Clinical effects of a standardized Chinese herbal remedy, Qili Qiangxin, as an adjuvant treatment in heart failure: systematic review and meta-analysis. BMC Complementary and Alternative Medicine 16: 201.CrossRefPubMedPubMedCentral Sun, J., K. Zhang, W.J. Xiong, G.Y. Yang, Y.J. Zhang, C.C. Wang, L. Lai, M. Han, J. Ren, G. Lewith, and J.P. Liu. 2016. Clinical effects of a standardized Chinese herbal remedy, Qili Qiangxin, as an adjuvant treatment in heart failure: systematic review and meta-analysis. BMC Complementary and Alternative Medicine 16: 201.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Vigo, E., A. Cepeda, O. Gualillo, and R. Perez-Fernandez. 2004. In-vitro anti-inflammatory effect of Eucalyptus globulus and Thymus vulgaris: nitric oxide inhibition in J774A.1 murine macrophages. The Journal of Pharmacy and Pharmacology 56: 257–263.CrossRefPubMed Vigo, E., A. Cepeda, O. Gualillo, and R. Perez-Fernandez. 2004. In-vitro anti-inflammatory effect of Eucalyptus globulus and Thymus vulgaris: nitric oxide inhibition in J774A.1 murine macrophages. The Journal of Pharmacy and Pharmacology 56: 257–263.CrossRefPubMed
11.
Zurück zum Zitat Marti, D., V. Villagrasa, I. Martinez-Solis, A. Blanquer, E. Castillo, and L.M. Royo. 2005. Hystological and pharmacological study of Thymus piperella (L.). Phytotherapy Research 19: 298–302.CrossRefPubMed Marti, D., V. Villagrasa, I. Martinez-Solis, A. Blanquer, E. Castillo, and L.M. Royo. 2005. Hystological and pharmacological study of Thymus piperella (L.). Phytotherapy Research 19: 298–302.CrossRefPubMed
12.
Zurück zum Zitat Boskabady, M.H., M.R. Aslani, and S. Kiani. 2006. Relaxant effect of Thymus vulgaris on guinea-pig tracheal chains and its possible mechanism(s). Phytotherapy Research 20: 28–33.CrossRefPubMed Boskabady, M.H., M.R. Aslani, and S. Kiani. 2006. Relaxant effect of Thymus vulgaris on guinea-pig tracheal chains and its possible mechanism(s). Phytotherapy Research 20: 28–33.CrossRefPubMed
13.
Zurück zum Zitat Villanueva, B.D., I. Angelov, G. Vicente, R.P. Stateva, G.M. Rodriguez, G. Reglero, E. Ibanez, and T. Fornari. 2015. Extraction of thymol from different varieties of thyme plants using green solvents. Journal of the Science of Food and Agriculture 95: 2901–2907.CrossRef Villanueva, B.D., I. Angelov, G. Vicente, R.P. Stateva, G.M. Rodriguez, G. Reglero, E. Ibanez, and T. Fornari. 2015. Extraction of thymol from different varieties of thyme plants using green solvents. Journal of the Science of Food and Agriculture 95: 2901–2907.CrossRef
14.
Zurück zum Zitat Wang, L., X. Zhao, C. Zhu, X. Xia, W. Qin, M. Li, T. Wang, S. Chen, Y. Xu, B. Hang, Y. Sun, J. Jiang, L.P. Richard, L. Lei, G. Zhang, and J. Hu. 2017. Thymol kills bacteria, reduces biofilm formation, and protects mice against a fatal infection of Actinobacillus pleuropneumoniae strain L20. Veterinary Microbiology 203: 202–210.CrossRefPubMed Wang, L., X. Zhao, C. Zhu, X. Xia, W. Qin, M. Li, T. Wang, S. Chen, Y. Xu, B. Hang, Y. Sun, J. Jiang, L.P. Richard, L. Lei, G. Zhang, and J. Hu. 2017. Thymol kills bacteria, reduces biofilm formation, and protects mice against a fatal infection of Actinobacillus pleuropneumoniae strain L20. Veterinary Microbiology 203: 202–210.CrossRefPubMed
15.
Zurück zum Zitat Botelho, M.A., G. Barros, D.B. Queiroz, C.F. Carvalho, J. Gouvea, L. Patrus, M. Bannet, D. Patrus, A. Rego, I. Silva, G. Campus, and I. Araujo-Filho. 2016. Nanotechnology in phytotherapy: antiinflammatory effect of a nanostructured thymol gel from Lippia sidoides in acute periodontitis in rats. Phytotherapy Research 30: 152–159.CrossRefPubMed Botelho, M.A., G. Barros, D.B. Queiroz, C.F. Carvalho, J. Gouvea, L. Patrus, M. Bannet, D. Patrus, A. Rego, I. Silva, G. Campus, and I. Araujo-Filho. 2016. Nanotechnology in phytotherapy: antiinflammatory effect of a nanostructured thymol gel from Lippia sidoides in acute periodontitis in rats. Phytotherapy Research 30: 152–159.CrossRefPubMed
16.
Zurück zum Zitat Luna, A., R.C. Lema-Alba, J.S. Dambolena, J.A. Zygadlo, M.C. Labaque, and R.H. Marin. 2017. Thymol as natural antioxidant additive for poultry feed: oxidative stability improvement. Poultry Science 96: 3214–3220.CrossRefPubMed Luna, A., R.C. Lema-Alba, J.S. Dambolena, J.A. Zygadlo, M.C. Labaque, and R.H. Marin. 2017. Thymol as natural antioxidant additive for poultry feed: oxidative stability improvement. Poultry Science 96: 3214–3220.CrossRefPubMed
17.
Zurück zum Zitat Manukumar, H.M., S. Umesha, and H. Kumar. 2017. Promising biocidal activity of thymol loaded chitosan silver nanoparticles (T-C@AgNPs) as anti-infective agents against perilous pathogens. International Journal of Biological Macromolecules 102: 1257–1265.CrossRefPubMed Manukumar, H.M., S. Umesha, and H. Kumar. 2017. Promising biocidal activity of thymol loaded chitosan silver nanoparticles (T-C@AgNPs) as anti-infective agents against perilous pathogens. International Journal of Biological Macromolecules 102: 1257–1265.CrossRefPubMed
18.
Zurück zum Zitat Li-Mei, W., T. Jie, W. Shan-He, M. Dong-Mei, and Y. Peng-Jiu. 2016. Anti-inflammatory and anti-oxidative effects of dexpanthenol on lipopolysaccharide induced acute lung injury in mice. Inflammation 39: 1757–1763.CrossRefPubMed Li-Mei, W., T. Jie, W. Shan-He, M. Dong-Mei, and Y. Peng-Jiu. 2016. Anti-inflammatory and anti-oxidative effects of dexpanthenol on lipopolysaccharide induced acute lung injury in mice. Inflammation 39: 1757–1763.CrossRefPubMed
19.
Zurück zum Zitat Schingnitz, U., K. Hartmann, C.F. Macmanus, T. Eckle, S. Zug, S.P. Colgan, and H.K. Eltzschig. 2010. Signaling through the A2B adenosine receptor dampens endotoxin-induced acute lung injury. Journal of Immunology 184: 5271–5279.CrossRef Schingnitz, U., K. Hartmann, C.F. Macmanus, T. Eckle, S. Zug, S.P. Colgan, and H.K. Eltzschig. 2010. Signaling through the A2B adenosine receptor dampens endotoxin-induced acute lung injury. Journal of Immunology 184: 5271–5279.CrossRef
20.
Zurück zum Zitat Grommes, J., and O. Soehnlein. 2011. Contribution of neutrophils to acute lung injury. Molecular Medicine 17: 293–307.CrossRefPubMed Grommes, J., and O. Soehnlein. 2011. Contribution of neutrophils to acute lung injury. Molecular Medicine 17: 293–307.CrossRefPubMed
21.
Zurück zum Zitat Bhatia, M., and S. Moochhala. 2004. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. The Journal of Pathology 202: 145–156.CrossRefPubMed Bhatia, M., and S. Moochhala. 2004. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. The Journal of Pathology 202: 145–156.CrossRefPubMed
22.
Zurück zum Zitat Sawa, T. 2014. The molecular mechanism of acute lung injury caused by Pseudomonas aeruginosa: from bacterial pathogenesis to host response. Journal of Intensive Care Medicine 2: 10.CrossRef Sawa, T. 2014. The molecular mechanism of acute lung injury caused by Pseudomonas aeruginosa: from bacterial pathogenesis to host response. Journal of Intensive Care Medicine 2: 10.CrossRef
23.
Zurück zum Zitat Herold, S., N.M. Gabrielli, and I. Vadasz. 2013. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. American Journal of Physiology. Lung Cellular and Molecular Physiology 305: L665–L681.CrossRefPubMed Herold, S., N.M. Gabrielli, and I. Vadasz. 2013. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. American Journal of Physiology. Lung Cellular and Molecular Physiology 305: L665–L681.CrossRefPubMed
24.
Zurück zum Zitat Hooper, M., and G. Bernard. 2011. Pharmacogenetic treatment of acute respiratory distress syndrome. Minerva Anestesiologica 77: 624–636.PubMed Hooper, M., and G. Bernard. 2011. Pharmacogenetic treatment of acute respiratory distress syndrome. Minerva Anestesiologica 77: 624–636.PubMed
25.
Zurück zum Zitat Zhou, E., Y. Fu, Z. Wei, Y. Yu, X. Zhang, and Z. Yang. 2014. Thymol attenuates allergic airway inflammation in ovalbumin (OVA)-induced mouse asthma. Fitoterapia 96: 131–137.CrossRefPubMed Zhou, E., Y. Fu, Z. Wei, Y. Yu, X. Zhang, and Z. Yang. 2014. Thymol attenuates allergic airway inflammation in ovalbumin (OVA)-induced mouse asthma. Fitoterapia 96: 131–137.CrossRefPubMed
26.
Zurück zum Zitat Nagoor, M.M., G.S. Jagadeesh, and P. Selvaraj. 2015. Thymol attenuates inflammation in isoproterenol induced myocardial infarcted rats by inhibiting the release of lysosomal enzymes and downregulating the expressions of proinflammatory cytokines. European Journal of Pharmacology 754: 153–161.CrossRef Nagoor, M.M., G.S. Jagadeesh, and P. Selvaraj. 2015. Thymol attenuates inflammation in isoproterenol induced myocardial infarcted rats by inhibiting the release of lysosomal enzymes and downregulating the expressions of proinflammatory cytokines. European Journal of Pharmacology 754: 153–161.CrossRef
27.
Zurück zum Zitat Wu, H., K. Jiang, N. Yin, X. Ma, G. Zhao, C. Qiu, and G. Deng. 2017. Thymol mitigates lipopolysaccharide-induced endometritis by regulating the TLR4- and ROS-mediated NF-kappaB signaling pathways. Oncotarget 8: 20042–20055.PubMedPubMedCentral Wu, H., K. Jiang, N. Yin, X. Ma, G. Zhao, C. Qiu, and G. Deng. 2017. Thymol mitigates lipopolysaccharide-induced endometritis by regulating the TLR4- and ROS-mediated NF-kappaB signaling pathways. Oncotarget 8: 20042–20055.PubMedPubMedCentral
28.
Zurück zum Zitat Liang, D., F. Li, Y. Fu, Y. Cao, X. Song, T. Wang, W. Wang, M. Guo, E. Zhou, D. Li, Z. Yang, and N. Zhang. 2014. Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-kappaB and MAPK signaling pathways in mouse mammary epithelial cells. Inflammation 37: 214–222.CrossRefPubMed Liang, D., F. Li, Y. Fu, Y. Cao, X. Song, T. Wang, W. Wang, M. Guo, E. Zhou, D. Li, Z. Yang, and N. Zhang. 2014. Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-kappaB and MAPK signaling pathways in mouse mammary epithelial cells. Inflammation 37: 214–222.CrossRefPubMed
29.
Zurück zum Zitat Zhou, X., Q. Dai, and X. Huang. 2012. Neutrophils in acute lung injury. Front Biosci (Landmark Ed) 17: 2278–2283.CrossRef Zhou, X., Q. Dai, and X. Huang. 2012. Neutrophils in acute lung injury. Front Biosci (Landmark Ed) 17: 2278–2283.CrossRef
30.
Zurück zum Zitat Aboelwafa, H.R., and H.N. Yousef. 2015. The ameliorative effect of thymol against hydrocortisone-induced hepatic oxidative stress injury in adult male rats. Biochemistry and Cell Biology 93: 282–289.CrossRefPubMed Aboelwafa, H.R., and H.N. Yousef. 2015. The ameliorative effect of thymol against hydrocortisone-induced hepatic oxidative stress injury in adult male rats. Biochemistry and Cell Biology 93: 282–289.CrossRefPubMed
31.
Zurück zum Zitat Nagoor, M.M., G.S. Jagadeesh, and P. Selvaraj. 2016. Thymol, a dietary monoterpene phenol abrogates mitochondrial dysfunction in beta-adrenergic agonist induced myocardial infarcted rats by inhibiting oxidative stress. Chemico-Biological Interactions 244: 159–168.CrossRef Nagoor, M.M., G.S. Jagadeesh, and P. Selvaraj. 2016. Thymol, a dietary monoterpene phenol abrogates mitochondrial dysfunction in beta-adrenergic agonist induced myocardial infarcted rats by inhibiting oxidative stress. Chemico-Biological Interactions 244: 159–168.CrossRef
32.
Zurück zum Zitat Kim, Y.S., J.W. Hwang, S.H. Kang, E.H. Kim, Y.J. Jeon, J.H. Jeong, H.R. Kim, S.H. Moon, B.T. Jeon, and P.J. Park. 2014. Thymol from Thymus quinquecostatus Celak. protects against tert-butyl hydroperoxide-induced oxidative stress in Chang cells. Journal of Natural Medicines 68: 154–162.CrossRefPubMed Kim, Y.S., J.W. Hwang, S.H. Kang, E.H. Kim, Y.J. Jeon, J.H. Jeong, H.R. Kim, S.H. Moon, B.T. Jeon, and P.J. Park. 2014. Thymol from Thymus quinquecostatus Celak. protects against tert-butyl hydroperoxide-induced oxidative stress in Chang cells. Journal of Natural Medicines 68: 154–162.CrossRefPubMed
33.
Zurück zum Zitat Bedreag, O.H., A.F. Rogobete, M. Sarandan, A.C. Cradigati, M. Papurica, M.C. Dumbuleu, A.M. Chira, O.M. Rosu, and D. Sandesc. 2015. Oxidative stress in severe pulmonary trauma in critical ill patients. Antioxidant therapy in patients with multiple trauma—a review. Anaesthesiology Intensive Therapy 47: 351–359.CrossRefPubMed Bedreag, O.H., A.F. Rogobete, M. Sarandan, A.C. Cradigati, M. Papurica, M.C. Dumbuleu, A.M. Chira, O.M. Rosu, and D. Sandesc. 2015. Oxidative stress in severe pulmonary trauma in critical ill patients. Antioxidant therapy in patients with multiple trauma—a review. Anaesthesiology Intensive Therapy 47: 351–359.CrossRefPubMed
34.
Zurück zum Zitat Gawel, S., M. Wardas, E. Niedworok, and P. Wardas. 2004. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiadomości Lekarskie 57: 453–455.PubMed Gawel, S., M. Wardas, E. Niedworok, and P. Wardas. 2004. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiadomości Lekarskie 57: 453–455.PubMed
35.
Zurück zum Zitat Chung, W.H. 2017. Unraveling new functions of superoxide dismutase using yeast model system: beyond its conventional role in superoxide radical scavenging. Journal of Microbiology 55: 409–416.CrossRef Chung, W.H. 2017. Unraveling new functions of superoxide dismutase using yeast model system: beyond its conventional role in superoxide radical scavenging. Journal of Microbiology 55: 409–416.CrossRef
36.
Zurück zum Zitat Ueda, J., M.E. Starr, H. Takahashi, J. Du, L.Y. Chang, J.D. Crapo, B.M. Evers, and H. Saito. 2008. Decreased pulmonary extracellular superoxide dismutase during systemic inflammation. Free Radical Biology & Medicine 45: 897–904.CrossRef Ueda, J., M.E. Starr, H. Takahashi, J. Du, L.Y. Chang, J.D. Crapo, B.M. Evers, and H. Saito. 2008. Decreased pulmonary extracellular superoxide dismutase during systemic inflammation. Free Radical Biology & Medicine 45: 897–904.CrossRef
38.
Zurück zum Zitat Fudala, R., T.C. Allen, A. Krupa, P.T. Cagle, S. Nash, Z. Gryczynski, I. Gryczynski, and A.K. Kurdowska. 2011. Increased levels of nuclear factor kappaB and Fos-related antigen 1 in lung tissues from patients with acute respiratory distress syndrome. Archives of Pathology & Laboratory Medicine 135: 647–654. Fudala, R., T.C. Allen, A. Krupa, P.T. Cagle, S. Nash, Z. Gryczynski, I. Gryczynski, and A.K. Kurdowska. 2011. Increased levels of nuclear factor kappaB and Fos-related antigen 1 in lung tissues from patients with acute respiratory distress syndrome. Archives of Pathology & Laboratory Medicine 135: 647–654.
39.
Zurück zum Zitat Schwartz, M.D., E.E. Moore, F.A. Moore, R. Shenkar, P. Moine, J.B. Haenel, and E. Abraham. 1996. Nuclear factor-kappa B is activated in alveolar macrophages from patients with acute respiratory distress syndrome. Critical Care Medicine 24: 1285–1292.CrossRefPubMed Schwartz, M.D., E.E. Moore, F.A. Moore, R. Shenkar, P. Moine, J.B. Haenel, and E. Abraham. 1996. Nuclear factor-kappa B is activated in alveolar macrophages from patients with acute respiratory distress syndrome. Critical Care Medicine 24: 1285–1292.CrossRefPubMed
40.
Zurück zum Zitat Lopez, B., T.M. Maisonet, and V.A. Londhe. 2015. Alveolar NF-kappaB signaling regulates endotoxin-induced lung inflammation. Experimental Lung Research 41: 103–114.CrossRefPubMed Lopez, B., T.M. Maisonet, and V.A. Londhe. 2015. Alveolar NF-kappaB signaling regulates endotoxin-induced lung inflammation. Experimental Lung Research 41: 103–114.CrossRefPubMed
41.
Zurück zum Zitat Wang, M., T. Liu, D. Wang, Y. Zheng, X. Wang, and J. He. 2011. Therapeutic effects of pyrrolidine dithiocarbamate on acute lung injury in rabbits. Journal of Translational Medicine 9: 61.CrossRefPubMedPubMedCentral Wang, M., T. Liu, D. Wang, Y. Zheng, X. Wang, and J. He. 2011. Therapeutic effects of pyrrolidine dithiocarbamate on acute lung injury in rabbits. Journal of Translational Medicine 9: 61.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Weng, T.I., H.Y. Wu, C.W. Kuo, and S.H. Liu. 2011. Honokiol rescues sepsis-associated acute lung injury and lethality via the inhibition of oxidative stress and inflammation. Intensive Care Medicine 37: 533–541.CrossRefPubMed Weng, T.I., H.Y. Wu, C.W. Kuo, and S.H. Liu. 2011. Honokiol rescues sepsis-associated acute lung injury and lethality via the inhibition of oxidative stress and inflammation. Intensive Care Medicine 37: 533–541.CrossRefPubMed
43.
Zurück zum Zitat Weifeng, Y., L. Li, H. Yujie, L. Weifeng, G. Zhenhui, and H. Wenjie. 2016. Inhibition of acute lung injury by tnfr-fc through regulation of an inflammation-oxidative stress pathway. PLoS One 11: e151672.CrossRef Weifeng, Y., L. Li, H. Yujie, L. Weifeng, G. Zhenhui, and H. Wenjie. 2016. Inhibition of acute lung injury by tnfr-fc through regulation of an inflammation-oxidative stress pathway. PLoS One 11: e151672.CrossRef
44.
Zurück zum Zitat Zhu, T., D.X. Wang, W. Zhang, X.Q. Liao, X. Guan, H. Bo, J.Y. Sun, N.W. Huang, J. He, Y.K. Zhang, J. Tong, and C.Y. Li. 2013. Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-kappaB. PLoS One 8: e56407.CrossRefPubMedPubMedCentral Zhu, T., D.X. Wang, W. Zhang, X.Q. Liao, X. Guan, H. Bo, J.Y. Sun, N.W. Huang, J. He, Y.K. Zhang, J. Tong, and C.Y. Li. 2013. Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-kappaB. PLoS One 8: e56407.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Luo, Y., B. Zhang, D.Q. Xu, Y. Liu, M.Q. Dong, P.T. Zhao, and Z.C. Li. 2011. Protective effect of bicyclol on lipopolysaccharide-induced acute lung injury in mice. Pulmonary Pharmacology & Therapeutics 24: 240–246.CrossRef Luo, Y., B. Zhang, D.Q. Xu, Y. Liu, M.Q. Dong, P.T. Zhao, and Z.C. Li. 2011. Protective effect of bicyclol on lipopolysaccharide-induced acute lung injury in mice. Pulmonary Pharmacology & Therapeutics 24: 240–246.CrossRef
Metadaten
Titel
Preventive and Therapeutic Effects of Thymol in a Lipopolysaccharide-Induced Acute Lung Injury Mice Model
verfasst von
Limei Wan
Dongmei Meng
Hong Wang
Shanhe Wan
Shunjun Jiang
Shanshan Huang
Li Wei
Pengjiu Yu
Publikationsdatum
10.10.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0676-4

Weitere Artikel der Ausgabe 1/2018

Inflammation 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.