Skip to main content
Erschienen in: Annals of Hematology 4/2017

19.08.2016 | Review Article

Primary myelofibrosis and its targeted therapy

verfasst von: Lindsey Shantzer, Kristin Berger, Jeffrey J. Pu

Erschienen in: Annals of Hematology | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Primary myelofibrosis is a unique entity among BCR-ABL-negative myeloproliferative diseases, manifesting as bone marrow fibrosis and pancytopenia. Considerable evidence indicates that genetic and epigenetic abnormalities can result in defective clonal hematopoietic stem cell proliferation in addition to bone marrow microenvironment alteration. The “bad seeds in bad soil” theory illustrates the orchestrating efforts of hematopoietic stem cells, stromal cells, and their surrounding signaling molecules in myelofibrosis progression and malignancy transformation, though the exact mechanism of myelofibrosis is still not clear. This study reviews current concepts and questions regarding the pathogenesis of primary myelofibrosis and discusses the emerging targeted therapy aimed at restoring normal bone marrow environment and halting bone marrow fibrotic deterioration.
Literatur
1.
Zurück zum Zitat Tefferi A (2013) Primary myelofibrosis: 2013 update on diagnosis, risk–stratification, and management. Am J Hematol 88(2):141–150CrossRefPubMed Tefferi A (2013) Primary myelofibrosis: 2013 update on diagnosis, riskstratification, and management. Am J Hematol 88(2):141–150CrossRefPubMed
2.
Zurück zum Zitat Mesa RA, Li CY, Ketterling RP et al (2005) Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases. Blood 105(3):973–977CrossRefPubMed Mesa RA, Li CY, Ketterling RP et al (2005) Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases. Blood 105(3):973–977CrossRefPubMed
3.
Zurück zum Zitat Arber DA, Attilio O, Hasserjian R et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127:2391–2405CrossRefPubMed Arber DA, Attilio O, Hasserjian R et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127:2391–2405CrossRefPubMed
4.
Zurück zum Zitat Thiele J, Kvasnicka HM, Müllauer L et al (2011) Essential thrombocythemia versus early primary myelofibrosis: a multicenter study to validate the WHO classification. Blood 117(21):5710–5718CrossRefPubMed Thiele J, Kvasnicka HM, Müllauer L et al (2011) Essential thrombocythemia versus early primary myelofibrosis: a multicenter study to validate the WHO classification. Blood 117(21):5710–5718CrossRefPubMed
5.
Zurück zum Zitat Kvasnicka HM, Thiele J (2010) Prodromal myeloproliferative neoplasms: the 2008 WHO classification. Am J Hematol 85(1):62–69PubMed Kvasnicka HM, Thiele J (2010) Prodromal myeloproliferative neoplasms: the 2008 WHO classification. Am J Hematol 85(1):62–69PubMed
6.
Zurück zum Zitat Barbui T, Thiele J, Passamonti F et al (2011) Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol 29(23):3179–3184CrossRefPubMed Barbui T, Thiele J, Passamonti F et al (2011) Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol 29(23):3179–3184CrossRefPubMed
7.
Zurück zum Zitat Barosi G, Mesa RA, Thiele J et al (2008) Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia 22(2):437–438CrossRefPubMed Barosi G, Mesa RA, Thiele J et al (2008) Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia 22(2):437–438CrossRefPubMed
8.
Zurück zum Zitat Cervantes F, Dupriez B, Pereira A et al (2009) New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 113(13):2895–2901CrossRefPubMed Cervantes F, Dupriez B, Pereira A et al (2009) New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 113(13):2895–2901CrossRefPubMed
9.
Zurück zum Zitat Passamonti F, Cervantes F, Vannucchi AM et al (2010) A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 115(9):1703–1708CrossRefPubMed Passamonti F, Cervantes F, Vannucchi AM et al (2010) A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 115(9):1703–1708CrossRefPubMed
10.
Zurück zum Zitat Gangat N, Caramazza D, Vaidya R et al (2011) DIPSS plus: a refined dynamic international prognostic scoring system for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 29(4):392–397CrossRefPubMed Gangat N, Caramazza D, Vaidya R et al (2011) DIPSS plus: a refined dynamic international prognostic scoring system for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 29(4):392–397CrossRefPubMed
11.
Zurück zum Zitat Kralovics R, Passamonti F, Buser AS et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352(17):1779–1790CrossRefPubMed Kralovics R, Passamonti F, Buser AS et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352(17):1779–1790CrossRefPubMed
12.
Zurück zum Zitat Scott LM, Tong W, Levine RL et al (2007) JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356.5:459–468CrossRef Scott LM, Tong W, Levine RL et al (2007) JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356.5:459–468CrossRef
13.
Zurück zum Zitat Pikman Y, Lee BH, Mercher T et al (2006) MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 3.7:e270CrossRef Pikman Y, Lee BH, Mercher T et al (2006) MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 3.7:e270CrossRef
14.
Zurück zum Zitat Oh ST, Simonds EF, Jones C et al (2010) Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood 116(6):988–992CrossRefPubMedPubMedCentral Oh ST, Simonds EF, Jones C et al (2010) Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood 116(6):988–992CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Vainchenker W, Constantinescu SN, Plo I (2016) Recent advances in understanding myelofibrosis and essential thrombocythemia. F1000Res 5:700CrossRef Vainchenker W, Constantinescu SN, Plo I (2016) Recent advances in understanding myelofibrosis and essential thrombocythemia. F1000Res 5:700CrossRef
16.
Zurück zum Zitat Chachoua I, Pecquet C, El-Khoury M et al (2016) Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood 127(10):1325–1335CrossRefPubMed Chachoua I, Pecquet C, El-Khoury M et al (2016) Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood 127(10):1325–1335CrossRefPubMed
17.
Zurück zum Zitat Castro-Malaspina H, Jhanwar SC (1984) Properties of myelofibrosis-derived fibroblasts. Prog Clin Biol Res 154:307–322PubMed Castro-Malaspina H, Jhanwar SC (1984) Properties of myelofibrosis-derived fibroblasts. Prog Clin Biol Res 154:307–322PubMed
18.
Zurück zum Zitat Bonner JC (2004) Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth F R 15(4):255–273CrossRef Bonner JC (2004) Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth F R 15(4):255–273CrossRef
19.
Zurück zum Zitat Barosi G (2014) Essential thrombocythemia vs. early/prefibrotic myelofibrosis: why does it matter. Best Pract Res Clin Haematol 27(2):129–140CrossRefPubMed Barosi G (2014) Essential thrombocythemia vs. early/prefibrotic myelofibrosis: why does it matter. Best Pract Res Clin Haematol 27(2):129–140CrossRefPubMed
20.
Zurück zum Zitat Bock O, Höftmann J, Theophile K et al (2008) Bone morphogenetic proteins are overexpressed in the bone marrow of primary myelofibrosis and are apparently induced by fibrogenic cytokines. Am J Pathol 172(4):951–960CrossRefPubMedPubMedCentral Bock O, Höftmann J, Theophile K et al (2008) Bone morphogenetic proteins are overexpressed in the bone marrow of primary myelofibrosis and are apparently induced by fibrogenic cytokines. Am J Pathol 172(4):951–960CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Steurer M, Zoller H, Augustin F et al (2007) Increased angiogenesis in chronic idiopathic myelofibrosis: vascular endothelial growth factor as a prominent angiogenic factor. Hum Pathol 38(7):1057–1064CrossRefPubMed Steurer M, Zoller H, Augustin F et al (2007) Increased angiogenesis in chronic idiopathic myelofibrosis: vascular endothelial growth factor as a prominent angiogenic factor. Hum Pathol 38(7):1057–1064CrossRefPubMed
22.
Zurück zum Zitat Bock O, Loch G, Schade U et al (2005) Osteosclerosis in advanced chronic idiopathic myelofibrosis is associated with endothelial overexpression of osteoprotegerin. Br J Haematol 130(1):76–82CrossRefPubMed Bock O, Loch G, Schade U et al (2005) Osteosclerosis in advanced chronic idiopathic myelofibrosis is associated with endothelial overexpression of osteoprotegerin. Br J Haematol 130(1):76–82CrossRefPubMed
23.
Zurück zum Zitat Martinaud C, Desterke C, Konopacki J et al (2015) Osteogenic potential of mesenchymal stromal cells contributes to primary myelofibrosis. Cancer Res 75(22):4753–4765CrossRefPubMed Martinaud C, Desterke C, Konopacki J et al (2015) Osteogenic potential of mesenchymal stromal cells contributes to primary myelofibrosis. Cancer Res 75(22):4753–4765CrossRefPubMed
24.
Zurück zum Zitat Wang JC, Sindhu H, Chen C et al (2015) Immune derangements in patients with myelofibrosis: the role of Treg, Th17, and sIL2Rα. PLoS One 10(3):e0116723CrossRefPubMedPubMedCentral Wang JC, Sindhu H, Chen C et al (2015) Immune derangements in patients with myelofibrosis: the role of Treg, Th17, and sIL2Rα. PLoS One 10(3):e0116723CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Harrison JS, Corcoran KE, Joshi D et al (2006) Peripheral monocytes and CD4+ cells are potential sources for increased circulating levels of TGF-beta and substance P in autoimmune myelofibrosis. Am J Hematol 81(1):51–58CrossRefPubMed Harrison JS, Corcoran KE, Joshi D et al (2006) Peripheral monocytes and CD4+ cells are potential sources for increased circulating levels of TGF-beta and substance P in autoimmune myelofibrosis. Am J Hematol 81(1):51–58CrossRefPubMed
26.
Zurück zum Zitat Desterke C, Martinaud C, Ruzehaji N, Le Bousse-Kerdilès MC (2015) Inflammation as a keystone of bone marrow stroma alterations in primary myelofibrosis. Mediators Inflamm 2015:415024CrossRefPubMedPubMedCentral Desterke C, Martinaud C, Ruzehaji N, Le Bousse-Kerdilès MC (2015) Inflammation as a keystone of bone marrow stroma alterations in primary myelofibrosis. Mediators Inflamm 2015:415024CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Schepers P, Pietras EM, Reynaud D et al (2013) Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13(3):285–299CrossRefPubMedPubMedCentral Schepers P, Pietras EM, Reynaud D et al (2013) Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13(3):285–299CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Verstovsek S, Kantarjian H, Mesa RA et al (2010) Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 363(12):1117–1127CrossRefPubMedPubMedCentral Verstovsek S, Kantarjian H, Mesa RA et al (2010) Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 363(12):1117–1127CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Hoermann G, Greiner G, Valent P (2015) Cytokine regulation of microenvironmental cells in myeloproliferative neoplasms. Mediators Inflamm 2015:869242CrossRefPubMedPubMedCentral Hoermann G, Greiner G, Valent P (2015) Cytokine regulation of microenvironmental cells in myeloproliferative neoplasms. Mediators Inflamm 2015:869242CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Verstovsek S, Mesa RA, Gotlib J et al (2012) A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 366(9):799–807CrossRefPubMedPubMedCentral Verstovsek S, Mesa RA, Gotlib J et al (2012) A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 366(9):799–807CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Harrison C, Kiladjian JJ, Al-Ali HK et al (2012) JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 366(9):787–798CrossRefPubMed Harrison C, Kiladjian JJ, Al-Ali HK et al (2012) JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 366(9):787–798CrossRefPubMed
32.
Zurück zum Zitat Verstovsek S, Mesa RA, Gotlib J et al (2015) Efficacy, safety, and survival with ruxolitinib in patients with myelofibrosis: results of a median 3-year follow-up of COMFORT-I. Haematologica 100(4):479–488CrossRefPubMedPubMedCentral Verstovsek S, Mesa RA, Gotlib J et al (2015) Efficacy, safety, and survival with ruxolitinib in patients with myelofibrosis: results of a median 3-year follow-up of COMFORT-I. Haematologica 100(4):479–488CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Vannucchi AM, Kantarjian HM, Kiladjian JJ et al (2015) A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of ruxolitinib for the treatment of myelofibrosis. Haematologica 100(9):1139–1145CrossRefPubMedPubMedCentral Vannucchi AM, Kantarjian HM, Kiladjian JJ et al (2015) A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of ruxolitinib for the treatment of myelofibrosis. Haematologica 100(9):1139–1145CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Kvasnicka HM, Thiele J, Bueso-Ramos CE et al (2014) Ruxolitinib-induced modulation of bone marrow microenvironment in patients with myelofibrosis is associated with inflammatory cytokine levels. Blood 124(21):3182–3182 Kvasnicka HM, Thiele J, Bueso-Ramos CE et al (2014) Ruxolitinib-induced modulation of bone marrow microenvironment in patients with myelofibrosis is associated with inflammatory cytokine levels. Blood 124(21):3182–3182
35.
Zurück zum Zitat Tefferi A, Litzow MR, Pardanani A (2011) Long-term outcome of treatment with ruxolitinib in myelofibrosis. N Engl J Med 365(15):1455–1457CrossRefPubMed Tefferi A, Litzow MR, Pardanani A (2011) Long-term outcome of treatment with ruxolitinib in myelofibrosis. N Engl J Med 365(15):1455–1457CrossRefPubMed
36.
Zurück zum Zitat Geyer HL, Mesa RA (2015) Emerging drugs for the treatment of myelofibrosis. Expert Opin Emerg Drugs 20(4):663–678CrossRefPubMed Geyer HL, Mesa RA (2015) Emerging drugs for the treatment of myelofibrosis. Expert Opin Emerg Drugs 20(4):663–678CrossRefPubMed
37.
Zurück zum Zitat Grunwald MR, Spivak JL (2014) Ruxolitinib enhances platelet production in patients with thrombocytopenic myelofibrosis. J Clin Oncol 34(5):e38–e40CrossRefPubMed Grunwald MR, Spivak JL (2014) Ruxolitinib enhances platelet production in patients with thrombocytopenic myelofibrosis. J Clin Oncol 34(5):e38–e40CrossRefPubMed
38.
Zurück zum Zitat Komrokji RS, Seymour JF, Roberts AW et al (2015) Results of a phase 2 study of pacritinib (SB1518), a JAK2/JAK2 (V617F) inhibitor, in patients with myelofibrosis. Blood 125(17):2649–2655CrossRefPubMedPubMedCentral Komrokji RS, Seymour JF, Roberts AW et al (2015) Results of a phase 2 study of pacritinib (SB1518), a JAK2/JAK2 (V617F) inhibitor, in patients with myelofibrosis. Blood 125(17):2649–2655CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Teglund S, Toftgård R (2010) Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta 1805(2):181–208PubMed Teglund S, Toftgård R (2010) Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta 1805(2):181–208PubMed
41.
Zurück zum Zitat Keller MD, Rampal RK, Shank K et al (2013) Improved efficacy of combination of JAK2 and hedgehog inhibitors in myelofibrosis. Blood 122:666CrossRef Keller MD, Rampal RK, Shank K et al (2013) Improved efficacy of combination of JAK2 and hedgehog inhibitors in myelofibrosis. Blood 122:666CrossRef
42.
Zurück zum Zitat Tefferi A, Lasho TL, Begna KH et al (2015) A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N Engl J Med 373(10):908–919CrossRefPubMed Tefferi A, Lasho TL, Begna KH et al (2015) A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N Engl J Med 373(10):908–919CrossRefPubMed
43.
Zurück zum Zitat Wen QJ, Yang Q, Goldenson B et al (2015) Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med 21(12):1473–1480CrossRefPubMedPubMedCentral Wen QJ, Yang Q, Goldenson B et al (2015) Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med 21(12):1473–1480CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Wang JC, Chen C, Dumlao T et al (2008) Enhanced histone deacetylase enzyme activity in primary myelofibrosis. Leuk Lymphoma 49(12):2321–2327CrossRefPubMed Wang JC, Chen C, Dumlao T et al (2008) Enhanced histone deacetylase enzyme activity in primary myelofibrosis. Leuk Lymphoma 49(12):2321–2327CrossRefPubMed
45.
Zurück zum Zitat Ugo V, Marzac C, Teyssandier I et al (2004) Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp Hematol 32(2):179–187CrossRefPubMed Ugo V, Marzac C, Teyssandier I et al (2004) Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp Hematol 32(2):179–187CrossRefPubMed
46.
Zurück zum Zitat Grimwade LF, Happerfield L, Tristram C et al (2009) Phospho–STAT5 and phospho–Akt expression in chronic myeloproliferative neoplasms. Br J Haematol 147(4):495–506CrossRefPubMed Grimwade LF, Happerfield L, Tristram C et al (2009) PhosphoSTAT5 and phosphoAkt expression in chronic myeloproliferative neoplasms. Br J Haematol 147(4):495–506CrossRefPubMed
47.
Zurück zum Zitat Guglielmelli P, Barosi G, Rambaldi A et al (2011) Safety and efficacy of everolimus, a mTOR inhibitor, as single agent in a phase 1/2 study in patients with myelofibrosis. Blood 118(8):2069–2076CrossRefPubMedPubMedCentral Guglielmelli P, Barosi G, Rambaldi A et al (2011) Safety and efficacy of everolimus, a mTOR inhibitor, as single agent in a phase 1/2 study in patients with myelofibrosis. Blood 118(8):2069–2076CrossRefPubMedPubMedCentral
Metadaten
Titel
Primary myelofibrosis and its targeted therapy
verfasst von
Lindsey Shantzer
Kristin Berger
Jeffrey J. Pu
Publikationsdatum
19.08.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Hematology / Ausgabe 4/2017
Print ISSN: 0939-5555
Elektronische ISSN: 1432-0584
DOI
https://doi.org/10.1007/s00277-016-2785-9

Weitere Artikel der Ausgabe 4/2017

Annals of Hematology 4/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.