Skip to main content
Erschienen in: Journal of Neural Transmission 3/2018

31.03.2017 | Translational Neurosciences - Review Article

Primate beta oscillations and rhythmic behaviors

verfasst von: Hugo Merchant, Ramón Bartolo

Erschienen in: Journal of Neural Transmission | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

The study of non-human primates in complex behaviors such as rhythm perception and entrainment is critical to understand the neurophysiological basis of human cognition. Next to reviewing the role of beta oscillations in human beat perception, here we discuss the role of primate putaminal oscillatory activity in the control of rhythmic movements that are guided by a sensory metronome or internally gated. The analysis of the local field potentials of the behaving macaques showed that gamma-oscillations reflect local computations associated with stimulus processing of the metronome, whereas beta-activity involves the entrainment of large putaminal circuits, probably in conjunction with other elements of cortico-basal ganglia-thalamo-cortical circuit, during internally driven rhythmic tapping. Thus, this review emphasizes the need of parametric neurophysiological observations in non-human primates that display a well-controlled behavior during high-level cognitive processes.
Literatur
Zurück zum Zitat Arnal LH, Giraud AL (2012) Cortical oscillations and sensory predictions. Trends Cogn Sci 16(7):390–398CrossRefPubMed Arnal LH, Giraud AL (2012) Cortical oscillations and sensory predictions. Trends Cogn Sci 16(7):390–398CrossRefPubMed
Zurück zum Zitat Baker SN, Olivier E, Lemon RN (1997) Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. J Physiol 501(1):225–241CrossRefPubMedPubMedCentral Baker SN, Olivier E, Lemon RN (1997) Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. J Physiol 501(1):225–241CrossRefPubMedPubMedCentral
Zurück zum Zitat Bartolo R, Merchant H (2009) Learning and generalization of time production in humans: rules of transfer across modalities and interval durations. Exp Brain Res 197(1):91–100CrossRefPubMed Bartolo R, Merchant H (2009) Learning and generalization of time production in humans: rules of transfer across modalities and interval durations. Exp Brain Res 197(1):91–100CrossRefPubMed
Zurück zum Zitat Bartolo R, Merchant H (2015) β oscillations are linked to the initiation of sensory-cued movement sequences and the internal guidance of regular tapping in the monkey. J Neurosci 35(11):4635–4640CrossRefPubMed Bartolo R, Merchant H (2015) β oscillations are linked to the initiation of sensory-cued movement sequences and the internal guidance of regular tapping in the monkey. J Neurosci 35(11):4635–4640CrossRefPubMed
Zurück zum Zitat Bartolo R, Prado L, Merchant H (2014) Information processing in the primate basal ganglia during sensory guided and internally driven rhythmic tapping. J Neurosci 34(11):3910–3923CrossRefPubMed Bartolo R, Prado L, Merchant H (2014) Information processing in the primate basal ganglia during sensory guided and internally driven rhythmic tapping. J Neurosci 34(11):3910–3923CrossRefPubMed
Zurück zum Zitat Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21(3):1033–1038PubMed Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21(3):1033–1038PubMed
Zurück zum Zitat Buhusi CV, Meck WH (2005) What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neursci 6:755–765CrossRef Buhusi CV, Meck WH (2005) What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neursci 6:755–765CrossRef
Zurück zum Zitat Buzsaki G (2006) Rhythms of the brain. Oxford University Press, OxfordCrossRef Buzsaki G (2006) Rhythms of the brain. Oxford University Press, OxfordCrossRef
Zurück zum Zitat Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929CrossRefPubMed Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929CrossRefPubMed
Zurück zum Zitat Carrillo-Reid L, Hernandez-Lopez S, Tapia D, Galarraga E, Bargas J (2011) Dopaminergic modulation of the striatal microcircuit: receptor-specific configuration of cell assemblies. J Neurosci 31(42):14972–14983CrossRefPubMed Carrillo-Reid L, Hernandez-Lopez S, Tapia D, Galarraga E, Bargas J (2011) Dopaminergic modulation of the striatal microcircuit: receptor-specific configuration of cell assemblies. J Neurosci 31(42):14972–14983CrossRefPubMed
Zurück zum Zitat Collyer CE, Broadbent HA, Church RM (1994) Preferred rates of repetitive tapping and categorical time production. Attent Percept Psychophys 55(4):443–453CrossRef Collyer CE, Broadbent HA, Church RM (1994) Preferred rates of repetitive tapping and categorical time production. Attent Percept Psychophys 55(4):443–453CrossRef
Zurück zum Zitat Courtemanche R, Fujii N, Graybiel AM (2003) Synchronous, focally modulated β-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. J Neurosci 23(37):11741–11752PubMed Courtemanche R, Fujii N, Graybiel AM (2003) Synchronous, focally modulated β-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. J Neurosci 23(37):11741–11752PubMed
Zurück zum Zitat Crowe DA, Zarco W, Bartolo R, Merchant H (2014) Dynamic representation of the temporal and sequential structure of rhythmic movements in the primate medial premotor cortex. J Neurosci 34(36):11972–11983CrossRefPubMed Crowe DA, Zarco W, Bartolo R, Merchant H (2014) Dynamic representation of the temporal and sequential structure of rhythmic movements in the primate medial premotor cortex. J Neurosci 34(36):11972–11983CrossRefPubMed
Zurück zum Zitat Deffains M, Iskhakova L, Katabi S, Haber SN, Israel Z, Bergman H (2016) Subthalamic, not striatal, activity correlates with basal ganglia downstream activity in normal and parkinsonian monkeys. Elife 5:e16443CrossRefPubMedPubMedCentral Deffains M, Iskhakova L, Katabi S, Haber SN, Israel Z, Bergman H (2016) Subthalamic, not striatal, activity correlates with basal ganglia downstream activity in normal and parkinsonian monkeys. Elife 5:e16443CrossRefPubMedPubMedCentral
Zurück zum Zitat Donnet S, Bartolo R, Fernandes JM, Cunha JPS, Prado L, Merchant H (2014) Monkeys time their pauses of movement and not their movement-kinematics during a synchronization-continuation rhythmic task. J Neurophysiol 111(10):2138–2149CrossRefPubMed Donnet S, Bartolo R, Fernandes JM, Cunha JPS, Prado L, Merchant H (2014) Monkeys time their pauses of movement and not their movement-kinematics during a synchronization-continuation rhythmic task. J Neurophysiol 111(10):2138–2149CrossRefPubMed
Zurück zum Zitat Engel AK, Fries P (2010) Beta-band oscillations—signalling the status quo? Curr Opin Neurobiol 20(2):156–165CrossRefPubMed Engel AK, Fries P (2010) Beta-band oscillations—signalling the status quo? Curr Opin Neurobiol 20(2):156–165CrossRefPubMed
Zurück zum Zitat Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716CrossRefPubMed Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716CrossRefPubMed
Zurück zum Zitat Eusebio A, Brown P (2009) Synchronisation in the beta frequency-band—the bad boy of parkinsonism or an innocent bystander? Exp Neurol 217(1):1–3CrossRefPubMedPubMedCentral Eusebio A, Brown P (2009) Synchronisation in the beta frequency-band—the bad boy of parkinsonism or an innocent bystander? Exp Neurol 217(1):1–3CrossRefPubMedPubMedCentral
Zurück zum Zitat Fitch W (2013) Rhythmic cognition in humans and animals: distinguishing meter and pulse perception. Front Syst Neurosci 7:68PubMedPubMedCentral Fitch W (2013) Rhythmic cognition in humans and animals: distinguishing meter and pulse perception. Front Syst Neurosci 7:68PubMedPubMedCentral
Zurück zum Zitat Fraisse P (1982) Rhythm and tempo. In: Deutsch D (ed) Psychology of music. Academic, New York, pp 149–180CrossRef Fraisse P (1982) Rhythm and tempo. In: Deutsch D (ed) Psychology of music. Academic, New York, pp 149–180CrossRef
Zurück zum Zitat Fujii N, Graybiel AM (2003) Representation of action sequence boundaries by macaque prefrontal cortical neurons. Science 301(5637):1246–1249CrossRefPubMed Fujii N, Graybiel AM (2003) Representation of action sequence boundaries by macaque prefrontal cortical neurons. Science 301(5637):1246–1249CrossRefPubMed
Zurück zum Zitat Fujioka T, Trainor LJ, Large EW, Ross B (2009) Beta and gamma rhythms in human auditory cortex during musical beat processing. Ann N Y Acad Sci 1169(1):89–92CrossRefPubMed Fujioka T, Trainor LJ, Large EW, Ross B (2009) Beta and gamma rhythms in human auditory cortex during musical beat processing. Ann N Y Acad Sci 1169(1):89–92CrossRefPubMed
Zurück zum Zitat Fujioka T, Trainor LJ, Large EW, Ross B (2012) Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. J Neurosci 32(5):1791–1802CrossRefPubMed Fujioka T, Trainor LJ, Large EW, Ross B (2012) Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. J Neurosci 32(5):1791–1802CrossRefPubMed
Zurück zum Zitat Fujioka T, Ross B, Trainor LJ (2015) Beta-band oscillations represent auditory beat and its metrical hierarchy in perception and imagery. J Neurosci 35(45):15187–15198CrossRefPubMed Fujioka T, Ross B, Trainor LJ (2015) Beta-band oscillations represent auditory beat and its metrical hierarchy in perception and imagery. J Neurosci 35(45):15187–15198CrossRefPubMed
Zurück zum Zitat Gamez J, Bartolo R, Mendoza G, Prado L, Merchant H (2017) Coupling of periodic neural state trajectories during rhythmic tapping. Nat Commun (submitted) Gamez J, Bartolo R, Mendoza G, Prado L, Merchant H (2017) Coupling of periodic neural state trajectories during rhythmic tapping. Nat Commun (submitted)
Zurück zum Zitat Grahn JA, Brett M (2007) Rhythm and beat perception in motor areas of the brain. J Cogn Neurosci 19(5):893–906CrossRefPubMed Grahn JA, Brett M (2007) Rhythm and beat perception in motor areas of the brain. J Cogn Neurosci 19(5):893–906CrossRefPubMed
Zurück zum Zitat Grahn JA, Rowe JB (2009) Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. J Neurosci 29(23):7540–7548CrossRefPubMedPubMedCentral Grahn JA, Rowe JB (2009) Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. J Neurosci 29(23):7540–7548CrossRefPubMedPubMedCentral
Zurück zum Zitat Grube M, Cooper FE, Chinnery PF, Griffiths TD (2010) Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proc Natl Acad Sci 107(25):11597–11601CrossRefPubMedPubMedCentral Grube M, Cooper FE, Chinnery PF, Griffiths TD (2010) Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proc Natl Acad Sci 107(25):11597–11601CrossRefPubMedPubMedCentral
Zurück zum Zitat Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30(7):357–364CrossRefPubMed Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30(7):357–364CrossRefPubMed
Zurück zum Zitat Harrington DL, Haaland KY, Hermanowitz N (1998) Temporal processing in the basal ganglia. Neuropsychology 12(1):3CrossRefPubMed Harrington DL, Haaland KY, Hermanowitz N (1998) Temporal processing in the basal ganglia. Neuropsychology 12(1):3CrossRefPubMed
Zurück zum Zitat Helmuth LL, Mayr U, Daum I (2000) Sequence learning in Parkinson’s disease: a comparison of spatial-attention and number-response sequences. Neuropsychologia 38(11):1443–1451CrossRefPubMed Helmuth LL, Mayr U, Daum I (2000) Sequence learning in Parkinson’s disease: a comparison of spatial-attention and number-response sequences. Neuropsychologia 38(11):1443–1451CrossRefPubMed
Zurück zum Zitat Honing H (2013) Structure and interpretation of rhythm in music. In: Deutsch D (ed) Psychology of Music, 3rd edn. Academic press, London, pp 369–404CrossRef Honing H (2013) Structure and interpretation of rhythm in music. In: Deutsch D (ed) Psychology of Music, 3rd edn. Academic press, London, pp 369–404CrossRef
Zurück zum Zitat Honing H, Merchant H (2014) Differences in auditory timing between human and nonhuman primates. Behav Brain Sci 37(06):557–558CrossRefPubMed Honing H, Merchant H (2014) Differences in auditory timing between human and nonhuman primates. Behav Brain Sci 37(06):557–558CrossRefPubMed
Zurück zum Zitat Honing H, Merchant H, Háden GP, Prado L, Bartolo R (2012) Rhesus monkeys (Macaca mulatta) detect rhythmic groups in music, but not the beat. PLoS One 7(12):e51369CrossRefPubMedPubMedCentral Honing H, Merchant H, Háden GP, Prado L, Bartolo R (2012) Rhesus monkeys (Macaca mulatta) detect rhythmic groups in music, but not the beat. PLoS One 7(12):e51369CrossRefPubMedPubMedCentral
Zurück zum Zitat Honing H, Bouwer FL, Prado L, Merchant H (2017). Rhesus monkeys (Macaca mulatta) detect isochrony in rhythm, but not the beat. Cortex (submitted) Honing H, Bouwer FL, Prado L, Merchant H (2017). Rhesus monkeys (Macaca mulatta) detect isochrony in rhythm, but not the beat. Cortex (submitted)
Zurück zum Zitat Howe MW, Atallah HE, McCool A, Gibson DJ, Graybiel AM (2011) Habit learning is associated with major shifts in frequencies of oscillatory activity and synchronized spike firing in striatum. Proc Natl Acad Sci 108(40):16801–16806CrossRefPubMedPubMedCentral Howe MW, Atallah HE, McCool A, Gibson DJ, Graybiel AM (2011) Habit learning is associated with major shifts in frequencies of oscillatory activity and synchronized spike firing in striatum. Proc Natl Acad Sci 108(40):16801–16806CrossRefPubMedPubMedCentral
Zurück zum Zitat Iversen JR, Repp BH, Patel AD (2009) Top-down control of rhythm perception modulates early auditory responses. Ann N Y Acad Sci 1169(1):58–73CrossRefPubMed Iversen JR, Repp BH, Patel AD (2009) Top-down control of rhythm perception modulates early auditory responses. Ann N Y Acad Sci 1169(1):58–73CrossRefPubMed
Zurück zum Zitat Jaidar O, Carrillo-Reid L, Hernandez A, Drucker-Colín R, Bargas J, Hernandez-Cruz A (2010) Dynamics of the parkinsonian striatal microcircuit: entrainment into a dominant network state. J Neurosci 30(34):11326–11336CrossRefPubMed Jaidar O, Carrillo-Reid L, Hernandez A, Drucker-Colín R, Bargas J, Hernandez-Cruz A (2010) Dynamics of the parkinsonian striatal microcircuit: entrainment into a dominant network state. J Neurosci 30(34):11326–11336CrossRefPubMed
Zurück zum Zitat Janata P, Grafton ST (2003) Swinging in the brain: shared neural substrates for behaviors related to sequencing and music. Nat Neurosci 6:682–687CrossRefPubMed Janata P, Grafton ST (2003) Swinging in the brain: shared neural substrates for behaviors related to sequencing and music. Nat Neurosci 6:682–687CrossRefPubMed
Zurück zum Zitat Kay LM, Beshel J (2010) A beta oscillation network in the rat olfactory system during a 2-alternative choice odor discrimination task. J Neurophysiol 104(2):829–839CrossRefPubMedPubMedCentral Kay LM, Beshel J (2010) A beta oscillation network in the rat olfactory system during a 2-alternative choice odor discrimination task. J Neurophysiol 104(2):829–839CrossRefPubMedPubMedCentral
Zurück zum Zitat Knudsen EB, Powers ME, Moxon KA (2014) Dissociating movement from movement timing in the rat primary motor cortex. J Neurosci 34(47):15576–15586CrossRefPubMedPubMedCentral Knudsen EB, Powers ME, Moxon KA (2014) Dissociating movement from movement timing in the rat primary motor cortex. J Neurosci 34(47):15576–15586CrossRefPubMedPubMedCentral
Zurück zum Zitat Kühn AA, Kempf F, Brücke C, Doyle LG, Martinez-Torres I, Pogosyan A, Vandenberghe W (2008) High-frequency stimulation of the subthalamic nucleus suppresses oscillatory β activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci 28(24):6165–6173CrossRefPubMed Kühn AA, Kempf F, Brücke C, Doyle LG, Martinez-Torres I, Pogosyan A, Vandenberghe W (2008) High-frequency stimulation of the subthalamic nucleus suppresses oscillatory β activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci 28(24):6165–6173CrossRefPubMed
Zurück zum Zitat Kung SJ, Chen JL, Zatorre RJ, Penhune VB (2013) Interacting cortical and basal ganglia networks underlying finding and tapping to the musical beat. J Cogn Neurosci 25(3):401–420CrossRefPubMed Kung SJ, Chen JL, Zatorre RJ, Penhune VB (2013) Interacting cortical and basal ganglia networks underlying finding and tapping to the musical beat. J Cogn Neurosci 25(3):401–420CrossRefPubMed
Zurück zum Zitat Leventhal DK, Gage GJ, Schmidt R, Pettibone JR, Case AC, Berke JD (2012) Basal ganglia beta oscillations accompany cue utilization. Neuron 73(3):523–536CrossRefPubMedPubMedCentral Leventhal DK, Gage GJ, Schmidt R, Pettibone JR, Case AC, Berke JD (2012) Basal ganglia beta oscillations accompany cue utilization. Neuron 73(3):523–536CrossRefPubMedPubMedCentral
Zurück zum Zitat Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO (2002) Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain 125(6):1196–1209CrossRefPubMed Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO (2002) Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain 125(6):1196–1209CrossRefPubMed
Zurück zum Zitat Mallet N, Pogosyan A, Márton LF, Bolam JP, Brown P, Magill PJ (2008) Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. J Neurosci 28(52):14245–14258CrossRefPubMedPubMedCentral Mallet N, Pogosyan A, Márton LF, Bolam JP, Brown P, Magill PJ (2008) Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. J Neurosci 28(52):14245–14258CrossRefPubMedPubMedCentral
Zurück zum Zitat Matell MS, Meck WH (2004) Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cogn Brain Res 21(2):139–170CrossRef Matell MS, Meck WH (2004) Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cogn Brain Res 21(2):139–170CrossRef
Zurück zum Zitat Mello GB, Soares S, Paton JJ (2015) A scalable population code for time in the striatum. Curr Biol 25(9):1113–1122CrossRefPubMed Mello GB, Soares S, Paton JJ (2015) A scalable population code for time in the striatum. Curr Biol 25(9):1113–1122CrossRefPubMed
Zurück zum Zitat Méndez JC, Pérez O, Prado L, Merchant H (2014) Linking perception, cognition, and action: psychophysical observations and neural network modelling. PLoS One 9(7):e102553CrossRefPubMedPubMedCentral Méndez JC, Pérez O, Prado L, Merchant H (2014) Linking perception, cognition, and action: psychophysical observations and neural network modelling. PLoS One 9(7):e102553CrossRefPubMedPubMedCentral
Zurück zum Zitat Mendoza G, Merchant H (2014) Motor system evolution and the emergence of high cognitive functions. Prog Neurobiol 122:73–93CrossRefPubMed Mendoza G, Merchant H (2014) Motor system evolution and the emergence of high cognitive functions. Prog Neurobiol 122:73–93CrossRefPubMed
Zurück zum Zitat Mendoza G, Peyrache A, Gámez J, Prado L, Buzsáki G, Merchant H (2016) Recording extracellular neural activity in the behaving monkey using a semichronic and high-density electrode system. J Neurophysiol 116(2):563–574CrossRefPubMedPubMedCentral Mendoza G, Peyrache A, Gámez J, Prado L, Buzsáki G, Merchant H (2016) Recording extracellular neural activity in the behaving monkey using a semichronic and high-density electrode system. J Neurophysiol 116(2):563–574CrossRefPubMedPubMedCentral
Zurück zum Zitat Merchant H, de Lafuente V (2014a) Introduction to the neurobiology of interval timing. Adv Exp Med Biol 829(1):1–13PubMed Merchant H, de Lafuente V (2014a) Introduction to the neurobiology of interval timing. Adv Exp Med Biol 829(1):1–13PubMed
Zurück zum Zitat Merchant H, de Lafuente V (2014b) Neurobiology of interval timing. Springer Editorial System, BerlinCrossRef Merchant H, de Lafuente V (2014b) Neurobiology of interval timing. Springer Editorial System, BerlinCrossRef
Zurück zum Zitat Merchant H, Georgopoulos AP (2006) Neurophysiology of perceptual and motor aspects of interception. J Neurophysiol 95(1):1–13CrossRefPubMed Merchant H, Georgopoulos AP (2006) Neurophysiology of perceptual and motor aspects of interception. J Neurophysiol 95(1):1–13CrossRefPubMed
Zurück zum Zitat Merchant H, Honing H (2014) Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis. Front Neurosci 7:274CrossRefPubMedPubMedCentral Merchant H, Honing H (2014) Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis. Front Neurosci 7:274CrossRefPubMedPubMedCentral
Zurück zum Zitat Merchant H, Yarrow K (2016) How the motor system both encodes and influences our sense of time. Curr Opin Behav Sci 8:22–27CrossRef Merchant H, Yarrow K (2016) How the motor system both encodes and influences our sense of time. Curr Opin Behav Sci 8:22–27CrossRef
Zurück zum Zitat Merchant H, Battaglia-Mayer A, Georgopoulos AP (2001) Effects of optic flow in motor cortex and area 7a. J Neurophysiol 86(4):1937–1954CrossRefPubMed Merchant H, Battaglia-Mayer A, Georgopoulos AP (2001) Effects of optic flow in motor cortex and area 7a. J Neurophysiol 86(4):1937–1954CrossRefPubMed
Zurück zum Zitat Merchant H, Zarco W, Bartolo R, Prado L (2008a) The context of temporal processing is represented in the multidimensional relationships between timing tasks. PLoS One 3(9):e3169CrossRefPubMedPubMedCentral Merchant H, Zarco W, Bartolo R, Prado L (2008a) The context of temporal processing is represented in the multidimensional relationships between timing tasks. PLoS One 3(9):e3169CrossRefPubMedPubMedCentral
Zurück zum Zitat Merchant H, Zarco W, Prado L (2008b) Do we have a common mechanism for measuring time in the hundreds of millisecond range? Evidence from multiple-interval timing tasks. J Neurophysiol 99(2):939–949CrossRefPubMed Merchant H, Zarco W, Prado L (2008b) Do we have a common mechanism for measuring time in the hundreds of millisecond range? Evidence from multiple-interval timing tasks. J Neurophysiol 99(2):939–949CrossRefPubMed
Zurück zum Zitat Merchant H, Luciana M, Hooper C, Majestic S, Tuite P (2008c) Interval timing and Parkinson’s disease: heterogeneity in temporal performance. Exp Brain Res 184(2):233–248CrossRefPubMed Merchant H, Luciana M, Hooper C, Majestic S, Tuite P (2008c) Interval timing and Parkinson’s disease: heterogeneity in temporal performance. Exp Brain Res 184(2):233–248CrossRefPubMed
Zurück zum Zitat Merchant H, Zarco W, Prado L, Perez O (2009) Behavioral and neurophysiological aspects of target interception. Adv Exp Med Biol 629:201–220CrossRefPubMed Merchant H, Zarco W, Prado L, Perez O (2009) Behavioral and neurophysiological aspects of target interception. Adv Exp Med Biol 629:201–220CrossRefPubMed
Zurück zum Zitat Merchant H, Zarco W, Pérez O, Prado L, Bartolo R (2011) Measuring time with different neural chronometers during a synchronization-continuation task. Proc Natl Acad Sci USA 108:19784–19789CrossRefPubMedPubMedCentral Merchant H, Zarco W, Pérez O, Prado L, Bartolo R (2011) Measuring time with different neural chronometers during a synchronization-continuation task. Proc Natl Acad Sci USA 108:19784–19789CrossRefPubMedPubMedCentral
Zurück zum Zitat Merchant H, de Lafuente V, Pena-Ortega F, Larriva-Sahd J (2012) Functional impact of interneuronal inhibition in the cerebral cortex of behaving animals. Prog Neurobiol 99(2):163–178CrossRefPubMed Merchant H, de Lafuente V, Pena-Ortega F, Larriva-Sahd J (2012) Functional impact of interneuronal inhibition in the cerebral cortex of behaving animals. Prog Neurobiol 99(2):163–178CrossRefPubMed
Zurück zum Zitat Merchant H, Harrington D, Meck WH (2013a) Neural basis of the perception and estimation of time. Ann Rev Neurosci 36(1):313–336CrossRefPubMed Merchant H, Harrington D, Meck WH (2013a) Neural basis of the perception and estimation of time. Ann Rev Neurosci 36(1):313–336CrossRefPubMed
Zurück zum Zitat Merchant H, Pérez O, Zarco W, Gámez J (2013b) Interval tuning in the primate medial premotor cortex as a general timing mechanism. J Neurosci 33(21):9082–9096CrossRefPubMed Merchant H, Pérez O, Zarco W, Gámez J (2013b) Interval tuning in the primate medial premotor cortex as a general timing mechanism. J Neurosci 33(21):9082–9096CrossRefPubMed
Zurück zum Zitat Merchant H, Bartolo R, Perez O, Mendez JC, Mendoza G, Gamez J, Yc K, Prado L (2014) Neurophysiology of timing in the hundreds of milliseconds: multiple layers of neuronal clocks in the medial premotor areas. Adv Exp Med Biol 829(1):143–154CrossRefPubMed Merchant H, Bartolo R, Perez O, Mendez JC, Mendoza G, Gamez J, Yc K, Prado L (2014) Neurophysiology of timing in the hundreds of milliseconds: multiple layers of neuronal clocks in the medial premotor areas. Adv Exp Med Biol 829(1):143–154CrossRefPubMed
Zurück zum Zitat Merchant H, Grahn J, Trainer L, Rohrmeier M, Fitch TW (2015a) Finding the beat: a neural perspective across humans and non-human primates. Philos Trans R Soc Lond B Biol Sci 370:186–202CrossRef Merchant H, Grahn J, Trainer L, Rohrmeier M, Fitch TW (2015a) Finding the beat: a neural perspective across humans and non-human primates. Philos Trans R Soc Lond B Biol Sci 370:186–202CrossRef
Zurück zum Zitat Merchant H, Perez O, Bartolo R, Mendez JC, Mendoza G, Gamez J, Yc K, Prado L (2015b) Sensorimotor neural dynamics during isochronous tapping in the medial premotor cortex of the macaque. Eur J Neurosci 41(5):586–602CrossRefPubMed Merchant H, Perez O, Bartolo R, Mendez JC, Mendoza G, Gamez J, Yc K, Prado L (2015b) Sensorimotor neural dynamics during isochronous tapping in the medial premotor cortex of the macaque. Eur J Neurosci 41(5):586–602CrossRefPubMed
Zurück zum Zitat Middleton FA, Strick PL (2000) Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn 42(2):183–200CrossRefPubMed Middleton FA, Strick PL (2000) Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn 42(2):183–200CrossRefPubMed
Zurück zum Zitat Mita A, Mushiake H, Shima K, Matsuzaka Y, Tanji J (2009) Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat Neurosci 12:502–507CrossRefPubMed Mita A, Mushiake H, Shima K, Matsuzaka Y, Tanji J (2009) Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat Neurosci 12:502–507CrossRefPubMed
Zurück zum Zitat Morillon B, Schroeder CE (2015) Neuronal oscillations as a mechanistic substrate of auditory temporal prediction. Ann N Y Acad Sci 1337(1):26–31CrossRefPubMedPubMedCentral Morillon B, Schroeder CE (2015) Neuronal oscillations as a mechanistic substrate of auditory temporal prediction. Ann N Y Acad Sci 1337(1):26–31CrossRefPubMedPubMedCentral
Zurück zum Zitat Murthy VN, Fetz EE (1996) Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys. J Neurophysiol 76(6):3968–3982CrossRefPubMed Murthy VN, Fetz EE (1996) Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys. J Neurophysiol 76(6):3968–3982CrossRefPubMed
Zurück zum Zitat Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20(1):91–127CrossRefPubMed Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20(1):91–127CrossRefPubMed
Zurück zum Zitat Perez O, Kass R, Merchant H (2013) Trial time warping to discriminate stimulus-related from movement-related neural activity. J Neurosci Methods 212(2):203–210CrossRefPubMed Perez O, Kass R, Merchant H (2013) Trial time warping to discriminate stimulus-related from movement-related neural activity. J Neurosci Methods 212(2):203–210CrossRefPubMed
Zurück zum Zitat Petter EA, Merchant H (2016) Temporal processing by intrinsic neural network dynamics. Timing Time Percept 4(4):399–410 Petter EA, Merchant H (2016) Temporal processing by intrinsic neural network dynamics. Timing Time Percept 4(4):399–410
Zurück zum Zitat Repp BH, Su YH (2013) Sensorimotor synchronization: a review of recent research (2006–2012). Psychon Bull Rev 20(3):403–452CrossRefPubMed Repp BH, Su YH (2013) Sensorimotor synchronization: a review of recent research (2006–2012). Psychon Bull Rev 20(3):403–452CrossRefPubMed
Zurück zum Zitat Sanes JN, Donoghue JP (1993) Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proc Natl Acad Sci 90(10):4470–4474CrossRefPubMedPubMedCentral Sanes JN, Donoghue JP (1993) Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proc Natl Acad Sci 90(10):4470–4474CrossRefPubMedPubMedCentral
Zurück zum Zitat Schroeder CE, Lakatos P (2009) Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci 32(1):9–18CrossRefPubMed Schroeder CE, Lakatos P (2009) Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci 32(1):9–18CrossRefPubMed
Zurück zum Zitat Schwartze M, Keller PE, Patel AD, Kotz SA (2011) The impact of basal ganglia lesions on sensorimotor synchronization, spontaneous motor tempo, and the detection of tempo changes. Behav Brain Res 216(2):685–691CrossRefPubMed Schwartze M, Keller PE, Patel AD, Kotz SA (2011) The impact of basal ganglia lesions on sensorimotor synchronization, spontaneous motor tempo, and the detection of tempo changes. Behav Brain Res 216(2):685–691CrossRefPubMed
Zurück zum Zitat Takahashi K, Kim S, Coleman TP, Brown KA, Suminski AJ, Best MD, Hatsopoulos NG (2015) Large-scale spatiotemporal spike patterning consistent with wave propagation in motor cortex. Nature Commun 6:7169. doi:10.1038/ncomms8169 CrossRef Takahashi K, Kim S, Coleman TP, Brown KA, Suminski AJ, Best MD, Hatsopoulos NG (2015) Large-scale spatiotemporal spike patterning consistent with wave propagation in motor cortex. Nature Commun 6:7169. doi:10.​1038/​ncomms8169 CrossRef
Zurück zum Zitat Teki S, Grube M, Kumar S, Griffiths TD (2011) Distinct neural substrates of duration-based and beat-based auditory timing. J Neurosci 31(10):3805–3812CrossRefPubMedPubMedCentral Teki S, Grube M, Kumar S, Griffiths TD (2011) Distinct neural substrates of duration-based and beat-based auditory timing. J Neurosci 31(10):3805–3812CrossRefPubMedPubMedCentral
Zurück zum Zitat Teki S, Grube M, Griffiths TD (2012) A unified model of time perception accounts for duration-based and beat-based timing mechanisms. Front Integr Neurosci 5:90CrossRefPubMedPubMedCentral Teki S, Grube M, Griffiths TD (2012) A unified model of time perception accounts for duration-based and beat-based timing mechanisms. Front Integr Neurosci 5:90CrossRefPubMedPubMedCentral
Zurück zum Zitat Weinberger M, Hutchison WD, Dostrovsky JO (2009) Pathological subthalamic nucleus oscillations in PD: can they be the cause of bradykinesia and akinesia? Exp Neurol 219(1):58–61CrossRefPubMed Weinberger M, Hutchison WD, Dostrovsky JO (2009) Pathological subthalamic nucleus oscillations in PD: can they be the cause of bradykinesia and akinesia? Exp Neurol 219(1):58–61CrossRefPubMed
Zurück zum Zitat Wing AM (2002) Voluntary timing and brain function: an information processing approach. Brain Cogn 48(1):7–30CrossRefPubMed Wing AM (2002) Voluntary timing and brain function: an information processing approach. Brain Cogn 48(1):7–30CrossRefPubMed
Zurück zum Zitat Wright BA, Buonomano DV, Mahncke HW, Merzenich MM (1997) Learning and generalization of auditory temporal–interval discrimination in humans. J Neurosci 17(10):3956–3963PubMed Wright BA, Buonomano DV, Mahncke HW, Merzenich MM (1997) Learning and generalization of auditory temporal–interval discrimination in humans. J Neurosci 17(10):3956–3963PubMed
Zurück zum Zitat Zarco W, Merchant H (2009) Neural temporal codes for representation of information in the nervous system. Cogn Crit 1(1):1–30 Zarco W, Merchant H (2009) Neural temporal codes for representation of information in the nervous system. Cogn Crit 1(1):1–30
Zurück zum Zitat Zarco W, Merchant H, Prado L, Mendez JC (2009) Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys. J Neurophysiol 102(6):3191–3202CrossRefPubMedPubMedCentral Zarco W, Merchant H, Prado L, Mendez JC (2009) Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys. J Neurophysiol 102(6):3191–3202CrossRefPubMedPubMedCentral
Metadaten
Titel
Primate beta oscillations and rhythmic behaviors
verfasst von
Hugo Merchant
Ramón Bartolo
Publikationsdatum
31.03.2017
Verlag
Springer Vienna
Erschienen in
Journal of Neural Transmission / Ausgabe 3/2018
Print ISSN: 0300-9564
Elektronische ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-017-1716-9

Weitere Artikel der Ausgabe 3/2018

Journal of Neural Transmission 3/2018 Zur Ausgabe

Neurology and Preclinical Neurological Studies - Review Article

Parallel basal ganglia circuits for decision making

Translational Neurosciences - Review Article

The role of the basal ganglia in the control of seizure

Neurology and Preclinical Neurological Studies - Review Article

Reward and value coding by dopamine neurons in non-human primates

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.