Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 2/2016

11.01.2016 | Review Article

Principles and methods for automatic and semi-automatic tissue segmentation in MRI data

verfasst von: Lei Wang, Teodora Chitiboi, Hans Meine, Matthias Günther, Horst K. Hahn

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 2/2016

Einloggen, um Zugang zu erhalten

Abstract

The development of magnetic resonance imaging (MRI) revolutionized both the medical and scientific worlds. A large variety of MRI options have generated a huge amount of image data to interpret. The investigation of a specific tissue in 3D or 4D MR images can be facilitated by image processing techniques, such as segmentation and registration. In this work, we provide a brief review of the principles and methods that are commonly applied to achieve superior tissue segmentation results in MRI. The impacts of MR image acquisition on segmentation outcome and the principles of selecting and exploiting segmentation techniques tailored for specific tissue identification tasks are discussed. In the end, two exemplary applications, breast and fibroglandular tissue segmentation in MRI and myocardium segmentation in short-axis cine and real-time MRI, are discussed to explain the typical challenges that can be posed in practical segmentation tasks in MRI data. The corresponding solutions that are adopted to deal with these challenges of the two practical segmentation tasks are thoroughly reviewed.
Literatur
1.
Zurück zum Zitat Robson MD, Gore JC, Constable RT (1997) Measurement of the point spread function in MRI using constant time imaging. Magn Reson Med 38:733–740CrossRefPubMed Robson MD, Gore JC, Constable RT (1997) Measurement of the point spread function in MRI using constant time imaging. Magn Reson Med 38:733–740CrossRefPubMed
2.
Zurück zum Zitat Sugahara T, Korogi Y, Hirai T et al (1997) Comparison of HASTE and segmented-HASTE sequences with a T2-weighted fast spin-echo sequence in the screening evaluation of the brain. Am J Roentgenol 169:1401–1410CrossRef Sugahara T, Korogi Y, Hirai T et al (1997) Comparison of HASTE and segmented-HASTE sequences with a T2-weighted fast spin-echo sequence in the screening evaluation of the brain. Am J Roentgenol 169:1401–1410CrossRef
3.
Zurück zum Zitat Mugler JP, Brookeman JR (1991) Rapid three-dimensional T1-weighted MR imaging with the MP-RAGE sequence. J Magn Reson Imaging 1:561–567CrossRefPubMed Mugler JP, Brookeman JR (1991) Rapid three-dimensional T1-weighted MR imaging with the MP-RAGE sequence. J Magn Reson Imaging 1:561–567CrossRefPubMed
4.
Zurück zum Zitat Brant-Zawadzki M, Gillan GD, Nitz WR (1992) MP RAGE: a three-dimensional, T1-weighted, gradient-echo sequence–initial experience in the brain. Radiology 182:769–775CrossRefPubMed Brant-Zawadzki M, Gillan GD, Nitz WR (1992) MP RAGE: a three-dimensional, T1-weighted, gradient-echo sequence–initial experience in the brain. Radiology 182:769–775CrossRefPubMed
5.
Zurück zum Zitat Glover GH (1991) Multipoint Dixon technique for water and fat proton and susceptibility imaging. J Magn Reson Imaging 1:521–530CrossRefPubMed Glover GH (1991) Multipoint Dixon technique for water and fat proton and susceptibility imaging. J Magn Reson Imaging 1:521–530CrossRefPubMed
7.
Zurück zum Zitat Reeder SB, Wen Z, Yu H et al (2004) Multicoil Dixon chemical species separation with an iterative least-squares estimation method. Magn Reson Med 51:35–45CrossRefPubMed Reeder SB, Wen Z, Yu H et al (2004) Multicoil Dixon chemical species separation with an iterative least-squares estimation method. Magn Reson Med 51:35–45CrossRefPubMed
8.
Zurück zum Zitat Wolansky LJ, Finden SG, Chen J et al (1999) Optimization of gray/white matter contrast with fast inversion recovery for myelin suppression: a comparison of fast spin-echo and echo-planar MR imaging sequences. Am J Neuroradiol 20:1653–1657PubMed Wolansky LJ, Finden SG, Chen J et al (1999) Optimization of gray/white matter contrast with fast inversion recovery for myelin suppression: a comparison of fast spin-echo and echo-planar MR imaging sequences. Am J Neuroradiol 20:1653–1657PubMed
9.
Zurück zum Zitat Mani S, Pauly J, Conolly S et al (1997) Background suppression with multiple inversion recovery nulling: applications to projective angiography. Magn Reson Med 37:898–905CrossRefPubMed Mani S, Pauly J, Conolly S et al (1997) Background suppression with multiple inversion recovery nulling: applications to projective angiography. Magn Reson Med 37:898–905CrossRefPubMed
10.
Zurück zum Zitat Shattuck DW, Sandor-Leahy SR, Schaper KA et al (2001) Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13:856–876CrossRefPubMed Shattuck DW, Sandor-Leahy SR, Schaper KA et al (2001) Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13:856–876CrossRefPubMed
11.
Zurück zum Zitat Hahn HK, Peitgen HO (2003) IWT-interactive watershed transform: a hierarchical method for efficient interactive and automated segmentation of multidimensional gray-scale images. In: Proceedings of SPIE medical imaging, pp 643–653 Hahn HK, Peitgen HO (2003) IWT-interactive watershed transform: a hierarchical method for efficient interactive and automated segmentation of multidimensional gray-scale images. In: Proceedings of SPIE medical imaging, pp 643–653
12.
Zurück zum Zitat Roerdink J, Meijster A (2000) The watershed transform: definitions, algorithms and parallelization strategies. Fundam Inform 41:187–228 Roerdink J, Meijster A (2000) The watershed transform: definitions, algorithms and parallelization strategies. Fundam Inform 41:187–228
13.
Zurück zum Zitat Meine H, Stelldinger P, Köthe U (2009) Pixel approximation errors in common watershed algorithms. In: Proceedings of discrete geometry for computer imagery, LNCS 5810:193–202 Meine H, Stelldinger P, Köthe U (2009) Pixel approximation errors in common watershed algorithms. In: Proceedings of discrete geometry for computer imagery, LNCS 5810:193–202
14.
Zurück zum Zitat Simmons A, Tofts PS, Barker GJ, Arridge SR (1994) Sources of intensity nonuniformity in spin-echo images at 1.5-T. Magn Reson Med 32:121–128CrossRefPubMed Simmons A, Tofts PS, Barker GJ, Arridge SR (1994) Sources of intensity nonuniformity in spin-echo images at 1.5-T. Magn Reson Med 32:121–128CrossRefPubMed
15.
Zurück zum Zitat Alecci M, Collins CM, Smith MB, Jezzard P (2001) Radio frequency magnetic field mapping of a 3 Tesla birdcage coil: experimental and theoretical dependence on sample properties. Magn Reson Med 46:379–385CrossRefPubMed Alecci M, Collins CM, Smith MB, Jezzard P (2001) Radio frequency magnetic field mapping of a 3 Tesla birdcage coil: experimental and theoretical dependence on sample properties. Magn Reson Med 46:379–385CrossRefPubMed
16.
Zurück zum Zitat Vovk U, Pernuš F, Likar B (2007) A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 26:405–421CrossRefPubMed Vovk U, Pernuš F, Likar B (2007) A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 26:405–421CrossRefPubMed
17.
Zurück zum Zitat Gispert JD, Reig S, Pascau J et al (2003) Inhomogeneity correction of magnetic resonance images by minimization of intensity overlapping. In: Proceedings of International Conference on Image Process, pp 14–17 Gispert JD, Reig S, Pascau J et al (2003) Inhomogeneity correction of magnetic resonance images by minimization of intensity overlapping. In: Proceedings of International Conference on Image Process, pp 14–17
18.
Zurück zum Zitat Gispert JD, Reig S, Pascau J et al (2004) Method for bias field correction of brain T1-weighted magnetic images minimizing segmentation error. Hum Brain Mapp 22:133–144CrossRefPubMed Gispert JD, Reig S, Pascau J et al (2004) Method for bias field correction of brain T1-weighted magnetic images minimizing segmentation error. Hum Brain Mapp 22:133–144CrossRefPubMed
19.
Zurück zum Zitat Guillemaud R, Brady M (1997) Estimating the bias field of MR images. IEEE Trans Med Imaging 16:238–251CrossRefPubMed Guillemaud R, Brady M (1997) Estimating the bias field of MR images. IEEE Trans Med Imaging 16:238–251CrossRefPubMed
20.
Zurück zum Zitat Tsai C, Manjunath BS, Jagadeesan R (1995) Automated segmentation of brain MR images. Pattern Recognit 28:1825–1837CrossRef Tsai C, Manjunath BS, Jagadeesan R (1995) Automated segmentation of brain MR images. Pattern Recognit 28:1825–1837CrossRef
21.
Zurück zum Zitat Rajapakse JC, Kruggel F (1998) Segmentation of MR images with intensity inhomogeneities. Image Vis Comput 16:165–180CrossRef Rajapakse JC, Kruggel F (1998) Segmentation of MR images with intensity inhomogeneities. Image Vis Comput 16:165–180CrossRef
22.
Zurück zum Zitat Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57CrossRefPubMed Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57CrossRefPubMed
23.
Zurück zum Zitat Pham DL, Prince JL (1999) An adaptive fuzzy C-Means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognit Lett 20:57–68CrossRef Pham DL, Prince JL (1999) An adaptive fuzzy C-Means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognit Lett 20:57–68CrossRef
24.
Zurück zum Zitat Pham DL, Prince JL (1999) Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imag 18:737–752CrossRef Pham DL, Prince JL (1999) Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imag 18:737–752CrossRef
25.
Zurück zum Zitat Li C, Huang R, Ding Z et al (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 20:2007–2016CrossRefPubMed Li C, Huang R, Ding Z et al (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 20:2007–2016CrossRefPubMed
26.
Zurück zum Zitat Ivanovska T, Laqua R, Wang L et al (2013) A fast global variational bias field correction method for MR images. In: Proceedings of 8th international symposium on image signal process, pp 667–671 Ivanovska T, Laqua R, Wang L et al (2013) A fast global variational bias field correction method for MR images. In: Proceedings of 8th international symposium on image signal process, pp 667–671
27.
Zurück zum Zitat Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97CrossRefPubMed Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97CrossRefPubMed
29.
Zurück zum Zitat Orel SG, Schnall MD (2001) MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology 220:13–30CrossRefPubMed Orel SG, Schnall MD (2001) MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology 220:13–30CrossRefPubMed
30.
Zurück zum Zitat DeMartini W, Lehman C (2008) A review of current evidence-based clinical applications for breast magnetic resonance imaging. Top Magn Reson Imaging 19:143–150CrossRefPubMed DeMartini W, Lehman C (2008) A review of current evidence-based clinical applications for breast magnetic resonance imaging. Top Magn Reson Imaging 19:143–150CrossRefPubMed
31.
Zurück zum Zitat Kuhl C (2007) The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology 244:356–378CrossRefPubMed Kuhl C (2007) The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology 244:356–378CrossRefPubMed
32.
Zurück zum Zitat Lehman CD, Peacock S, DeMartini WB, Chen X (2006) A new automated software system to evaluate breast MR examinations: improved specificity without decreased sensitivity. Am J Roentgenol 187:51–56CrossRef Lehman CD, Peacock S, DeMartini WB, Chen X (2006) A new automated software system to evaluate breast MR examinations: improved specificity without decreased sensitivity. Am J Roentgenol 187:51–56CrossRef
33.
Zurück zum Zitat Goto M, Ito H, Akazawa K et al (2007) Diagnosis of breast tumors by contrast-enhanced MR imaging: comparison between the diagnostic performance of dynamic enhancement patterns and morphologic features. J Magn Reson Imaging 25:104–112CrossRefPubMed Goto M, Ito H, Akazawa K et al (2007) Diagnosis of breast tumors by contrast-enhanced MR imaging: comparison between the diagnostic performance of dynamic enhancement patterns and morphologic features. J Magn Reson Imaging 25:104–112CrossRefPubMed
34.
Zurück zum Zitat Wu S, Weinstein SP, Conant EF et al (2013) Automated chest wall line detection for whole-breast segmentation in sagittal breast MR images. Med Phys 40:042301CrossRefPubMedPubMedCentral Wu S, Weinstein SP, Conant EF et al (2013) Automated chest wall line detection for whole-breast segmentation in sagittal breast MR images. Med Phys 40:042301CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Milenković J, Chambers O, Marolt Mušič M, Tasič JF (2015) Automated breast-region segmentation in the axial breast MR images. Comput Biol Med 62:55–64CrossRefPubMed Milenković J, Chambers O, Marolt Mušič M, Tasič JF (2015) Automated breast-region segmentation in the axial breast MR images. Comput Biol Med 62:55–64CrossRefPubMed
36.
Zurück zum Zitat Giannini V, Vignati A, Morra L et al (2010) A fully automatic algorithm for segmentation of the breasts in DCE-MR images. In: Proceedings of annual international conference on IEEE engineering medicine and biology society EMBC 2010, pp 3146–3149 Giannini V, Vignati A, Morra L et al (2010) A fully automatic algorithm for segmentation of the breasts in DCE-MR images. In: Proceedings of annual international conference on IEEE engineering medicine and biology society EMBC 2010, pp 3146–3149
37.
Zurück zum Zitat Wang L, Platel B, Ivanovskaya T et al (2012) Fully automatic breast segmentation in 3D breast MRI. In: Proceedings on IEEE international symposium biomedical imaging, pp 1024–1027 Wang L, Platel B, Ivanovskaya T et al (2012) Fully automatic breast segmentation in 3D breast MRI. In: Proceedings on IEEE international symposium biomedical imaging, pp 1024–1027
38.
Zurück zum Zitat Wang L, Filippatos K, Friman O, Hahn HK (2011) Fully automated segmentation of the pectoralis muscle boundary in breast MR images. In: Proceedings of SPIE medical imaging, pp 796309–796309–8 Wang L, Filippatos K, Friman O, Hahn HK (2011) Fully automated segmentation of the pectoralis muscle boundary in breast MR images. In: Proceedings of SPIE medical imaging, pp 796309–796309–8
39.
Zurück zum Zitat Koenig M, Laue H, Boehler T, Peitgen H-O (2007) Automatic segmentation of relevant structures in DCE MR mammograms. In: Proceedings on SPIE medical imaging, pp 65141S–65141S–6 Koenig M, Laue H, Boehler T, Peitgen H-O (2007) Automatic segmentation of relevant structures in DCE MR mammograms. In: Proceedings on SPIE medical imaging, pp 65141S–65141S–6
40.
Zurück zum Zitat Nie K, Chen JH, Chan S et al (2008) Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI. Med Phys 35:5253–5262CrossRefPubMedPubMedCentral Nie K, Chen JH, Chan S et al (2008) Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI. Med Phys 35:5253–5262CrossRefPubMedPubMedCentral
41.
42.
Zurück zum Zitat Ivanovska T, Laqua R, Wang L et al (2014) A level set based framework for quantitative evaluation of breast tissue density from MRI data. PLoS One 9:e112709CrossRefPubMedPubMedCentral Ivanovska T, Laqua R, Wang L et al (2014) A level set based framework for quantitative evaluation of breast tissue density from MRI data. PLoS One 9:e112709CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Ortiz CG, Martel AL (2012) Automatic atlas-based segmentation of the breast in MRI for 3D breast volume computation. Med Phys 39:5835CrossRefPubMed Ortiz CG, Martel AL (2012) Automatic atlas-based segmentation of the breast in MRI for 3D breast volume computation. Med Phys 39:5835CrossRefPubMed
44.
Zurück zum Zitat Khalvati F, Gallego-Ortiz C, Balasingham S, Martel AL (2015) Automated segmentation of breast in 3-D MR images using a robust atlas. IEEE Trans Med Imaging 34:116–125CrossRefPubMed Khalvati F, Gallego-Ortiz C, Balasingham S, Martel AL (2015) Automated segmentation of breast in 3-D MR images using a robust atlas. IEEE Trans Med Imaging 34:116–125CrossRefPubMed
45.
Zurück zum Zitat Gubern-Mérida A, Kallenberg M, Mann RM et al (2013) Breast segmentation and density estimation in breast MRI: a fully automatic framework. IEEE J Biomed Health Inform 19:349–357CrossRef Gubern-Mérida A, Kallenberg M, Mann RM et al (2013) Breast segmentation and density estimation in breast MRI: a fully automatic framework. IEEE J Biomed Health Inform 19:349–357CrossRef
46.
Zurück zum Zitat McCormack VA, dos Santos Silva I (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15:1159–1169CrossRefPubMed McCormack VA, dos Santos Silva I (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15:1159–1169CrossRefPubMed
47.
Zurück zum Zitat Wu S, Weinstein S, Conant E, Kontos D (2013) Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method. Med Phys 40:122302CrossRefPubMedPubMedCentral Wu S, Weinstein S, Conant E, Kontos D (2013) Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method. Med Phys 40:122302CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Razavi M, Wang L, Gubern-Mérida A et al (2015) Towards accurate segmentation of fibroglandular tissue in breast MRI using fuzzy c-means and skin-folds removal. In: Proceedings on 18th international conference image analysis process Razavi M, Wang L, Gubern-Mérida A et al (2015) Towards accurate segmentation of fibroglandular tissue in breast MRI using fuzzy c-means and skin-folds removal. In: Proceedings on 18th international conference image analysis process
49.
Zurück zum Zitat Petitjean C, Dacher JN (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15:169–184CrossRefPubMed Petitjean C, Dacher JN (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15:169–184CrossRefPubMed
50.
Zurück zum Zitat Katouzian A, Prakash A, Konofagou E (2006) A new automated technique for left-and right-ventricular segmentation in magnetic resonance imaging. In: Conference proceedings IEEE engineering in medicine and biology society, pp 3074–3077 Katouzian A, Prakash A, Konofagou E (2006) A new automated technique for left-and right-ventricular segmentation in magnetic resonance imaging. In: Conference proceedings IEEE engineering in medicine and biology society, pp 3074–3077
51.
Zurück zum Zitat Heckel F, Meine H, Moltz JH et al (2014) Segmentation-based partial volume correction for volume estimation of solid lesions in CT. IEEE Trans Med Imaging 33(2):462–480CrossRefPubMed Heckel F, Meine H, Moltz JH et al (2014) Segmentation-based partial volume correction for volume estimation of solid lesions in CT. IEEE Trans Med Imaging 33(2):462–480CrossRefPubMed
52.
Zurück zum Zitat Kurkure U, Pednekar A, Muthupillai R et al (2009) Localization and segmentation of left ventricle in cardiac cine-MR images. IEEE Trans Biomed Eng 56:1360–1370CrossRefPubMed Kurkure U, Pednekar A, Muthupillai R et al (2009) Localization and segmentation of left ventricle in cardiac cine-MR images. IEEE Trans Biomed Eng 56:1360–1370CrossRefPubMed
53.
Zurück zum Zitat Lynch M, Ghita O, Whelan PF (2006) Automatic segmentation of the left ventricle cavity and myocardium in MRI data. Comput Biol Med 36:289–407CrossRef Lynch M, Ghita O, Whelan PF (2006) Automatic segmentation of the left ventricle cavity and myocardium in MRI data. Comput Biol Med 36:289–407CrossRef
54.
Zurück zum Zitat Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1:321–331CrossRef Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1:321–331CrossRef
55.
Zurück zum Zitat Xu C, Prince JL, Hall B (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7:359–369CrossRefPubMed Xu C, Prince JL, Hall B (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7:359–369CrossRefPubMed
56.
Zurück zum Zitat Heimann T, Meinzer H-P (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13:543–563CrossRefPubMed Heimann T, Meinzer H-P (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13:543–563CrossRefPubMed
57.
Zurück zum Zitat Geiger D (1996) Dynamic programming for detecting, tracking, and matching deformable contours. IEEE Trans Pattern Anal Mach Intell 17:294–302CrossRef Geiger D (1996) Dynamic programming for detecting, tracking, and matching deformable contours. IEEE Trans Pattern Anal Mach Intell 17:294–302CrossRef
58.
Zurück zum Zitat Lynch M, Ghita O, Whelan PF (2008) Segmentation of the left ventricle of the heart in 3-D + t MRI data using an optimized nonrigid temporal model. IEEE Trans Med Imaging 27:195–203CrossRefPubMed Lynch M, Ghita O, Whelan PF (2008) Segmentation of the left ventricle of the heart in 3-D + t MRI data using an optimized nonrigid temporal model. IEEE Trans Med Imaging 27:195–203CrossRefPubMed
59.
Zurück zum Zitat Cousty J, Najman L, Couprie M et al (2010) Segmentation of 4D cardiac MRI automated method based on spatio-temporal watershed cuts. Image Vis Comput 28:1229–1243CrossRef Cousty J, Najman L, Couprie M et al (2010) Segmentation of 4D cardiac MRI automated method based on spatio-temporal watershed cuts. Image Vis Comput 28:1229–1243CrossRef
60.
Zurück zum Zitat Jolly M-P (2006) Automatic segmentation of the left ventricle in cardiac MR and CT images. Int J Comput Vis 70:151–163CrossRef Jolly M-P (2006) Automatic segmentation of the left ventricle in cardiac MR and CT images. Int J Comput Vis 70:151–163CrossRef
61.
Zurück zum Zitat Kedenburg G, Cocosco CA, Köthe U et al (2006) Automatic cardiac MRI myocardium segmentation using graphcut. In: Proceedings of SPIE, p 61440A–61440A–12 Kedenburg G, Cocosco CA, Köthe U et al (2006) Automatic cardiac MRI myocardium segmentation using graphcut. In: Proceedings of SPIE, p 61440A–61440A–12
62.
Zurück zum Zitat Uzümcü M, van der Geest RJ, Swingen C et al (2006) Time continuous tracking and segmentation of cardiovascular magnetic resonance images using multidimensional dynamic programming. Invest Radiol 41:52–62CrossRefPubMed Uzümcü M, van der Geest RJ, Swingen C et al (2006) Time continuous tracking and segmentation of cardiovascular magnetic resonance images using multidimensional dynamic programming. Invest Radiol 41:52–62CrossRefPubMed
63.
Zurück zum Zitat Üzümcü M, Frangi AF, Sonka M et al (2003) ICA vs. PCA active appearance models: application to cardiac MR segmentation. In: Medical image computing and computer-assisted intervention—MICCAI 2003, pp 451–458 Üzümcü M, Frangi AF, Sonka M et al (2003) ICA vs. PCA active appearance models: application to cardiac MR segmentation. In: Medical image computing and computer-assisted intervention—MICCAI 2003, pp 451–458
64.
Zurück zum Zitat Mitchell SC, Lelieveldt BP, Van der Geest RJ et al (2001) Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans Med Imaging 20:415–423CrossRefPubMed Mitchell SC, Lelieveldt BP, Van der Geest RJ et al (2001) Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans Med Imaging 20:415–423CrossRefPubMed
65.
Zurück zum Zitat Zhuang X, Hawkes D, Crum W et al (2008) Robust registration between cardiac MRI images and atlas for segmentation propagation. In: SPIE Medical Imaging, pp 691408 Zhuang X, Hawkes D, Crum W et al (2008) Robust registration between cardiac MRI images and atlas for segmentation propagation. In: SPIE Medical Imaging, pp 691408
66.
Zurück zum Zitat Lorenzo-Valdés M, Sanchez-Ortiz GI, Mohiaddin R, Rueckert D (2002) Atlas-based segmentation and tracking of 3D cardiac MR images using non-rigid registration. In: Int. Conf. Med. Image Comput. Comput. Interv. Springer, pp 642–650 Lorenzo-Valdés M, Sanchez-Ortiz GI, Mohiaddin R, Rueckert D (2002) Atlas-based segmentation and tracking of 3D cardiac MR images using non-rigid registration. In: Int. Conf. Med. Image Comput. Comput. Interv. Springer, pp 642–650
67.
Zurück zum Zitat Cocosco CA, Netsch T, Sénégas J et al (2004) Automatic cardiac region-of-interest computation in cine 3D structural MRI. In: Int. Congr. Ser. pp 1126–1131 Cocosco CA, Netsch T, Sénégas J et al (2004) Automatic cardiac region-of-interest computation in cine 3D structural MRI. In: Int. Congr. Ser. pp 1126–1131
68.
Zurück zum Zitat Hüllebrand M, Hennemuth A, Messroghli D et al (2011) Semi-automatic 4D fuzzy connectedness segmentation of heart ventricles in cine MRI. In: Bild. für die Medizin 2011. Springer, pp 3–7 Hüllebrand M, Hennemuth A, Messroghli D et al (2011) Semi-automatic 4D fuzzy connectedness segmentation of heart ventricles in cine MRI. In: Bild. für die Medizin 2011. Springer, pp 3–7
69.
Zurück zum Zitat Lee HY, Codella NCF, Cham MD et al (2010) Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac MRI. IEEE Trans Biomed Eng 57:905–913CrossRefPubMed Lee HY, Codella NCF, Cham MD et al (2010) Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac MRI. IEEE Trans Biomed Eng 57:905–913CrossRefPubMed
70.
Zurück zum Zitat Queirós S, Barbosa D, Heyde B et al (2014) Fast automatic myocardial segmentation in 4D cine CMR datasets. Med Image Anal 18:1115–1131CrossRefPubMed Queirós S, Barbosa D, Heyde B et al (2014) Fast automatic myocardial segmentation in 4D cine CMR datasets. Med Image Anal 18:1115–1131CrossRefPubMed
71.
Zurück zum Zitat Gotardo PFU, Boyer KL, Saltz J, Raman SV (2006) A new deformable model for boundary tracking in cardiac MRI and its application to the detection of intra-ventricular dyssynchrony. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit, pp 736–743 Gotardo PFU, Boyer KL, Saltz J, Raman SV (2006) A new deformable model for boundary tracking in cardiac MRI and its application to the detection of intra-ventricular dyssynchrony. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit, pp 736–743
72.
Zurück zum Zitat Jolly M-P (2008) Automatic recovery of the left ventricular blood pool in cardiac cine MR images. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008:110–118 Jolly M-P (2008) Automatic recovery of the left ventricular blood pool in cardiac cine MR images. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008:110–118
73.
Zurück zum Zitat Pednekar A, Kurkure U, Muthupillai R, Flamm S, Kakadiaris I (2006) Automated left ventricular segmentation in cardiac MRI. IEEE Trans Biomed Eng 53:1425–1428CrossRefPubMed Pednekar A, Kurkure U, Muthupillai R, Flamm S, Kakadiaris I (2006) Automated left ventricular segmentation in cardiac MRI. IEEE Trans Biomed Eng 53:1425–1428CrossRefPubMed
74.
Zurück zum Zitat Yip RKK, Tam PKS, Leung DNK (1995) Modification of Hough transform for object recognition using a 2-dimensional array. Pattern Recognit 28:1733–1744CrossRef Yip RKK, Tam PKS, Leung DNK (1995) Modification of Hough transform for object recognition using a 2-dimensional array. Pattern Recognit 28:1733–1744CrossRef
75.
Zurück zum Zitat Petitjean C, Zuluaga MA, Bai W et al (2015) Right ventricle segmentation from cardiac MRI: a collation study. Med Image Anal 19:187–202CrossRefPubMed Petitjean C, Zuluaga MA, Bai W et al (2015) Right ventricle segmentation from cardiac MRI: a collation study. Med Image Anal 19:187–202CrossRefPubMed
76.
Zurück zum Zitat Ou Y, Doshi J, Erus G, Davatzikos C (2012) Multi-atlas segmentation of the cardiac MR right ventricle. Proceedings of 3D Cardiovascular Imaging. In: Proceedings of 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge, Nice, France Ou Y, Doshi J, Erus G, Davatzikos C (2012) Multi-atlas segmentation of the cardiac MR right ventricle. Proceedings of 3D Cardiovascular Imaging. In: Proceedings of 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge, Nice, France
77.
Zurück zum Zitat Zuluaga MA, Cardoso MJ, Modat M, Ourselin S (2013) Multi-atlas propagation whole heart segmentation from MRI and CTA using a local normalised correlation coefficient criterion. In: Proc. Functional Imaging and Modeling of the Heart LNCS 7945:174–181 Zuluaga MA, Cardoso MJ, Modat M, Ourselin S (2013) Multi-atlas propagation whole heart segmentation from MRI and CTA using a local normalised correlation coefficient criterion. In: Proc. Functional Imaging and Modeling of the Heart LNCS 7945:174–181
78.
Zurück zum Zitat Bai W, Shi W, Wang H et al (2012) Multi-Atlas Based Segmentation with Local Label Fusion for Right Ventricle MR Images. Work Med Image Comput Comput Assist Interv 1–8 Bai W, Shi W, Wang H et al (2012) Multi-Atlas Based Segmentation with Local Label Fusion for Right Ventricle MR Images. Work Med Image Comput Comput Assist Interv 1–8
79.
Zurück zum Zitat Grosgeorge D, Petitjean C, Dacher JN, Ruan S (2013) Graph cut segmentation with a statistical shape model in cardiac MRI. Comput Vis Image Underst 117:1027–1035CrossRef Grosgeorge D, Petitjean C, Dacher JN, Ruan S (2013) Graph cut segmentation with a statistical shape model in cardiac MRI. Comput Vis Image Underst 117:1027–1035CrossRef
80.
Zurück zum Zitat Mahapatra D, Buhmann JM (2013) Automatic cardiac RV segmentation using semantic information with graph cuts. In: Proc. Int. Symp. Biomed. Imaging. IEEE, pp 1106–1109 Mahapatra D, Buhmann JM (2013) Automatic cardiac RV segmentation using semantic information with graph cuts. In: Proc. Int. Symp. Biomed. Imaging. IEEE, pp 1106–1109
81.
Zurück zum Zitat Uecker M, Zhang S, Voit D et al (2010) Real-time MRI at a resolution of 20 ms. NMR Biomed 23:986–994CrossRefPubMed Uecker M, Zhang S, Voit D et al (2010) Real-time MRI at a resolution of 20 ms. NMR Biomed 23:986–994CrossRefPubMed
82.
Zurück zum Zitat Voit D, Zhang S, Unterberg-Buchwald C et al (2013) Real-time cardiovascular magnetic resonance at 1.5 T using balanced SSFP and 40 ms resolution. J Cardiovasc Magn Reson 15:79CrossRefPubMedPubMedCentral Voit D, Zhang S, Unterberg-Buchwald C et al (2013) Real-time cardiovascular magnetic resonance at 1.5 T using balanced SSFP and 40 ms resolution. J Cardiovasc Magn Reson 15:79CrossRefPubMedPubMedCentral
83.
Zurück zum Zitat Chan YT, Hu AGC, Plant JB (1979) A Kalman Filter Based Tracking Scheme with Input Estimation. IEEE Trans Aerosp Electron Syst AES-15:237-244 Chan YT, Hu AGC, Plant JB (1979) A Kalman Filter Based Tracking Scheme with Input Estimation. IEEE Trans Aerosp Electron Syst AES-15:237-244
84.
Zurück zum Zitat Achanta R, Shaji A, Smith K et al (2010) SLIC Superpixels. EPFL Tech Rep 149300:15 Achanta R, Shaji A, Smith K et al (2010) SLIC Superpixels. EPFL Tech Rep 149300:15
85.
Zurück zum Zitat Homeyer A, Schwier M, Hahn HK (2010) A generic concept for object-based image analysis. In: Proc. Int. Conf. Comput. Vis. Theory Appl. pp 530–533 Homeyer A, Schwier M, Hahn HK (2010) A generic concept for object-based image analysis. In: Proc. Int. Conf. Comput. Vis. Theory Appl. pp 530–533
86.
Zurück zum Zitat Chitiboi T, Hennemuth A (2014) Context-based segmentation and analysis of multi-cycle real-time cardiac MRI. In: Proc. IEEE Int. Symp. Biomed. Imaging. pp 943–946 Chitiboi T, Hennemuth A (2014) Context-based segmentation and analysis of multi-cycle real-time cardiac MRI. In: Proc. IEEE Int. Symp. Biomed. Imaging. pp 943–946
87.
Zurück zum Zitat Tautz L, Hennemuth A, Andersson M et al (2010) Phase-based non-rigid registration of myocardial perfusion MR image sequences. In: Proc. IEEE Int. Symp. Biomed. Imaging. pp 516–519 Tautz L, Hennemuth A, Andersson M et al (2010) Phase-based non-rigid registration of myocardial perfusion MR image sequences. In: Proc. IEEE Int. Symp. Biomed. Imaging. pp 516–519
88.
Zurück zum Zitat Hüllebrand M, Hennemuth A, Messroghli D, Kühne T (2014) OsiriX plugin for integrated cardiac imaging research. In: Proc. SPIE Medical Imaging, pp 90390D-90390D Hüllebrand M, Hennemuth A, Messroghli D, Kühne T (2014) OsiriX plugin for integrated cardiac imaging research. In: Proc. SPIE Medical Imaging, pp 90390D-90390D
89.
Zurück zum Zitat Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28:1768–1783CrossRefPubMed Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28:1768–1783CrossRefPubMed
90.
Zurück zum Zitat Eslami A, Karamalis A, Katouzian A, Navab N (2013) Segmentation by retrieval with guided random walks: application to left ventricle segmentation in MRI. Med Image Anal 17:236–253CrossRefPubMed Eslami A, Karamalis A, Katouzian A, Navab N (2013) Segmentation by retrieval with guided random walks: application to left ventricle segmentation in MRI. Med Image Anal 17:236–253CrossRefPubMed
91.
Zurück zum Zitat Wu S, Weinstein SP, Conant EF, Kontos D (2013) Fully-automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI by integrating a continuous max-flow model and a likelihood atlas. In: Proc. SPIE Medical Imaging, pp 8670:86701C–86701C–6 Wu S, Weinstein SP, Conant EF, Kontos D (2013) Fully-automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI by integrating a continuous max-flow model and a likelihood atlas. In: Proc. SPIE Medical Imaging, pp 8670:86701C–86701C–6
92.
Zurück zum Zitat Gubern-Mérida A, Martí R, Melendez J et al (2014) Automated localization of breast cancer in DCE-MRI. Med Image Anal 20:265–274CrossRefPubMed Gubern-Mérida A, Martí R, Melendez J et al (2014) Automated localization of breast cancer in DCE-MRI. Med Image Anal 20:265–274CrossRefPubMed
93.
Zurück zum Zitat Pang Z, Zhu D, Chen D et al (2015) A Computer-Aided Diagnosis System for Dynamic Contrast-Enhanced MR Images Based on Level Set Segmentation and ReliefF Feature Selection. Comput Math Methods Med 2015:450531CrossRefPubMedPubMedCentral Pang Z, Zhu D, Chen D et al (2015) A Computer-Aided Diagnosis System for Dynamic Contrast-Enhanced MR Images Based on Level Set Segmentation and ReliefF Feature Selection. Comput Math Methods Med 2015:450531CrossRefPubMedPubMedCentral
94.
Zurück zum Zitat Ertas G, Gulcur HO, Osman O et al (2008) Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching. Comput Biol Med 38:116–126CrossRefPubMed Ertas G, Gulcur HO, Osman O et al (2008) Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching. Comput Biol Med 38:116–126CrossRefPubMed
95.
Zurück zum Zitat Luthi M, Blanc R, Albrecht T et al (2012) Statismo-A framework for PCA based statistical models. Insight Journal 2012:1–18 Luthi M, Blanc R, Albrecht T et al (2012) Statismo-A framework for PCA based statistical models. Insight Journal 2012:1–18
96.
Zurück zum Zitat Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern Syst 9:62–66CrossRef Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern Syst 9:62–66CrossRef
97.
Zurück zum Zitat Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24:603–619CrossRef Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24:603–619CrossRef
98.
Zurück zum Zitat Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging
99.
Zurück zum Zitat Kikinis R, Shenton ME, Iosifescu DV et al (1996) A digital brain atlas for surgical planning, model-driven segmentation, and teaching. IEEE Trans Vis Comput Graph 2:232–241CrossRef Kikinis R, Shenton ME, Iosifescu DV et al (1996) A digital brain atlas for surgical planning, model-driven segmentation, and teaching. IEEE Trans Vis Comput Graph 2:232–241CrossRef
100.
Zurück zum Zitat Rohlfing T, Brandt R, Menzel R et al (2005) Quo vadis, atlas-based segmentation? Handbook of Biomedical Image Analysis, pp 435–486 Rohlfing T, Brandt R, Menzel R et al (2005) Quo vadis, atlas-based segmentation? Handbook of Biomedical Image Analysis, pp 435–486
101.
Zurück zum Zitat Rohlfing T, Brandt R, Menzel R, Maurer CR (2004) Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. Neuroimage 21:1428–1442CrossRefPubMed Rohlfing T, Brandt R, Menzel R, Maurer CR (2004) Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. Neuroimage 21:1428–1442CrossRefPubMed
102.
Zurück zum Zitat Osher S, Sethian J (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79:12–49CrossRef Osher S, Sethian J (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79:12–49CrossRef
103.
Zurück zum Zitat Sethian J (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge Sethian J (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge
104.
Zurück zum Zitat Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. Pattern Anal Mach Intell IEEE Trans 26:1124–1137CrossRef Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. Pattern Anal Mach Intell IEEE Trans 26:1124–1137CrossRef
105.
Zurück zum Zitat Kolmogorov V, Zabin R (2004) What energy functions can be minimized via graph cuts? Pattern Anal Mach Intell IEEE Trans 26:147–159CrossRef Kolmogorov V, Zabin R (2004) What energy functions can be minimized via graph cuts? Pattern Anal Mach Intell IEEE Trans 26:147–159CrossRef
106.
Zurück zum Zitat Li SZ (2009) Markov random field modeling in image analysis. Springer Science & Business Media, Berlin Li SZ (2009) Markov random field modeling in image analysis. Springer Science & Business Media, Berlin
107.
Zurück zum Zitat Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23:903–921CrossRefPubMedPubMedCentral Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23:903–921CrossRefPubMedPubMedCentral
108.
Zurück zum Zitat Dice LR (1945) Measures of the Amount of Ecologic Association Between Species. Ecology 26(3):297–302CrossRef Dice LR (1945) Measures of the Amount of Ecologic Association Between Species. Ecology 26(3):297–302CrossRef
109.
Zurück zum Zitat Heimann T, van Ginneken B, Styner MA et al (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28:1251–1265CrossRefPubMed Heimann T, van Ginneken B, Styner MA et al (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28:1251–1265CrossRefPubMed
110.
Zurück zum Zitat Deng X, Zhu L, Sun Y et al (2007) On simulating subjective evaluation using combined objective metrics for validation of 3D tumor segmentation. Med Image Comput Comput Assist Interv 10:977–984PubMed Deng X, Zhu L, Sun Y et al (2007) On simulating subjective evaluation using combined objective metrics for validation of 3D tumor segmentation. Med Image Comput Comput Assist Interv 10:977–984PubMed
Metadaten
Titel
Principles and methods for automatic and semi-automatic tissue segmentation in MRI data
verfasst von
Lei Wang
Teodora Chitiboi
Hans Meine
Matthias Günther
Horst K. Hahn
Publikationsdatum
11.01.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 2/2016
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-015-0520-5

Weitere Artikel der Ausgabe 2/2016

Magnetic Resonance Materials in Physics, Biology and Medicine 2/2016 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.