Skip to main content
Erschienen in: Inflammation 3/2019

06.02.2019 | ORIGINAL ARTICLE

Probenecid Relieves Cerebral Dysfunction of Sepsis by Inhibiting Pannexin 1-Dependent ATP Release

verfasst von: Zhanqin Zhang, Yi Lei, Chaoying Yan, Xiaopeng Mei, Tao Jiang, Zhi Ma, Qiang Wang

Erschienen in: Inflammation | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Acute brain dysfunction and the following neurological manifestation are common complications in septic patients, which are associated with increased morbidity and mortality. However, the therapeutic strategy of this disorder remains a major challenge. Given the emerging role of a clinically approved drug, probenecid (PRB) has been recently identified as an inhibitor of pannexin 1 (PANX1) channel, which restrains extracellular ATP release-induced purinergic pathway activation and inflammatory response contributing to diverse pathological processes. In this study, we explored whether PRB administration attenuated neuroinflammatory response and cognitive impairment during sepsis. In mice suffered from cecal ligation and puncture (CLP)-induced sepsis, treatment with PRB improved memory retention and lessened behavioral deficits. This neuroprotective effect was coupled with restricted overproduction of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and interleukin (IL)-1β in the hippocampus. Since this damped neuroinflammation was replicated by inhibition of ATP release, it suggested that PANX1 channel modulates a purinergic-related pathway contributing to the neurohistological damage. Therefore, we identified PRB could be a promising therapeutic approach for the therapy of cerebral dysfunction of sepsis.
Literatur
1.
Zurück zum Zitat Bao, Y., C. Ledderose, T. Seier, A.F. Graf, B. Brix, E. Chong, and W.G. Junger. 2014. Mitochondria regulate neutrophil activation by generating ATP for autocrine purinergic signaling. The Journal of Biological Chemistry 289: 26794–26803.CrossRef Bao, Y., C. Ledderose, T. Seier, A.F. Graf, B. Brix, E. Chong, and W.G. Junger. 2014. Mitochondria regulate neutrophil activation by generating ATP for autocrine purinergic signaling. The Journal of Biological Chemistry 289: 26794–26803.CrossRef
2.
Zurück zum Zitat Barichello, T., M.R. Martins, A. Reinke, G. Feier, C. Ritter, J. Quevedo, and F. Dal-Pizzol. 2005. Cognitive impairment in sepsis survivors from cecal ligation and perforation. Critical Care Medicine 33: 221–223 discussion 262-223.CrossRef Barichello, T., M.R. Martins, A. Reinke, G. Feier, C. Ritter, J. Quevedo, and F. Dal-Pizzol. 2005. Cognitive impairment in sepsis survivors from cecal ligation and perforation. Critical Care Medicine 33: 221–223 discussion 262-223.CrossRef
3.
Zurück zum Zitat Block, M.L., L. Zecca, and J.S. Hong. 2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Reviews. Neuroscience 8: 57–69.CrossRef Block, M.L., L. Zecca, and J.S. Hong. 2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Reviews. Neuroscience 8: 57–69.CrossRef
4.
Zurück zum Zitat Burma, N.E., R.P. Bonin, H. Leduc-Pessah, C. Baimel, Z.F. Cairncross, M. Mousseau, J.V. Shankara, P.L. Stemkowski, D. Baimoukhametova, J.S. Bains, M.C. Antle, G.W. Zamponi, C.M. Cahill, S.L. Borgland, Y. de Koninck, and T. Trang. 2017. Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents. Nature Medicine 23: 355–360.CrossRef Burma, N.E., R.P. Bonin, H. Leduc-Pessah, C. Baimel, Z.F. Cairncross, M. Mousseau, J.V. Shankara, P.L. Stemkowski, D. Baimoukhametova, J.S. Bains, M.C. Antle, G.W. Zamponi, C.M. Cahill, S.L. Borgland, Y. de Koninck, and T. Trang. 2017. Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents. Nature Medicine 23: 355–360.CrossRef
5.
Zurück zum Zitat Carrillo-Mora, P., L.A. Mendez-Cuesta, V. Perez-De La Cruz, T.I. Fortoul-van Der Goes, and A. Santamaria. 2010. Protective effect of systemic L-kynurenine and probenecid administration on behavioural and morphological alterations induced by toxic soluble amyloid beta (25-35) in rat hippocampus. Behavioural Brain Research 210: 240–250.CrossRef Carrillo-Mora, P., L.A. Mendez-Cuesta, V. Perez-De La Cruz, T.I. Fortoul-van Der Goes, and A. Santamaria. 2010. Protective effect of systemic L-kynurenine and probenecid administration on behavioural and morphological alterations induced by toxic soluble amyloid beta (25-35) in rat hippocampus. Behavioural Brain Research 210: 240–250.CrossRef
6.
Zurück zum Zitat Cunningham, R.F., Z.H. Israili, and P.G. Dayton. 1981. Clinical pharmacokinetics of probenecid. Clinical Pharmacokinetics 6: 135–151.CrossRef Cunningham, R.F., Z.H. Israili, and P.G. Dayton. 1981. Clinical pharmacokinetics of probenecid. Clinical Pharmacokinetics 6: 135–151.CrossRef
7.
Zurück zum Zitat Decrock, E., M. De Bock, N. Wang, G. Bultynck, C. Giaume, C.C. Naus, C.R. Green, and L. Leybaert. 2015. Connexin and pannexin signaling pathways, an architectural blueprint for CNS physiology and pathology? Cellular and Molecular Life Sciences 72: 2823–2851.CrossRef Decrock, E., M. De Bock, N. Wang, G. Bultynck, C. Giaume, C.C. Naus, C.R. Green, and L. Leybaert. 2015. Connexin and pannexin signaling pathways, an architectural blueprint for CNS physiology and pathology? Cellular and Molecular Life Sciences 72: 2823–2851.CrossRef
8.
Zurück zum Zitat Dossi, E., T. Blauwblomme, J. Moulard, O. Chever, F. Vasile, E. Guinard, M. le Bert, I. Couillin, J. Pallud, L. Capelle, G. Huberfeld, and N. Rouach. 2018. Pannexin-1 channels contribute to seizure generation in human epileptic brain tissue and in a mouse model of epilepsy. Science Translational Medicine 10: eaar3796.CrossRef Dossi, E., T. Blauwblomme, J. Moulard, O. Chever, F. Vasile, E. Guinard, M. le Bert, I. Couillin, J. Pallud, L. Capelle, G. Huberfeld, and N. Rouach. 2018. Pannexin-1 channels contribute to seizure generation in human epileptic brain tissue and in a mouse model of epilepsy. Science Translational Medicine 10: eaar3796.CrossRef
9.
Zurück zum Zitat Freitas-Andrade, M., J.F. Bechberger, B.A. MacVicar, V. Viau, and C.C. Naus. 2017. Pannexin1 knockout and blockade reduces ischemic stroke injury in female, but not in male mice. Oncotarget 8: 36973–36983.CrossRef Freitas-Andrade, M., J.F. Bechberger, B.A. MacVicar, V. Viau, and C.C. Naus. 2017. Pannexin1 knockout and blockade reduces ischemic stroke injury in female, but not in male mice. Oncotarget 8: 36973–36983.CrossRef
10.
Zurück zum Zitat Gofton, T.E., and G.B. Young. 2012. Sepsis-associated encephalopathy. Nature Reviews. Neurology 8: 557–566.CrossRef Gofton, T.E., and G.B. Young. 2012. Sepsis-associated encephalopathy. Nature Reviews. Neurology 8: 557–566.CrossRef
11.
Zurück zum Zitat Gyoneva, S., D. Davalos, D. Biswas, S.A. Swanger, E. Garnier-Amblard, F. Loth, K. Akassoglou, and S.F. Traynelis. 2014a. Systemic inflammation regulates microglial responses to tissue damage in vivo. Glia 62: 1345–1360.CrossRef Gyoneva, S., D. Davalos, D. Biswas, S.A. Swanger, E. Garnier-Amblard, F. Loth, K. Akassoglou, and S.F. Traynelis. 2014a. Systemic inflammation regulates microglial responses to tissue damage in vivo. Glia 62: 1345–1360.CrossRef
12.
Zurück zum Zitat Gyoneva, S., D. Davalos, D. Biswas, S.A. Swanger, E. Garnier-Amblard, F. Loth, K. Akassoglou, and S.F. Traynelis. 2014b. Systemic inflammation regulates microglial responses to tissue damage in vivo. Glia 62: 1345–1360.CrossRef Gyoneva, S., D. Davalos, D. Biswas, S.A. Swanger, E. Garnier-Amblard, F. Loth, K. Akassoglou, and S.F. Traynelis. 2014b. Systemic inflammation regulates microglial responses to tissue damage in vivo. Glia 62: 1345–1360.CrossRef
13.
Zurück zum Zitat Hainz, N., S. Wolf, A. Beck, S. Wagenpfeil, T. Tschernig, and C. Meier. 2017. Probenecid arrests the progression of pronounced clinical symptoms in a mouse model of multiple sclerosis. Scientific Reports 7: 17214.CrossRef Hainz, N., S. Wolf, A. Beck, S. Wagenpfeil, T. Tschernig, and C. Meier. 2017. Probenecid arrests the progression of pronounced clinical symptoms in a mouse model of multiple sclerosis. Scientific Reports 7: 17214.CrossRef
14.
Zurück zum Zitat Hainz, N., S. Wolf, T. Tschernig, and C. Meier. 2016. Probenecid application prevents clinical symptoms and inflammation in experimental autoimmune encephalomyelitis. Inflammation 39: 123–128.CrossRef Hainz, N., S. Wolf, T. Tschernig, and C. Meier. 2016. Probenecid application prevents clinical symptoms and inflammation in experimental autoimmune encephalomyelitis. Inflammation 39: 123–128.CrossRef
15.
Zurück zum Zitat Hanisch, U.K., and H. Kettenmann. 2007. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience 10: 1387–1394.CrossRef Hanisch, U.K., and H. Kettenmann. 2007. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience 10: 1387–1394.CrossRef
16.
Zurück zum Zitat Hattori, Y., K. Hattori, T. Suzuki, and N. Matsuda. 2017. Recent advances in the pathophysiology and molecular basis of sepsis-associated organ dysfunction: novel therapeutic implications and challenges. Pharmacology & Therapeutics 177: 56–66.CrossRef Hattori, Y., K. Hattori, T. Suzuki, and N. Matsuda. 2017. Recent advances in the pathophysiology and molecular basis of sepsis-associated organ dysfunction: novel therapeutic implications and challenges. Pharmacology & Therapeutics 177: 56–66.CrossRef
17.
Zurück zum Zitat He, H., D. Liu, Y. Long, X. Wang, and B. Yao. 2018. The pannexin-1 channel inhibitor probenecid attenuates skeletal muscle cellular energy crisis and histopathological injury in a rabbit endotoxemia model. Inflammation 41: 2030–2040.CrossRef He, H., D. Liu, Y. Long, X. Wang, and B. Yao. 2018. The pannexin-1 channel inhibitor probenecid attenuates skeletal muscle cellular energy crisis and histopathological injury in a rabbit endotoxemia model. Inflammation 41: 2030–2040.CrossRef
18.
Zurück zum Zitat Hernandes, M.S., J.C. D'Avila, S.C. Trevelin, et al. 2014. The role of Nox2-derived ROS in the development of cognitive impairment after sepsis. Journal of Neuroinflammation 11: 36.CrossRef Hernandes, M.S., J.C. D'Avila, S.C. Trevelin, et al. 2014. The role of Nox2-derived ROS in the development of cognitive impairment after sepsis. Journal of Neuroinflammation 11: 36.CrossRef
19.
Zurück zum Zitat Imamura, Y., H. Wang, N. Matsumoto, T. Muroya, J. Shimazaki, H. Ogura, and T. Shimazu. 2011. Interleukin-1beta causes long-term potentiation deficiency in a mouse model of septic encephalopathy. Neuroscience 187: 63–69.CrossRef Imamura, Y., H. Wang, N. Matsumoto, T. Muroya, J. Shimazaki, H. Ogura, and T. Shimazu. 2011. Interleukin-1beta causes long-term potentiation deficiency in a mouse model of septic encephalopathy. Neuroscience 187: 63–69.CrossRef
20.
Zurück zum Zitat Iwashyna, T.J., E.W. Ely, D.M. Smith, and K.M. Langa. 2010. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304: 1787–1794.CrossRef Iwashyna, T.J., E.W. Ely, D.M. Smith, and K.M. Langa. 2010. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304: 1787–1794.CrossRef
21.
Zurück zum Zitat Li, M.X., H.L. Zheng, Y. Luo, J.G. He, W. Wang, J. Han, L. Zhang, X. Wang, L. Ni, H.Y. Zhou, Z.L. Hu, P.F. Wu, Y. Jin, L.H. Long, H. Zhang, G. Hu, J.G. Chen, and F. Wang. 2018. Gene deficiency and pharmacological inhibition of caspase-1 confers resilience to chronic social defeat stress via regulating the stability of surface AMPARs. Molecular Psychiatry 23: 556–568.CrossRef Li, M.X., H.L. Zheng, Y. Luo, J.G. He, W. Wang, J. Han, L. Zhang, X. Wang, L. Ni, H.Y. Zhou, Z.L. Hu, P.F. Wu, Y. Jin, L.H. Long, H. Zhang, G. Hu, J.G. Chen, and F. Wang. 2018. Gene deficiency and pharmacological inhibition of caspase-1 confers resilience to chronic social defeat stress via regulating the stability of surface AMPARs. Molecular Psychiatry 23: 556–568.CrossRef
22.
Zurück zum Zitat Li, X., Y. Kondo, Y. Bao, L. Staudenmaier, A. Lee, J. Zhang, C. Ledderose, and W.G. Junger. 2017. Systemic adenosine triphosphate impairs neutrophil chemotaxis and host defense in sepsis. Critical Care Medicine 45: e97–e104.CrossRef Li, X., Y. Kondo, Y. Bao, L. Staudenmaier, A. Lee, J. Zhang, C. Ledderose, and W.G. Junger. 2017. Systemic adenosine triphosphate impairs neutrophil chemotaxis and host defense in sepsis. Critical Care Medicine 45: e97–e104.CrossRef
23.
Zurück zum Zitat Michels, M., A.S. Vieira, F. Vuolo, H.G. Zapelini, B. Mendonça, F. Mina, D. Dominguini, A. Steckert, P.F. Schuck, J. Quevedo, F. Petronilho, and F. Dal-Pizzol. 2015. The role of microglia activation in the development of sepsis-induced long-term cognitive impairment. Brain, Behavior, and Immunity 43: 54–59.CrossRef Michels, M., A.S. Vieira, F. Vuolo, H.G. Zapelini, B. Mendonça, F. Mina, D. Dominguini, A. Steckert, P.F. Schuck, J. Quevedo, F. Petronilho, and F. Dal-Pizzol. 2015. The role of microglia activation in the development of sepsis-induced long-term cognitive impairment. Brain, Behavior, and Immunity 43: 54–59.CrossRef
24.
Zurück zum Zitat Moraes, C.A., G. Santos, T.C. de Sampaio e Spohr, J.C. D'Avila, F.R. Lima, C.F. Benjamim, F.A. Bozza, and F.C. Gomes. 2015. Activated microglia-induced deficits in excitatory synapses through IL-1beta: implications for cognitive impairment in sepsis. Molecular Neurobiology 52: 653–663.CrossRef Moraes, C.A., G. Santos, T.C. de Sampaio e Spohr, J.C. D'Avila, F.R. Lima, C.F. Benjamim, F.A. Bozza, and F.C. Gomes. 2015. Activated microglia-induced deficits in excitatory synapses through IL-1beta: implications for cognitive impairment in sepsis. Molecular Neurobiology 52: 653–663.CrossRef
25.
Zurück zum Zitat Neves, F.S., Marques, P.T., Barros-Aragao, F., et al. 2018. Brain-defective insulin signaling is associated to late cognitive impairment in post-septic mice. Molecular Neurobiology 55: 435–444.CrossRef Neves, F.S., Marques, P.T., Barros-Aragao, F., et al. 2018. Brain-defective insulin signaling is associated to late cognitive impairment in post-septic mice. Molecular Neurobiology 55: 435–444.CrossRef
26.
Zurück zum Zitat Qi, Y., N. Hainz, T. Tschernig, C. Meier, and D.A. Volmer. 2015. Differential distribution of probenecid as detected by on-tissue mass spectrometry. Cell and Tissue Research 360: 427–429.CrossRef Qi, Y., N. Hainz, T. Tschernig, C. Meier, and D.A. Volmer. 2015. Differential distribution of probenecid as detected by on-tissue mass spectrometry. Cell and Tissue Research 360: 427–429.CrossRef
27.
Zurück zum Zitat Rittirsch, D., M.S. Huber-Lang, M.A. Flierl, and P.A. Ward. 2009. Immunodesign of experimental sepsis by cecal ligation and puncture. Nature Protocols 4: 31–36.CrossRef Rittirsch, D., M.S. Huber-Lang, M.A. Flierl, and P.A. Ward. 2009. Immunodesign of experimental sepsis by cecal ligation and puncture. Nature Protocols 4: 31–36.CrossRef
28.
Zurück zum Zitat Robbins, N., S.E. Koch, M. Tranter, and J. Rubinstein. 2012. The history and future of probenecid. Cardiovascular Toxicology 12: 1–9.CrossRef Robbins, N., S.E. Koch, M. Tranter, and J. Rubinstein. 2012. The history and future of probenecid. Cardiovascular Toxicology 12: 1–9.CrossRef
29.
Zurück zum Zitat Schneider, C.A., W.S. Rasband, and K.W. Eliceiri. 2012. NIH image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675.CrossRef Schneider, C.A., W.S. Rasband, and K.W. Eliceiri. 2012. NIH image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675.CrossRef
30.
Zurück zum Zitat Shieh, C.H., A. Heinrich, T. Serchov, D. van Calker, and K. Biber. 2014. P2X7-dependent, but differentially regulated release of IL-6, CCL2, and TNF-alpha in cultured mouse microglia. Glia 62: 592–607.CrossRef Shieh, C.H., A. Heinrich, T. Serchov, D. van Calker, and K. Biber. 2014. P2X7-dependent, but differentially regulated release of IL-6, CCL2, and TNF-alpha in cultured mouse microglia. Glia 62: 592–607.CrossRef
31.
Zurück zum Zitat Silverman, W., S. Locovei, and G. Dahl. 2008. Probenecid, a gout remedy, inhibits pannexin 1 channels. American Journal of Physiology. Cell Physiology 295: C761–C767.CrossRef Silverman, W., S. Locovei, and G. Dahl. 2008. Probenecid, a gout remedy, inhibits pannexin 1 channels. American Journal of Physiology. Cell Physiology 295: C761–C767.CrossRef
32.
Zurück zum Zitat Silverman, W.R., J.P. de Rivero Vaccari, S. Locovei, F. Qiu, S.K. Carlsson, E. Scemes, R.W. Keane, and G. Dahl. 2009. The pannexin 1 channel activates the inflammasome in neurons and astrocytes. The Journal of Biological Chemistry 284: 18143–18151.CrossRef Silverman, W.R., J.P. de Rivero Vaccari, S. Locovei, F. Qiu, S.K. Carlsson, E. Scemes, R.W. Keane, and G. Dahl. 2009. The pannexin 1 channel activates the inflammasome in neurons and astrocytes. The Journal of Biological Chemistry 284: 18143–18151.CrossRef
33.
Zurück zum Zitat Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315: 801–810.CrossRef Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315: 801–810.CrossRef
34.
Zurück zum Zitat Sprung, C.L., P.N. Peduzzi, C.H. Shatney, R.M. Schein, M.F. Wilson, J.N. Sheagren, and L.B. Hinshaw. 1990. Impact of encephalopathy on mortality in the sepsis syndrome. The Veterans Administration Systemic Sepsis Cooperative Study Group. Critical Care Medicine 18: 801–806.CrossRef Sprung, C.L., P.N. Peduzzi, C.H. Shatney, R.M. Schein, M.F. Wilson, J.N. Sheagren, and L.B. Hinshaw. 1990. Impact of encephalopathy on mortality in the sepsis syndrome. The Veterans Administration Systemic Sepsis Cooperative Study Group. Critical Care Medicine 18: 801–806.CrossRef
35.
Zurück zum Zitat Tollner, K., C. Brandt, K. Romermann, and W. Loscher. 2015. The organic anion transport inhibitor probenecid increases brain concentrations of the NKCC1 inhibitor bumetanide. European Journal of Pharmacology 746: 167–173.CrossRef Tollner, K., C. Brandt, K. Romermann, and W. Loscher. 2015. The organic anion transport inhibitor probenecid increases brain concentrations of the NKCC1 inhibitor bumetanide. European Journal of Pharmacology 746: 167–173.CrossRef
36.
Zurück zum Zitat Wei, R., J. Wang, Y. Xu, B. Yin, F. He, Y. Du, G. Peng, and B. Luo. 2015. Probenecid protects against cerebral ischemia/reperfusion injury by inhibiting lysosomal and inflammatory damage in rats. Neuroscience 301: 168–177.CrossRef Wei, R., J. Wang, Y. Xu, B. Yin, F. He, Y. Du, G. Peng, and B. Luo. 2015. Probenecid protects against cerebral ischemia/reperfusion injury by inhibiting lysosomal and inflammatory damage in rats. Neuroscience 301: 168–177.CrossRef
37.
Zurück zum Zitat Widmann, C.N., and M.T. Heneka. 2014. Long-term cerebral consequences of sepsis. Lancet Neurology 13: 630–636.CrossRef Widmann, C.N., and M.T. Heneka. 2014. Long-term cerebral consequences of sepsis. Lancet Neurology 13: 630–636.CrossRef
38.
Zurück zum Zitat Yang, D., Y. He, R. Munoz-Planillo, Q. Liu, and G. Nunez. 2015. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity 43: 923–932.CrossRef Yang, D., Y. He, R. Munoz-Planillo, Q. Liu, and G. Nunez. 2015. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity 43: 923–932.CrossRef
Metadaten
Titel
Probenecid Relieves Cerebral Dysfunction of Sepsis by Inhibiting Pannexin 1-Dependent ATP Release
verfasst von
Zhanqin Zhang
Yi Lei
Chaoying Yan
Xiaopeng Mei
Tao Jiang
Zhi Ma
Qiang Wang
Publikationsdatum
06.02.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-00969-4

Weitere Artikel der Ausgabe 3/2019

Inflammation 3/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.