Skip to main content
Erschienen in: Brain Structure and Function 7/2019

06.07.2019 | Original Article

Processing pathways for emotional vocalizations

verfasst von: Tiffany Grisendi, Olivier Reynaud, Stephanie Clarke, Sandra Da Costa

Erschienen in: Brain Structure and Function | Ausgabe 7/2019

Einloggen, um Zugang zu erhalten

Abstract

Emotional sounds are processed within a large cortico-subcortical network, of which the auditory cortex, the voice area, and the amygdala are the core regions. Using 7T fMRI, we have compared the effect of emotional valence (positive, neutral, and negative) and the effect of the type of environmental sounds (human vocalizations and non-vocalizations) on neural activity within individual early stage auditory areas, the voice area, and the amygdala. A two-way ANOVA was applied to the BOLD time course within each ROI. In several early stage auditory areas, it yielded a significant main effect of vocalizations and of valence, but not a significant interaction. Significant interaction as well as significant main effects of vocalization and of valence were present in the voice area; the former was driven by a significant emotional modulation of vocalizations but not of other sounds. Within the amygdala, only the main effect of valence was significant. Post-hoc correlation analysis highlighted coupling between the voice area and early stage auditory areas during the presentation of any vocalizations, and between the voice area and the right amygdala during positive vocalizations. Thus, the voice area is selectively devoted to the encoding of the emotional valence of vocalizations; it shares with several early stage auditory areas encoding characteristics for vocalizations and with the amygdala for the emotional modulation of vocalizations. These results are indicative of a dual pathway, whereby the emotional modulation of vocalizations within the voice area integrates the input from the lateral early stage auditory areas and from the amygdala.
Literatur
Zurück zum Zitat Aeschlimann M, Knebel J-F, Murray MM, Clarke S (2008) Emotional pre-eminence of human vocalizations. Brain Topogr 20:239–248PubMed Aeschlimann M, Knebel J-F, Murray MM, Clarke S (2008) Emotional pre-eminence of human vocalizations. Brain Topogr 20:239–248PubMed
Zurück zum Zitat Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah NJ, Habel U, Schneider F, Zilles K (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl) 210:343–352 Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah NJ, Habel U, Schneider F, Zilles K (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl) 210:343–352
Zurück zum Zitat Anderson AK, Christoff K, Stappen I, Panitz D, Ghahremani DG, Glover G, Gabrieli JDE, Sobel N (2003) Dissociated neural representations of intensity and valence in human olfaction. Nat Neurosci 6:196–202PubMed Anderson AK, Christoff K, Stappen I, Panitz D, Ghahremani DG, Glover G, Gabrieli JDE, Sobel N (2003) Dissociated neural representations of intensity and valence in human olfaction. Nat Neurosci 6:196–202PubMed
Zurück zum Zitat Arnal LH, Flinker A, Kleinschmidt A, Giraud A-L, Poeppel D (2015) Human screams occupy a privileged niche in the communication soundscape. Curr Biol 25:2051–2056PubMedPubMedCentral Arnal LH, Flinker A, Kleinschmidt A, Giraud A-L, Poeppel D (2015) Human screams occupy a privileged niche in the communication soundscape. Curr Biol 25:2051–2056PubMedPubMedCentral
Zurück zum Zitat Aubé W, Angulo-Perkins A, Peretz I, Concha L, Armony JL (2015) Fear across the senses: brain responses to music, vocalizations and facial expressions. Soc Cogn Affect Neurosci 10:399–407PubMed Aubé W, Angulo-Perkins A, Peretz I, Concha L, Armony JL (2015) Fear across the senses: brain responses to music, vocalizations and facial expressions. Soc Cogn Affect Neurosci 10:399–407PubMed
Zurück zum Zitat Baas D, Aleman A, Kahn RS (2004) Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Res Rev 45:96–103PubMed Baas D, Aleman A, Kahn RS (2004) Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Res Rev 45:96–103PubMed
Zurück zum Zitat Ball T, Rahm B, Eickhoff SB, Schulze-Bonhage A, Speck O, Mutschler I (2007) Response properties of human amygdala subregions: evidence based on functional mri combined with probabilistic anatomical maps. PLoS One 2:e307PubMedPubMedCentral Ball T, Rahm B, Eickhoff SB, Schulze-Bonhage A, Speck O, Mutschler I (2007) Response properties of human amygdala subregions: evidence based on functional mri combined with probabilistic anatomical maps. PLoS One 2:e307PubMedPubMedCentral
Zurück zum Zitat Ball T, Derix J, Wentlandt J, Wieckhorst B, Speck O, Schulze-Bonhage A, Mutschler I (2009) Anatomical specificity of functional amygdala imaging of responses to stimuli with positive and negative emotional valence. J Neurosci Methods 180:57–70PubMed Ball T, Derix J, Wentlandt J, Wieckhorst B, Speck O, Schulze-Bonhage A, Mutschler I (2009) Anatomical specificity of functional amygdala imaging of responses to stimuli with positive and negative emotional valence. J Neurosci Methods 180:57–70PubMed
Zurück zum Zitat Barbas H (2007) Flow of information for emotions through temporal and orbitofrontal pathways. J Anat 211:237–249PubMedPubMedCentral Barbas H (2007) Flow of information for emotions through temporal and orbitofrontal pathways. J Anat 211:237–249PubMedPubMedCentral
Zurück zum Zitat Barbas H, Zikopoulos B, Timbie C (2011) Sensory pathways and emotional context for action in primate prefrontal cortex. Biol Psychiatry 69:1133–1139PubMed Barbas H, Zikopoulos B, Timbie C (2011) Sensory pathways and emotional context for action in primate prefrontal cortex. Biol Psychiatry 69:1133–1139PubMed
Zurück zum Zitat Beaucousin V, Lacheret A, Turbelin M-R, Morel M, Mazoyer B, Tzourio-Mazoyer N (2007a) FMRI study of emotional speech comprehension. Cereb Cortex 17:339–352PubMed Beaucousin V, Lacheret A, Turbelin M-R, Morel M, Mazoyer B, Tzourio-Mazoyer N (2007a) FMRI study of emotional speech comprehension. Cereb Cortex 17:339–352PubMed
Zurück zum Zitat Beaucousin V, Lacheret A, Turbelin M-R, Morel M, Mazoyer B, Tzourio-Mazoyer N (2007b) FMRI study of emotional speech comprehension. Cereb Cortex 17:339–352PubMed Beaucousin V, Lacheret A, Turbelin M-R, Morel M, Mazoyer B, Tzourio-Mazoyer N (2007b) FMRI study of emotional speech comprehension. Cereb Cortex 17:339–352PubMed
Zurück zum Zitat Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403:309–312PubMed Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403:309–312PubMed
Zurück zum Zitat Belin P, Zatorre RJ, Ahad P (2002) Human temporal-lobe response to vocal sounds. Cogn Brain Res 13:17–26 Belin P, Zatorre RJ, Ahad P (2002) Human temporal-lobe response to vocal sounds. Cogn Brain Res 13:17–26
Zurück zum Zitat Boubela RN, Kalcher K, Huf W, Seidel E-M, Derntl B, Pezawas L, Našel C, Moser E (2015) fMRI measurements of amygdala activation are confounded by stimulus correlated signal fluctuation in nearby veins draining distant brain regions. Sci Rep 5:10499PubMedPubMedCentral Boubela RN, Kalcher K, Huf W, Seidel E-M, Derntl B, Pezawas L, Našel C, Moser E (2015) fMRI measurements of amygdala activation are confounded by stimulus correlated signal fluctuation in nearby veins draining distant brain regions. Sci Rep 5:10499PubMedPubMedCentral
Zurück zum Zitat Cammoun L, Thiran JP, Griffa A, Meuli R, Hagmann P, Clarke S (2015) Intrahemispheric cortico-cortical connections of the human auditory cortex. Brain Struct Funct 220:3537–3553PubMed Cammoun L, Thiran JP, Griffa A, Meuli R, Hagmann P, Clarke S (2015) Intrahemispheric cortico-cortical connections of the human auditory cortex. Brain Struct Funct 220:3537–3553PubMed
Zurück zum Zitat Chevillet M, Riesenhuber M, Rauschecker JP (2011) Functional correlates of the anterolateral processing hierarchy in human auditory cortex. J Neurosci 31:9345–9352PubMedPubMedCentral Chevillet M, Riesenhuber M, Rauschecker JP (2011) Functional correlates of the anterolateral processing hierarchy in human auditory cortex. J Neurosci 31:9345–9352PubMedPubMedCentral
Zurück zum Zitat Chiry O, Tardif E, Magistretti PJ, Clarke S (2003) Patterns of calcium-binding proteins support parallel and hierarchical organization of human auditory areas. Eur J Neurosci 17:397–410PubMed Chiry O, Tardif E, Magistretti PJ, Clarke S (2003) Patterns of calcium-binding proteins support parallel and hierarchical organization of human auditory areas. Eur J Neurosci 17:397–410PubMed
Zurück zum Zitat Clarke S, Morosan P (2012) Architecture, connectivity and transmitter receptors of human auditory cortex. In: Poeppel D, Overath T, Popper AN, Fay RR (eds) Human auditory cortex. Springer, New York Clarke S, Morosan P (2012) Architecture, connectivity and transmitter receptors of human auditory cortex. In: Poeppel D, Overath T, Popper AN, Fay RR (eds) Human auditory cortex. Springer, New York
Zurück zum Zitat Clarke S, Rivier F (1998) Compartments within human primary auditory cortex: evidence from cytochrome oxidase and acetylcholinesterase staining. Eur J Neurosci 10:741–745PubMed Clarke S, Rivier F (1998) Compartments within human primary auditory cortex: evidence from cytochrome oxidase and acetylcholinesterase staining. Eur J Neurosci 10:741–745PubMed
Zurück zum Zitat Costa VD, Lang PJ, Sabatinelli D, Versace F, Bradley MM (2010) Emotional imagery: assessing pleasure and arousal in the brain’s reward circuitry. Hum Brain Mapp 31:1446–1457PubMedPubMedCentral Costa VD, Lang PJ, Sabatinelli D, Versace F, Bradley MM (2010) Emotional imagery: assessing pleasure and arousal in the brain’s reward circuitry. Hum Brain Mapp 31:1446–1457PubMedPubMedCentral
Zurück zum Zitat Costafreda SG, Brammer MJ, David AS, Fu CHY (2008) Predictors of amygdala activation during the processing of emotional stimuli: a meta-analysis of 385 PET and fMRI studies. Brain Res Rev 58:57–70PubMed Costafreda SG, Brammer MJ, David AS, Fu CHY (2008) Predictors of amygdala activation during the processing of emotional stimuli: a meta-analysis of 385 PET and fMRI studies. Brain Res Rev 58:57–70PubMed
Zurück zum Zitat Da Costa S, van der Zwaag W, Marques JP, Frackowiak RSJ, Clarke S, Saenz M (2011) Human primary auditory cortex follows the shape of heschl’s gyrus. J Neurosci 31:14067–14075PubMedPubMedCentral Da Costa S, van der Zwaag W, Marques JP, Frackowiak RSJ, Clarke S, Saenz M (2011) Human primary auditory cortex follows the shape of heschl’s gyrus. J Neurosci 31:14067–14075PubMedPubMedCentral
Zurück zum Zitat Da Costa S, van der Zwaag W, Miller LM, Clarke S, Saenz M (2013) Tuning into sound: frequency-selective attentional filter in human primary auditory cortex. J Neurosci 33:1858–1863PubMedPubMedCentral Da Costa S, van der Zwaag W, Miller LM, Clarke S, Saenz M (2013) Tuning into sound: frequency-selective attentional filter in human primary auditory cortex. J Neurosci 33:1858–1863PubMedPubMedCentral
Zurück zum Zitat Da Costa S, Bourquin NM-P, Knebel J-F, Saenz M, van der Zwaag W, Clarke S (2015) Representation of sound objects within early-stage auditory areas: a repetition effect study using 7T fMRI. PLoS One 10:e0124072PubMedPubMedCentral Da Costa S, Bourquin NM-P, Knebel J-F, Saenz M, van der Zwaag W, Clarke S (2015) Representation of sound objects within early-stage auditory areas: a repetition effect study using 7T fMRI. PLoS One 10:e0124072PubMedPubMedCentral
Zurück zum Zitat De Meo R, Bourquin NM-P, Knebel J-F, Murray MM, Clarke S (2015) From bird to sparrow: learning-induced modulations in fine-grained semantic discrimination. NeuroImage 118:163–173PubMed De Meo R, Bourquin NM-P, Knebel J-F, Murray MM, Clarke S (2015) From bird to sparrow: learning-induced modulations in fine-grained semantic discrimination. NeuroImage 118:163–173PubMed
Zurück zum Zitat Di Virgilio G, Clarke S (1997) Direct interhemispheric visual input to human speech areas. Hum Brain Mapp 5:347–354PubMed Di Virgilio G, Clarke S (1997) Direct interhemispheric visual input to human speech areas. Hum Brain Mapp 5:347–354PubMed
Zurück zum Zitat Dietrich S, Hertrich I, Alter K, Ischebeck A, Ackermann H (2007) Semiotic aspects of human nonverbal vocalizations: a functional imaging study. NeuroReport 18:1891–1894PubMed Dietrich S, Hertrich I, Alter K, Ischebeck A, Ackermann H (2007) Semiotic aspects of human nonverbal vocalizations: a functional imaging study. NeuroReport 18:1891–1894PubMed
Zurück zum Zitat Dietrich S, Hertrich I, Alter K, Ischebeck A, Ackermann H (2008) Understanding the emotional expression of verbal interjections: a functional MRI study. NeuroReport 19:1751–1755PubMed Dietrich S, Hertrich I, Alter K, Ischebeck A, Ackermann H (2008) Understanding the emotional expression of verbal interjections: a functional MRI study. NeuroReport 19:1751–1755PubMed
Zurück zum Zitat Ethofer T, Anders S, Erb M, Droll C, Royen L, Saur R, Reiterer S, Grodd W, Wildgruber D (2006a) Impact of voice on emotional judgment of faces: an event-related fMRI study. Hum Brain Mapp 27:707–714PubMedPubMedCentral Ethofer T, Anders S, Erb M, Droll C, Royen L, Saur R, Reiterer S, Grodd W, Wildgruber D (2006a) Impact of voice on emotional judgment of faces: an event-related fMRI study. Hum Brain Mapp 27:707–714PubMedPubMedCentral
Zurück zum Zitat Ethofer T, Anders S, Wiethoff S, Erb M, Herbert C, Saur R, Grodd W, Wildgruber D (2006b) Effects of prosodic emotional intensity on activation of associative auditory cortex. NeuroReport 17:249–253PubMed Ethofer T, Anders S, Wiethoff S, Erb M, Herbert C, Saur R, Grodd W, Wildgruber D (2006b) Effects of prosodic emotional intensity on activation of associative auditory cortex. NeuroReport 17:249–253PubMed
Zurück zum Zitat Ethofer T, Kreifelts B, Wiethoff S, Wolf J, Grodd W, Vuilleumier P, Wildgruber D (2008) differential influences of emotion, task, and novelty on brain regions underlying the processing of speech melody. J Cogn Neurosci 21:1255–1268 Ethofer T, Kreifelts B, Wiethoff S, Wolf J, Grodd W, Vuilleumier P, Wildgruber D (2008) differential influences of emotion, task, and novelty on brain regions underlying the processing of speech melody. J Cogn Neurosci 21:1255–1268
Zurück zum Zitat Ethofer T, Kreifelts B, Wiethoff S, Wolf J, Grodd W, Vuilleumier P, Wildgruber D (2009a) Differential influences of emotion, task, and novelty on brain regions underlying the processing of speech melody. J Cogn Neurosci 21:1255–1268PubMed Ethofer T, Kreifelts B, Wiethoff S, Wolf J, Grodd W, Vuilleumier P, Wildgruber D (2009a) Differential influences of emotion, task, and novelty on brain regions underlying the processing of speech melody. J Cogn Neurosci 21:1255–1268PubMed
Zurück zum Zitat Ethofer T, Van De Ville D, Scherer K, Vuilleumier P (2009b) Decoding of emotional information in voice-sensitive cortices. Curr Biol 19:1028–1033PubMed Ethofer T, Van De Ville D, Scherer K, Vuilleumier P (2009b) Decoding of emotional information in voice-sensitive cortices. Curr Biol 19:1028–1033PubMed
Zurück zum Zitat Ethofer T, Bretscher J, Gschwind M, Kreifelts B, Wildgruber D, Vuilleumier P (2012) Emotional voice areas: anatomic location, functional properties, and structural connections revealed by combined fMRI/DTI. Cereb Cortex 22:191–200PubMed Ethofer T, Bretscher J, Gschwind M, Kreifelts B, Wildgruber D, Vuilleumier P (2012) Emotional voice areas: anatomic location, functional properties, and structural connections revealed by combined fMRI/DTI. Cereb Cortex 22:191–200PubMed
Zurück zum Zitat Ethofer T, Bretscher J, Wiethoff S, Bisch J, Schlipf S, Wildgruber D, Kreifelts B (2013) Functional responses and structural connections of cortical areas for processing faces and voices in the superior temporal sulcus. NeuroImage 76:45–56PubMed Ethofer T, Bretscher J, Wiethoff S, Bisch J, Schlipf S, Wildgruber D, Kreifelts B (2013) Functional responses and structural connections of cortical areas for processing faces and voices in the superior temporal sulcus. NeuroImage 76:45–56PubMed
Zurück zum Zitat Fecteau S, Belin P, Joanette Y, Armony JL (2007) Amygdala responses to nonlinguistic emotional vocalizations. NeuroImage 36:480–487PubMed Fecteau S, Belin P, Joanette Y, Armony JL (2007) Amygdala responses to nonlinguistic emotional vocalizations. NeuroImage 36:480–487PubMed
Zurück zum Zitat Formisano E, Kim D-S, Salle FD, van de Moortele P-F, Ugurbil K, Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40:859–869PubMed Formisano E, Kim D-S, Salle FD, van de Moortele P-F, Ugurbil K, Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40:859–869PubMed
Zurück zum Zitat Frühholz S, Grandjean D (2013) Processing of emotional vocalizations in bilateral inferior frontal cortex. Neurosci Biobehav Rev 37:2847–2855PubMed Frühholz S, Grandjean D (2013) Processing of emotional vocalizations in bilateral inferior frontal cortex. Neurosci Biobehav Rev 37:2847–2855PubMed
Zurück zum Zitat Frühholz S, Trost W, Grandjean D (2014) The role of the medial temporal limbic system in processing emotions in voice and music. Prog Neurobiol 123:1–17PubMed Frühholz S, Trost W, Grandjean D (2014) The role of the medial temporal limbic system in processing emotions in voice and music. Prog Neurobiol 123:1–17PubMed
Zurück zum Zitat Frühholz S, Trost W, Kotz SA (2016) The sound of emotions—towards a unifying neural network perspective of affective sound processing. Neurosci Biobehav Rev 68:96–110PubMed Frühholz S, Trost W, Kotz SA (2016) The sound of emotions—towards a unifying neural network perspective of affective sound processing. Neurosci Biobehav Rev 68:96–110PubMed
Zurück zum Zitat Ghashghaei HT, Barbas H (2002) Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 115:1261–1279PubMed Ghashghaei HT, Barbas H (2002) Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 115:1261–1279PubMed
Zurück zum Zitat Goedhart AD, Van Der Sluis S, Houtveen JH, Willemsen G, De Geus EJC (2007) Comparison of time and frequency domain measures of RSA in ambulatory recordings. Psychophysiology 44:203–215PubMed Goedhart AD, Van Der Sluis S, Houtveen JH, Willemsen G, De Geus EJC (2007) Comparison of time and frequency domain measures of RSA in ambulatory recordings. Psychophysiology 44:203–215PubMed
Zurück zum Zitat Grandjean D, Sander D, Pourtois G, Schwartz S, Seghier ML, Scherer KR, Vuilleumier P (2005) The voices of wrath: brain responses to angry prosody in meaningless speech. Nat Neurosci 8:145–146PubMed Grandjean D, Sander D, Pourtois G, Schwartz S, Seghier ML, Scherer KR, Vuilleumier P (2005) The voices of wrath: brain responses to angry prosody in meaningless speech. Nat Neurosci 8:145–146PubMed
Zurück zum Zitat Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441:197–222PubMed Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441:197–222PubMed
Zurück zum Zitat Hall DA, Johnsrude IS, Haggard MP, Palmer AR, Akeroyd MA, Summerfield AQ (2002) Spectral and temporal processing in human auditory cortex. Cereb Cortex 12:140–149PubMed Hall DA, Johnsrude IS, Haggard MP, Palmer AR, Akeroyd MA, Summerfield AQ (2002) Spectral and temporal processing in human auditory cortex. Cereb Cortex 12:140–149PubMed
Zurück zum Zitat Hurlemann R, Rehme AK, Diessel M, Kukolja J, Maier W, Walter H, Cohen MX (2008) Segregating intra-amygdalar responses to dynamic facial emotion with cytoarchitectonic maximum probability maps. J Neurosci Methods 172:13–20PubMed Hurlemann R, Rehme AK, Diessel M, Kukolja J, Maier W, Walter H, Cohen MX (2008) Segregating intra-amygdalar responses to dynamic facial emotion with cytoarchitectonic maximum probability maps. J Neurosci Methods 172:13–20PubMed
Zurück zum Zitat Jehna M, Langkammer C, Wallner-Blazek M, Neuper C, Loitfelder M, Ropele S, Fuchs S, Khalil M, Pluta-Fuerst A, Fazekas F, Enzinger C (2011) Cognitively preserved MS patients demonstrate functional differences in processing neutral and emotional faces. Brain Imaging Behav 5:241–251PubMed Jehna M, Langkammer C, Wallner-Blazek M, Neuper C, Loitfelder M, Ropele S, Fuchs S, Khalil M, Pluta-Fuerst A, Fazekas F, Enzinger C (2011) Cognitively preserved MS patients demonstrate functional differences in processing neutral and emotional faces. Brain Imaging Behav 5:241–251PubMed
Zurück zum Zitat Kamali A, Sair HI, Blitz AM, Riascos RF, Mirbagheri S, Keser Z, Hasan KM (2016) Revealing the ventral amygdalofugal pathway of the human limbic system using high spatial resolution diffusion tensor tractography. Brain Struct Funct 221:3561–3569PubMed Kamali A, Sair HI, Blitz AM, Riascos RF, Mirbagheri S, Keser Z, Hasan KM (2016) Revealing the ventral amygdalofugal pathway of the human limbic system using high spatial resolution diffusion tensor tractography. Brain Struct Funct 221:3561–3569PubMed
Zurück zum Zitat Kasper L, Bollmann S, Diaconescu AO, Hutton C, Heinzle J, Iglesias S, Hauser TU, Sebold M, Manjaly Z-M, Pruessmann KP, Stephan KE (2017) The PhysIO toolbox for modeling physiological noise in fMRI data. J Neurosci Methods 276:56–72PubMed Kasper L, Bollmann S, Diaconescu AO, Hutton C, Heinzle J, Iglesias S, Hauser TU, Sebold M, Manjaly Z-M, Pruessmann KP, Stephan KE (2017) The PhysIO toolbox for modeling physiological noise in fMRI data. J Neurosci Methods 276:56–72PubMed
Zurück zum Zitat Keifer OP, Gutman DA, Hecht EE, Keilholz SD, Ressler KJ (2015) A comparative analysis of mouse and human medial geniculate nucleus connectivity: a DTI and anterograde tracing study. NeuroImage 105:53–66PubMed Keifer OP, Gutman DA, Hecht EE, Keilholz SD, Ressler KJ (2015) A comparative analysis of mouse and human medial geniculate nucleus connectivity: a DTI and anterograde tracing study. NeuroImage 105:53–66PubMed
Zurück zum Zitat Kim S-G, Knösche TR (2016) Intracortical myelination in musicians with absolute pitch: quantitative morphometry using 7-T MRI. Hum Brain Mapp 37:3486–3501PubMedPubMedCentral Kim S-G, Knösche TR (2016) Intracortical myelination in musicians with absolute pitch: quantitative morphometry using 7-T MRI. Hum Brain Mapp 37:3486–3501PubMedPubMedCentral
Zurück zum Zitat Koelsch S (2010) Towards a neural basis of music-evoked emotions. Trends Cogn Sci 14:131–137PubMed Koelsch S (2010) Towards a neural basis of music-evoked emotions. Trends Cogn Sci 14:131–137PubMed
Zurück zum Zitat Kreifelts B, Ethofer T, Shiozawa T, Grodd W, Wildgruber D (2009) Cerebral representation of non-verbal emotional perception: fMRI reveals audiovisual integration area between voice- and face-sensitive regions in the superior temporal sulcus. Neuropsychologia 47:3059–3066PubMed Kreifelts B, Ethofer T, Shiozawa T, Grodd W, Wildgruber D (2009) Cerebral representation of non-verbal emotional perception: fMRI reveals audiovisual integration area between voice- and face-sensitive regions in the superior temporal sulcus. Neuropsychologia 47:3059–3066PubMed
Zurück zum Zitat Labar KS, Gitelman DR, Mesulam MM, Parrish TB (2001) Impact of signal-to-noise on functional MRI of the human amygdala. NeuroReport 12:3461–3464PubMed Labar KS, Gitelman DR, Mesulam MM, Parrish TB (2001) Impact of signal-to-noise on functional MRI of the human amygdala. NeuroReport 12:3461–3464PubMed
Zurück zum Zitat Latinus M, McAleer P, Bestelmeyer PEG, Belin P (2013) Norm-based coding of voice identity in human auditory cortex. Curr Biol 23:1075–1080PubMedPubMedCentral Latinus M, McAleer P, Bestelmeyer PEG, Belin P (2013) Norm-based coding of voice identity in human auditory cortex. Curr Biol 23:1075–1080PubMedPubMedCentral
Zurück zum Zitat Lavan N, Rankin G, Lorking N, Scott S, McGettigan C (2017) Neural correlates of the affective properties of spontaneous and volitional laughter types. Neuropsychologia 95:30–39PubMed Lavan N, Rankin G, Lorking N, Scott S, McGettigan C (2017) Neural correlates of the affective properties of spontaneous and volitional laughter types. Neuropsychologia 95:30–39PubMed
Zurück zum Zitat LeDoux JE, Ruggiero DA, Reis DJ (1985) Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat. J Comp Neurol 242:182–213PubMed LeDoux JE, Ruggiero DA, Reis DJ (1985) Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat. J Comp Neurol 242:182–213PubMed
Zurück zum Zitat Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele P-F, Gruetter R (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage 49:1271–1281PubMed Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele P-F, Gruetter R (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage 49:1271–1281PubMed
Zurück zum Zitat Mathiak KA, Zvyagintsev M, Ackermann H, Mathiak K (2012) Lateralization of amygdala activation in fMRI may depend on phase-encoding polarity. Magn Reson Mater Phys Biol Med 25:177–182 Mathiak KA, Zvyagintsev M, Ackermann H, Mathiak K (2012) Lateralization of amygdala activation in fMRI may depend on phase-encoding polarity. Magn Reson Mater Phys Biol Med 25:177–182
Zurück zum Zitat Meyer M, Zysset S, von Cramon DY, Alter K (2005) Distinct fMRI responses to laughter, speech, and sounds along the human peri-sylvian cortex. Brain Res Cogn Brain Res 24:291–306PubMed Meyer M, Zysset S, von Cramon DY, Alter K (2005) Distinct fMRI responses to laughter, speech, and sounds along the human peri-sylvian cortex. Brain Res Cogn Brain Res 24:291–306PubMed
Zurück zum Zitat Morris JS, Friston KJ, Büchel C, Frith CD, Young AW, Calder AJ, Dolan RJ (1998) A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain 121:47–57PubMed Morris JS, Friston KJ, Büchel C, Frith CD, Young AW, Calder AJ, Dolan RJ (1998) A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain 121:47–57PubMed
Zurück zum Zitat Morris JS, Scott SK, Dolan RJ (1999) Saying it with feeling: neural responses to emotional vocalizations. Neuropsychologia 37:1155–1163PubMed Morris JS, Scott SK, Dolan RJ (1999) Saying it with feeling: neural responses to emotional vocalizations. Neuropsychologia 37:1155–1163PubMed
Zurück zum Zitat Murray RJ, Brosch T, Sander D (2014) The functional profile of the human amygdala in affective processing: insights from intracranial recordings. Cortex 60:10–33PubMed Murray RJ, Brosch T, Sander D (2014) The functional profile of the human amygdala in affective processing: insights from intracranial recordings. Cortex 60:10–33PubMed
Zurück zum Zitat O’Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F (2001) Representation of pleasant and aversive taste in the human brain. J Neurophysiol 85:1315–1321PubMed O’Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F (2001) Representation of pleasant and aversive taste in the human brain. J Neurophysiol 85:1315–1321PubMed
Zurück zum Zitat Obleser J, Zimmermann J, Van Meter J, Rauschecker JP (2007) Multiple stages of auditory speech perception reflected in event-related fMRI. Cereb Cortex 17:2251–2257PubMed Obleser J, Zimmermann J, Van Meter J, Rauschecker JP (2007) Multiple stages of auditory speech perception reflected in event-related fMRI. Cereb Cortex 17:2251–2257PubMed
Zurück zum Zitat Obleser J, Eisner F, Kotz SA (2008) Bilateral speech comprehension reflects differential sensitivity to spectral and temporal features. J Neurosci 28:8116–8123PubMedPubMedCentral Obleser J, Eisner F, Kotz SA (2008) Bilateral speech comprehension reflects differential sensitivity to spectral and temporal features. J Neurosci 28:8116–8123PubMedPubMedCentral
Zurück zum Zitat Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMed Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMed
Zurück zum Zitat Ottersen OP, Ben-Ari Y (1979) Afferent connections to the amygdaloid complex of the rat and cat. I. Projections from the thalamus. J Comp Neurol 187:401–424PubMed Ottersen OP, Ben-Ari Y (1979) Afferent connections to the amygdaloid complex of the rat and cat. I. Projections from the thalamus. J Comp Neurol 187:401–424PubMed
Zurück zum Zitat Pannese A, Grandjean D, Frühholz S (2016) Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions. Cortex 85:116–125PubMed Pannese A, Grandjean D, Frühholz S (2016) Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions. Cortex 85:116–125PubMed
Zurück zum Zitat Pernet CR, McAleer P, Latinus M, Gorgolewski KJ, Charest I, Bestelmeyer PEG, Watson RH, Fleming D, Crabbe F, Valdes-Sosa M, Belin P (2015) The human voice areas: spatial organization and inter-individual variability in temporal and extra-temporal cortices. NeuroImage 119:164–174PubMed Pernet CR, McAleer P, Latinus M, Gorgolewski KJ, Charest I, Bestelmeyer PEG, Watson RH, Fleming D, Crabbe F, Valdes-Sosa M, Belin P (2015) The human voice areas: spatial organization and inter-individual variability in temporal and extra-temporal cortices. NeuroImage 119:164–174PubMed
Zurück zum Zitat Phillips ML, Young AW, Scott SK, Calder AJ, Andrew C, Giampietro V, Williams SCR, Bullmore ET, Brammer M, Gray JA (1998) Neural responses to facial and vocal expressions of fear and disgust. Proc R Soc Lond B Biol Sci 265:1809–1817 Phillips ML, Young AW, Scott SK, Calder AJ, Andrew C, Giampietro V, Williams SCR, Bullmore ET, Brammer M, Gray JA (1998) Neural responses to facial and vocal expressions of fear and disgust. Proc R Soc Lond B Biol Sci 265:1809–1817
Zurück zum Zitat Phillips ML, Medford N, Young AW, Williams L, Williams SC, Bullmore ET, Gray JA, Brammer MJ (2001) Time courses of left and right amygdalar responses to fearful facial expressions. Hum Brain Mapp 12:193–202PubMedPubMedCentral Phillips ML, Medford N, Young AW, Williams L, Williams SC, Bullmore ET, Gray JA, Brammer MJ (2001) Time courses of left and right amygdalar responses to fearful facial expressions. Hum Brain Mapp 12:193–202PubMedPubMedCentral
Zurück zum Zitat Plaisant O, Courtois R, Réveillère C, Mendelsohn GA, John OP (2010) Validation par analyse factorielle du Big Five Inventory français (BFI-Fr). Analyse convergente avec le NEO-PI-R. Ann Méd-Psychol Rev Psychiatr 168:97–106 Plaisant O, Courtois R, Réveillère C, Mendelsohn GA, John OP (2010) Validation par analyse factorielle du Big Five Inventory français (BFI-Fr). Analyse convergente avec le NEO-PI-R. Ann Méd-Psychol Rev Psychiatr 168:97–106
Zurück zum Zitat Pourtois G, Spinelli L, Seeck M, Vuilleumier P (2009) Modulation of face processing by emotional expression and gaze direction during intracranial recordings in right fusiform cortex. J Cogn Neurosci 22:2086–2107 Pourtois G, Spinelli L, Seeck M, Vuilleumier P (2009) Modulation of face processing by emotional expression and gaze direction during intracranial recordings in right fusiform cortex. J Cogn Neurosci 22:2086–2107
Zurück zum Zitat Price JL, Amaral DG (1981) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci Off J Soc Neurosci 1:1242–1259 Price JL, Amaral DG (1981) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci Off J Soc Neurosci 1:1242–1259
Zurück zum Zitat Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund H-J, Zilles K (2001) Probabilistic mapping and volume measurement of human primary auditory cortex. NeuroImage 13:669–683PubMed Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund H-J, Zilles K (2001) Probabilistic mapping and volume measurement of human primary auditory cortex. NeuroImage 13:669–683PubMed
Zurück zum Zitat Rauschecker JP, Scott SK (2009) Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci 12:718–724PubMedPubMedCentral Rauschecker JP, Scott SK (2009) Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci 12:718–724PubMedPubMedCentral
Zurück zum Zitat Reddy RK, Ramachandra V, Kumar N, Singh NC (2009) Categorization of environmental sounds. Biol Cybern 100:299PubMed Reddy RK, Ramachandra V, Kumar N, Singh NC (2009) Categorization of environmental sounds. Biol Cybern 100:299PubMed
Zurück zum Zitat Reser DH, Burman KJ, Richardson KE, Spitzer MW, Rosa MGP (2009) Connections of the marmoset rostrotemporal auditory area: express pathways for analysis of affective content in hearing. Eur J Neurosci 30:578–592PubMed Reser DH, Burman KJ, Richardson KE, Spitzer MW, Rosa MGP (2009) Connections of the marmoset rostrotemporal auditory area: express pathways for analysis of affective content in hearing. Eur J Neurosci 30:578–592PubMed
Zurück zum Zitat Rivier F, Clarke S (1997) Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. NeuroImage 6:288–304PubMed Rivier F, Clarke S (1997) Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. NeuroImage 6:288–304PubMed
Zurück zum Zitat Roy AK, Shehzad Z, Margulies DS, Kelly AMC, Uddin LQ, Gotimer K, Biswal BB, Castellanos FX, Milham MP (2009) Functional connectivity of the human amygdala using resting state fMRI. NeuroImage 45:614–626PubMed Roy AK, Shehzad Z, Margulies DS, Kelly AMC, Uddin LQ, Gotimer K, Biswal BB, Castellanos FX, Milham MP (2009) Functional connectivity of the human amygdala using resting state fMRI. NeuroImage 45:614–626PubMed
Zurück zum Zitat Russchen FT (1982) Amygdalopetal projections in the cat. II. Subcortical afferent connections. A study with retrograde tracing techniques. J Comp Neurol 207:157–176PubMed Russchen FT (1982) Amygdalopetal projections in the cat. II. Subcortical afferent connections. A study with retrograde tracing techniques. J Comp Neurol 207:157–176PubMed
Zurück zum Zitat Russchen FT, Amaral DG, Price JL (1987) The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis. J Comp Neurol 256:175–210PubMed Russchen FT, Amaral DG, Price JL (1987) The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis. J Comp Neurol 256:175–210PubMed
Zurück zum Zitat Sabatinelli D, Fortune EE, Li Q, Siddiqui A, Krafft C, Oliver WT, Beck S, Jeffries J (2011) Emotional perception: meta-analyses of face and natural scene processing. NeuroImage 54:2524–2533PubMed Sabatinelli D, Fortune EE, Li Q, Siddiqui A, Krafft C, Oliver WT, Beck S, Jeffries J (2011) Emotional perception: meta-analyses of face and natural scene processing. NeuroImage 54:2524–2533PubMed
Zurück zum Zitat Sander K, Scheich H (2005) Left auditory cortex and amygdala, but right insula dominance for human laughing and crying. J Cogn Neurosci 17:1519–1531PubMed Sander K, Scheich H (2005) Left auditory cortex and amygdala, but right insula dominance for human laughing and crying. J Cogn Neurosci 17:1519–1531PubMed
Zurück zum Zitat Sander K, Brechmann A, Scheich H (2003) Audition of laughing and crying leads to right amygdala activation in a low-noise fMRI setting. Brain Res Protoc 11:81–91 Sander K, Brechmann A, Scheich H (2003) Audition of laughing and crying leads to right amygdala activation in a low-noise fMRI setting. Brain Res Protoc 11:81–91
Zurück zum Zitat Sander K, Frome Y, Scheich H (2007) FMRI activations of amygdala, cingulate cortex, and auditory cortex by infant laughing and crying. Hum Brain Mapp 28:1007–1022PubMedPubMedCentral Sander K, Frome Y, Scheich H (2007) FMRI activations of amygdala, cingulate cortex, and auditory cortex by infant laughing and crying. Hum Brain Mapp 28:1007–1022PubMedPubMedCentral
Zurück zum Zitat Sauter DA, Eisner F, Ekman P, Scott SK (2010) Cross-cultural recognition of basic emotions through nonverbal emotional vocalizations. Proc Natl Acad Sci 107:2408–2412PubMedPubMedCentral Sauter DA, Eisner F, Ekman P, Scott SK (2010) Cross-cultural recognition of basic emotions through nonverbal emotional vocalizations. Proc Natl Acad Sci 107:2408–2412PubMedPubMedCentral
Zurück zum Zitat Schirmer A, Gunter TC (2017) Temporal signatures of processing voiceness and emotion in sound. Soc Cogn Affect Neurosci 12:902–909PubMedPubMedCentral Schirmer A, Gunter TC (2017) Temporal signatures of processing voiceness and emotion in sound. Soc Cogn Affect Neurosci 12:902–909PubMedPubMedCentral
Zurück zum Zitat Schirmer A, Kotz SA (2006) Beyond the right hemisphere: brain mechanisms mediating vocal emotional processing. Trends Cogn Sci 10:24–30PubMed Schirmer A, Kotz SA (2006) Beyond the right hemisphere: brain mechanisms mediating vocal emotional processing. Trends Cogn Sci 10:24–30PubMed
Zurück zum Zitat Scott BH, Leccese PA, Saleem KS, Kikuchi Y, Mullarkey MP, Fukushima M, Mishkin M, Saunders RC (2015) Intrinsic connections of the core auditory cortical regions and rostral supratemporal plane in the Macaque Monkey. Cereb Cortex:bhv277 Scott BH, Leccese PA, Saleem KS, Kikuchi Y, Mullarkey MP, Fukushima M, Mishkin M, Saunders RC (2015) Intrinsic connections of the core auditory cortical regions and rostral supratemporal plane in the Macaque Monkey. Cereb Cortex:bhv277
Zurück zum Zitat Sergerie K, Chochol C, Armony JL (2008) The role of the amygdala in emotional processing: a quantitative meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev 32:811–830PubMed Sergerie K, Chochol C, Armony JL (2008) The role of the amygdala in emotional processing: a quantitative meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev 32:811–830PubMed
Zurück zum Zitat Shinonaga Y, Takada M, Mizuno N (1994) Direct projections from the non-laminated divisions of the medial geniculate nucleus to the temporal polar cortex and amygdala in the cat. J Comp Neurol 340:405–426PubMed Shinonaga Y, Takada M, Mizuno N (1994) Direct projections from the non-laminated divisions of the medial geniculate nucleus to the temporal polar cortex and amygdala in the cat. J Comp Neurol 340:405–426PubMed
Zurück zum Zitat Solano-Castiella E, Schäfer A, Reimer E, Türke E, Pröger T, Lohmann G, Trampel R, Turner R (2011) Parcellation of human amygdala in vivo using ultra high field structural MRI. NeuroImage 58:741–748PubMed Solano-Castiella E, Schäfer A, Reimer E, Türke E, Pröger T, Lohmann G, Trampel R, Turner R (2011) Parcellation of human amygdala in vivo using ultra high field structural MRI. NeuroImage 58:741–748PubMed
Zurück zum Zitat Szameitat DP, Kreifelts B, Alter K, Szameitat AJ, Sterr A, Grodd W, Wildgruber D (2010) It is not always tickling: distinct cerebral responses during perception of different laughter types. NeuroImage 53:1264–1271PubMed Szameitat DP, Kreifelts B, Alter K, Szameitat AJ, Sterr A, Grodd W, Wildgruber D (2010) It is not always tickling: distinct cerebral responses during perception of different laughter types. NeuroImage 53:1264–1271PubMed
Zurück zum Zitat Talavage TM, Sereno MI, Melcher JR, Ledden PJ, Rosen BR, Dale AM (2004) Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J Neurophysiol 91:1282–1296PubMed Talavage TM, Sereno MI, Melcher JR, Ledden PJ, Rosen BR, Dale AM (2004) Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J Neurophysiol 91:1282–1296PubMed
Zurück zum Zitat Tardif E, Clarke S (2001) Intrinsic connectivity of human auditory areas: a tracing study with DiI. Eur J Neurosci 13:1045–1050PubMed Tardif E, Clarke S (2001) Intrinsic connectivity of human auditory areas: a tracing study with DiI. Eur J Neurosci 13:1045–1050PubMed
Zurück zum Zitat Tardif E, Probst A, Clarke S (2007) Laminar specificity of intrinsic connections in Broca’s area. Cereb Cortex 17:2949–2960PubMed Tardif E, Probst A, Clarke S (2007) Laminar specificity of intrinsic connections in Broca’s area. Cereb Cortex 17:2949–2960PubMed
Zurück zum Zitat van der Zwaag W, Gentile G, Gruetter R, Spierer L, Clarke S (2011) Where sound position influences sound object representations: a 7-T fMRI study. NeuroImage 54:1803–1811PubMed van der Zwaag W, Gentile G, Gruetter R, Spierer L, Clarke S (2011) Where sound position influences sound object representations: a 7-T fMRI study. NeuroImage 54:1803–1811PubMed
Zurück zum Zitat Viceic D, Fornari E, Thiran J-P, Maeder PP, Meuli R, Adriani M, Clarke S (2006) Human auditory belt areas specialized in sound recognition: a functional magnetic resonance imaging study. NeuroReport 17:1659–1662PubMed Viceic D, Fornari E, Thiran J-P, Maeder PP, Meuli R, Adriani M, Clarke S (2006) Human auditory belt areas specialized in sound recognition: a functional magnetic resonance imaging study. NeuroReport 17:1659–1662PubMed
Zurück zum Zitat Viceic D, Campos R, Fornari E, Spierer L, Meuli R, Clarke S, Thiran J-P (2009) Local landmark-based registration for fMRI group studies of nonprimary auditory cortex. NeuroImage 44:145–153PubMed Viceic D, Campos R, Fornari E, Spierer L, Meuli R, Clarke S, Thiran J-P (2009) Local landmark-based registration for fMRI group studies of nonprimary auditory cortex. NeuroImage 44:145–153PubMed
Zurück zum Zitat Viinikainen M, Kätsyri J, Sams M (2012) Representation of perceived sound valence in the human brain. Hum Brain Mapp 33:2295–2305PubMed Viinikainen M, Kätsyri J, Sams M (2012) Representation of perceived sound valence in the human brain. Hum Brain Mapp 33:2295–2305PubMed
Zurück zum Zitat Wallace MN, Johnston PW, Palmer AR (2002) Histochemical identification of cortical areas in the auditory region of the human brain. Exp Brain Res 143:499–508PubMed Wallace MN, Johnston PW, Palmer AR (2002) Histochemical identification of cortical areas in the auditory region of the human brain. Exp Brain Res 143:499–508PubMed
Zurück zum Zitat Warren JD, Scott SK, Price CJ, Griffiths TD (2006) Human brain mechanisms for the early analysis of voices. NeuroImage 31:1389–1397PubMed Warren JD, Scott SK, Price CJ, Griffiths TD (2006) Human brain mechanisms for the early analysis of voices. NeuroImage 31:1389–1397PubMed
Zurück zum Zitat Watson R, Latinus M, Charest I, Crabbe F, Belin P (2014) People-selectivity, audiovisual integration and heteromodality in the superior temporal sulcus. Cortex 50:125–136PubMedPubMedCentral Watson R, Latinus M, Charest I, Crabbe F, Belin P (2014) People-selectivity, audiovisual integration and heteromodality in the superior temporal sulcus. Cortex 50:125–136PubMedPubMedCentral
Zurück zum Zitat Wiethoff SAB, Wildgruber DA, Grodd WB, Ethofer TAB (2009) Response and habituation of the amygdala during processing of emotional prosody. [Miscellaneous Article]. Neuroreport 20:1356–1360PubMed Wiethoff SAB, Wildgruber DA, Grodd WB, Ethofer TAB (2009) Response and habituation of the amygdala during processing of emotional prosody. [Miscellaneous Article]. Neuroreport 20:1356–1360PubMed
Zurück zum Zitat Wildgruber D, Hertrich I, Riecker A, Erb M, Anders S, Grodd W, Ackermann H (2004a) Distinct frontal regions subserve evaluation of linguistic and emotional aspects of speech intonation. Cereb Cortex 14:1384–1389PubMed Wildgruber D, Hertrich I, Riecker A, Erb M, Anders S, Grodd W, Ackermann H (2004a) Distinct frontal regions subserve evaluation of linguistic and emotional aspects of speech intonation. Cereb Cortex 14:1384–1389PubMed
Zurück zum Zitat Wildgruber D, Hertrich I, Riecker A, Erb M, Anders S, Grodd W, Ackermann H (2004b) Distinct frontal regions subserve evaluation of linguistic and emotional aspects of speech intonation. Cereb Cortex 14:1384–1389PubMed Wildgruber D, Hertrich I, Riecker A, Erb M, Anders S, Grodd W, Ackermann H (2004b) Distinct frontal regions subserve evaluation of linguistic and emotional aspects of speech intonation. Cereb Cortex 14:1384–1389PubMed
Zurück zum Zitat Wildgruber D, Ethofer T, Grandjean D, Kreifelts B (2009) A cerebral network model of speech prosody comprehension: international Journal of Speech-Language Pathology: vol 11, no 4. Int J Speech Lang Pathol 11:277–281 Wildgruber D, Ethofer T, Grandjean D, Kreifelts B (2009) A cerebral network model of speech prosody comprehension: international Journal of Speech-Language Pathology: vol 11, no 4. Int J Speech Lang Pathol 11:277–281
Zurück zum Zitat Winston JS, Gottfried JA, Kilner JM, Dolan RJ (2005) integrated neural representations of odor intensity and affective valence in human amygdala. J Neurosci 25:8903–8907PubMedPubMedCentral Winston JS, Gottfried JA, Kilner JM, Dolan RJ (2005) integrated neural representations of odor intensity and affective valence in human amygdala. J Neurosci 25:8903–8907PubMedPubMedCentral
Zurück zum Zitat Wright CI, Fischer H, Whalen PJ, Mclnerney SC, Shin LM, Rauch SL (2001) Wright_2001.pdf. NeuroReport 12:379–383PubMed Wright CI, Fischer H, Whalen PJ, Mclnerney SC, Shin LM, Rauch SL (2001) Wright_2001.pdf. NeuroReport 12:379–383PubMed
Zurück zum Zitat Yukie M (2002) Connections between the amygdala and auditory cortical areas in the macaque monkey. Neurosci Res 42:219–229PubMed Yukie M (2002) Connections between the amygdala and auditory cortical areas in the macaque monkey. Neurosci Res 42:219–229PubMed
Zurück zum Zitat Zäske R, Awwad Shiekh Hasan B, Belin P (2017) It doesn’t matter what you say: fMRI correlates of voice learning and recognition independent of speech content. Cortex 94:100–112PubMedPubMedCentral Zäske R, Awwad Shiekh Hasan B, Belin P (2017) It doesn’t matter what you say: fMRI correlates of voice learning and recognition independent of speech content. Cortex 94:100–112PubMedPubMedCentral
Zurück zum Zitat Zhang H, Japee S, Nolan R, Chu C, Liu N, Ungerleider LG (2016) Face-selective regions differ in their ability to classify facial expressions. NeuroImage 130:77–90PubMed Zhang H, Japee S, Nolan R, Chu C, Liu N, Ungerleider LG (2016) Face-selective regions differ in their ability to classify facial expressions. NeuroImage 130:77–90PubMed
Zurück zum Zitat Zigmond AS, Snaith RP (1983) The hospital anxiety and depression scale. Acta Psychiatr Scand 67:361–370PubMed Zigmond AS, Snaith RP (1983) The hospital anxiety and depression scale. Acta Psychiatr Scand 67:361–370PubMed
Zurück zum Zitat Zilles K, Armstrong E, Schleicher A, Kretschmann H-J (1988) The human pattern of gyrification in the cerebral cortex. Anat Embryol (Berl) 179:173–179 Zilles K, Armstrong E, Schleicher A, Kretschmann H-J (1988) The human pattern of gyrification in the cerebral cortex. Anat Embryol (Berl) 179:173–179
Metadaten
Titel
Processing pathways for emotional vocalizations
verfasst von
Tiffany Grisendi
Olivier Reynaud
Stephanie Clarke
Sandra Da Costa
Publikationsdatum
06.07.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 7/2019
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-019-01912-x

Weitere Artikel der Ausgabe 7/2019

Brain Structure and Function 7/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Neu im Fachgebiet Neurologie

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.