Planta Med 2010; 76(15): 1701-1705
DOI: 10.1055/s-0030-1249907
Natural Product Chemistry
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Bioactive γ-Lactones from the Fermented Broth of Neosartorya sp.

Sien-Sing Yang1 [*] , Guei-Jane Wang2 [*] , Kuo-Fang Cheng3 , Chu-Huang Chen4 , 5 , 6 , Yu-Ming Ju7 , Ya-Jing Tsau8 , Tzong-Huei Lee9
  • 1Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan
  • 2National Research Institute of Chinese Medicine, Taipei, Taiwan
  • 3Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
  • 4Vascular and Medicinal Research, Texas Heart Institute, Houston, Texas, USA
  • 5Baylor College of Medicine, Houston, Texas, USA
  • 6China Medical University Hospital, Taichung, Taiwan
  • 7Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
  • 8Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
  • 9Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
Further Information

Publication History

received Dec. 11, 2009 revised April 2, 2010

accepted April 9, 2010

Publication Date:
05 May 2010 (online)

Abstract

Two γ-lactone derivatives, namely neosartolactone (1) and its 7-methyl ester analogue (2), have been isolated from the ethyl acetate extract of the fermented broth of Neosartorya sp. isolated in Taiwan. Structural elucidations of compounds 1 and 2 were achieved on the basis of spectroscopic analysis. Although they had been obtained via the chemical modification of avenaciolide isolated from Aspergillus avenaceus several decades ago, this is the first report to describe them from a natural resource with detailed spectroscopic interpretations. The effects of 1 and 2 on the inhibition of NO production in lipopolysaccharide (LPS)-activated murine macrophages were further evaluated. Compounds 1 and 2 significantly inhibited NO production with the IC50 values of 12.2 ± 1.5 and 11.4 ± 1.0 µM, respectively; but displayed cytotoxicity at considerably higher concentrations than 50 µM.

References

  • 1 Hibbs Jr J B, Taintor R R, Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite.  Science. 1987;  235 473-476
  • 2 Jiang J S, Shih C M, Wang S H, Chen T T, Lin C N, Ko W C. Mechanisms of suppression of nitric oxide production by 3-O-methylquercetin in RAW 264.7 cells.  J Ethnopharmacol. 2006;  103 281-287
  • 3 Kleinert H, Pautz A, Linker K, Schwarz P M. Regulation of the expression of inducible nitric oxide synthase.  Eur J Pharmacol. 2004;  500 255-266
  • 4 Cho H, Yun C W, Park W K, Kong J Y, Kim K S, Park Y, Lee S, Kim B K. Modulation of the acvtivity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives.  Pharmacol Res. 2004;  49 37-43
  • 5 Yang S S, Wang G J, Wang S Y, Lin Y Y, Kuo Y H, Lee T H. New constituents with iNOS inhibitory activity from mycelium of Antrodia camphorata.  Planta Med. 2009;  75 512-516
  • 6 Kubota T, Tsuda M, Kobayashi J. Absolute stereochemistry of amphidinolide C.  Org Lett. 2001;  3 1363-1366
  • 7 Wang G J, Chen Y M, Wang T M, Lee C K, Chen K J, Lee T H. Flavonoids with iNOS inhibitory activity from Pogonatherum crinitum.  J Ethnopharmacol. 2008;  118 71-78
  • 8 Brookes D, Tidd B K, Turner W B. Avenaciolide, an antifungal lactone from Aspergillus avenaceus.  J Chem Soc. 1963;  68 5385-5391
  • 9 Wang G J, Chen S M, Chen W C, Chang Y M, Lee T H. Selective inducible nitric oxide synthase suppression by new bracteanolides from Murdannia bracteata.  J Ethnopharmacol. 2007;  112 221-227
  • 10 Lee T H, Huang N K, Lai T C, Yang A T Y, Wang W J. Anemonin, from Clematis crassifolia, potent and selective inducible nitric oxide synthase inhibitor.  J Ethnopharmacol. 2008;  116 518-527

1 Drs. S.-S. Yang and G.-J. Wang contributed equally to this work.

Dr. Tzong-Huei Lee

Graduate Institute of Pharmacognosy
Taipei Medical University

250 Wu-Xin Street

Taipei 110

Taiwan

Republic of China

Phone: + 88 62 27 36 16 61 ext. 61 56

Email: thlee@tmu.edu.tw

>