Horm Metab Res 2012; 44(10): 716-723
DOI: 10.1055/s-0032-1314842
Review
© Georg Thieme Verlag KG Stuttgart · New York

GNAS Epigenetic Defects and Pseudohypoparathyroidism: Time for a New Classification?

G. Mantovani
1   Department of Medical Sciences, Endocrinology and Diabetology Unit, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
,
F. M. Elli
1   Department of Medical Sciences, Endocrinology and Diabetology Unit, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
,
A. Spada
1   Department of Medical Sciences, Endocrinology and Diabetology Unit, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
› Author Affiliations
Further Information

Publication History

received 27 December 2011

accepted 07 May 2012

Publication Date:
06 June 2012 (online)

Abstract

Pseudohypoparathyroidism-Ia and -Ib (PHP-Ia and -Ib) are caused by mutations in GNAS exons 1–13 and methylation defects in the imprinted GNAS cluster, respectively. PHP-Ia patients show Albright hereditary osteodystrophy (AHO), together with resistance to the action of different hormones that activate the Gs-coupled pathway. In PHP-Ib patients AHO is classically absent and hormone resistance is limited to PTH and TSH. This disorder is caused by GNAS methylation alterations with loss of imprinting at the exon A/B differentially methylated region (DMR) being the most consistent and recurrent defect. The familial form of the disease (AD-PHP-Ib) is typically associated with an isolated loss of imprinting at the exon A/B DMR due to microdeletions disrupting the upstream STX16 gene. In addition, deletions removing the entire NESP55 DMR, located within GNAS, associated with loss of all the maternal GNAS imprints have been identified in some AD-PHP-Ib kindreds. Conversely, most sporadic PHP-Ib cases have GNAS imprinting abnormalities that involve multiple DMRs, but the genetic lesion underlying these defects is unknown. Recently, methylation defects have been detected in a subset of patients with PHP-Ia and variable degrees of AHO, indicating a molecular overlap between the 2 forms. Imprinting defects do not seem to be associated with the severity of AHO neither with specific AHO signs. In conclusion, the latest findings on the molecular basis underlying these defects suggest the existence of a clinical and genetic/epigenetic overlap between PHP-Ia and PHP-Ib, and highlight the necessity of a new clinical classification of these disorders based on molecular findings.

 
  • References

  • 1 Albright F, Burnett CH, Smith CH, Parson W. Pseudohypoparathyroidism: an example of “Seabright-Bantam sindrome”. Endocrinol 1942; 30: 922-932
  • 2 Mantovani G, Spada A. Mutations in the Gs alpha gene causing hormone resistance. Best Pract Res Clin Endocrinol Metab 2006; 20: 501-513
  • 3 Mantovani G. Pseudohypoparathyroidism: Diagnosis and Treatment. J Clin Endocrinol Metab 2011; 96: 3020-3030
  • 4 Weinstein LS, Yu S, Warner DR, Liu J. Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting. Endocr Rev 2001; 22: 675-705
  • 5 Tashjian AH, Frantz AG, Lee JB. Pseudohypoparathyroidism: assays of parathyroid hormone and thyrocalcitonin. Proc Natl Acad Sci USA 1966; 56: 1138-1142
  • 6 Mann JB, Alterman S, Hills AG. Albright’s hereditary osteodystrophy comprising pseudohypoparathyroidism and pseudopseudohypoparathyroidism with a report of two cases representing the complete syndrome occurring in successive generations. Ann Intern Med 1962; 56: 315-342
  • 7 Drezner M, Neelon FA, Lebovitz HE. Pseudohypoparathyroidism type II: a possible defect in the reception of the cyclic AMP signal. New Eng J Med 1973; 289: 1056-1060
  • 8 Stone MD, Hosking DJ, Garcia-Himmelstine C, White DA, Rosenblum D, Worth HG. The renal response to exogenous parathyroid hormone in treated pseudohypoparathyroidism. Bone 1993; 14: 727-735
  • 9 Potts JT. Parathyroid hormone: past and present. J Endocrinol 2005; 18: 311-325
  • 10 Gensure RC, Gardella TJ, Jüppner H. Parathyroid hormone and parathyroid hormone-related peptide, and their receptors. Biochem Biophys Res Commun 2005; 328: 666-678
  • 11 Chase LR, Melson GL, Aurbach GD. Pseudohypoparathyroidism: defective excretion of 3′,5′-AMP in response to parathyroid hormone. J Clin Invest 1969; 48: 1832-1844
  • 12 Moses AM, Weinstock RS, Levine MA, Breslau NA. Evidence for normal antidiuretic responses to endogenous and exogenous arginine vasopressein in patients with guanine nucleotide-binding stimulatory protein-deficient pseudohypoparathyroidism. J Clin Endocrinol Metab 1986; 62: 221-224
  • 13 Faull CM, Welbury RR, Paul B, Kendall-Taylor P. Pseudohypoparathyroidism: its phenotypic variability and associated disorders in a large family. Q J Med 1991; 78: 251-264
  • 14 Kidd GS, Schaaf M, Adler RA, Lassman MN, Wray HL. Skeletal responsiveness in pseudohypoparathyroidism: a spectrum of clinical disease. Am J Med 1980; 68: 772-781
  • 15 Murray TM, Rao LG, Wong MM, Waddell JP, McBroom R, Tam CS, Rosen F, Levine MA. Pseudohypoparathyroidism with osteitis fibrosa cystica: direct demonstration of skeletal responsiveness to parathyroid hormone in cells cultured from bone. J Bone Miner Res 1993; 8: 83-91
  • 16 Eubanks PJ, Stabile BE. Osteitis fibrosa cystica with renal parathyroid hormone resistance: a review of pseudohypoparathyroidism with insight into calcium homeostasis. Arch Surg 1998; 133: 673-676
  • 17 Cohen RD, Vince FP. Pseudohypoparathyroidism with raised plasma alkaline phosphatase. Arch Dis Child 1969; 44: 96-101
  • 18 Kolb FO, Steinbach HL. Pseudohypoparathyroidism with secondary hyperparathyroidism and osteitis fibrosa. J Clin Endocrinol Metab 1962; 22: 59-70
  • 19 Tollin SR, Perlmutter S, Aloia JF. Serial changes in bone mineral density and bone turnover after correction of secondary hyperparathyroidism in a patient with pseudohypoparathyroidism type Ib. J Bone Miner Res 2000; 15: 1412-1416
  • 20 Ish-Shalom S, Rao LG, Levine MA, Fraser D, Kooh SW, Josse RG, McBroom R Wong MM, Murray TM. Normal parathyroid hormone responsiveness of bone-derived cells from a patient with pseudohypoparathyroidism. J Bone Miner Res 1996; 11: 8-14
  • 21 Burnstein MI, Kottamasu SR, Pettifor JM, Sochett E, Ellis BI, Frame B. Metabolic bone disease in pseudohypoparathyroidism: radiologic features. Radiology 1985; 155: 351-356
  • 22 Jacobson HG. Dense bone – too much bone: radiological considerations and differential diagnosis. Part I. Skeletal Radiol 1985; 13: 1-20
  • 23 Balkissoon AR, Hayes CW. Case 14: intramedullary osteosclerosis. Radiology 1999; 212: 708-710
  • 24 Sbrocchi AM, Rauch F, Lawson ML, Hadjiyannakis S, Lawrence S, Bastepe M, Jüppner H, Ward LM. Osteosclerosis in two brothers with autosomal dominant pseudohypoparathyroidism type 1b: bone histomorphometric analysis. Eur J Endocrinol 2011; 164: 295-301
  • 25 Long DN, Levine MA, Germain-Lee EL. Bone mineral density in pseudohypoparathyroidism type 1a. J Clin Endocrinol Metab 2010; 95: 4465-4475
  • 26 Levine MA, Downs Jr RW, Singer M, Marx SJ, Aurbach GD, Spiegel AM. Deficient activity of guanine nucleotide regulatory protein in erythrocytes from patients with pseudohypoparathyroidism. Biochem Biophys Res Commun 1980; 94: 1319-1324
  • 27 Farfel Z, Brickman AS, Kaslow HR, Brothers VM, Bourne HR. Defect of receptor-cyclase coupling protein in pseudohypoparathyroidism. New Eng J Med 1980; 303: 237-242
  • 28 Levine MA, Downs Jr RW, Moses AM, Breslau NA, Marx SJ, Lasker RD, Rizzoli RE, Aurbach GD, Spiegel AM. Resistance to multiple hormones in patients with pseudohypoparathyroidism: association with deficient activity of guanine nucleotide regulatory protein. Am J Med 1983; 74: 545-556
  • 29 Radeke HH, Auf’ mkolk B, Jüppner H, Krohn HP, Keck E, Hesch RD. Multiple pre- and postreceptor defects in pseudohypoparathyroidism (a multicenter study with 24 patients). J Clin Endocrinol Metab 1986; 62: 393-402
  • 30 Barrett D, Breslau NA, Wax MB, Molinoff PB, Downs Jr RW. New form of pseudohypoparathyroidism with abnormal catalytic adenylate cyclase. Am J Physiol 1989; 257: E277-E283
  • 31 Silve C, Santora A, Breslau N, Moses A, Spiegel A. Selective resistance to parathyroid hormone in cultured skin fibroblasts from patients with pseudohypoparathyroidism type Ib. J Clin Endocrinol Metab 1986; 62: 640-644
  • 32 Eyre WG, Reed WB. Albright hereditary osteodystrophy with cutaneous bone formation. Arch Dermatol 1971; 104: 634-642
  • 33 Farfel Z, Friedman E. Mental deficiency in pseudohypoparathyroidism type I is associated with Ns-protein deficiency. Ann Intern Med 1986; 105: 197-199
  • 34 Long DN, McGuire S, Levine MA, Weinstein LS, Germain-Lee EL. Body mass index differences in pseudohypoparathyroidism type 1a versus pseudopseudohypoparathyroidism may implicate paternal imprinting of Galpha(s) in the development of human obesity. J Clin Endocrinol Metab 2007; 92: 1073-1079
  • 35 Albright F, Forbes AP, Henneman PH. Pseudopseudohypoparathyroidism. Trans Assoc Am Physicians 1952; 65: 337-350
  • 36 Wemeau JL, Balavoine AS, Ladsous M, Velayoudom-Cephise FL, Vlaeminck-Guillem V. Multihormonal resistance to parathyroid hormone, thyroid stimulatin hormone, and other hormonal and neurosensory stimuli in patients with pseudohypoparathyroidism. J Pediatr Endocrinol Metab 2006; 19: 253-261
  • 37 Germain-Lee EL. Short stature, obesity, and growth hormone deficiency in pseudohypoparathyroidism type Ia. Pediatr Endocrinol Rev 2006; 3: 318-326
  • 38 Weinstein LS, Yu S, Warner DR, Liu J. Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting. Endocr Rev 2001; 22: 675-705
  • 39 Levine MA, Jap TS, Hung W. Infantile hypothyroidism in two sibs: an unusual presentation of pseudohypoparathyroidism type Ia. J Pediatr 1985; 107: 919-922
  • 40 Pohlenz J, Ahrens W, Hiort O. A new heterozygous mutation (L338N) in the human Gsalpha (GNAS1) gene as a cause for congenital hypothyroidism in Albright’s hereditary osteodystrophy. Eur J Endocrinol 2003; 148: 463-468
  • 41 Riepe FG, Ahrens W, Krone N, Fölster-Holst R, Brasch J, Sippell WG, Hiort O, Partsch CJ. Early manifestation of calcinosis cutis in pseudohypoparathyroidism type Ia associated with a novel mutation in the GNAS gene. Eur J Endocrinol 2005; 152: 515-519
  • 42 Pinsker JE, Rogers W, McLean S, Schaefer FV, Fenton C. Pseudohypoparathyroidism type 1a with congenital hypothyroidism. J Pediatr Endocrinol Metab 2006; 19: 1049-1052
  • 43 Mantovani G, Spada A. Resistance to growth hormone releasing hormone and gonadotropins in Albright’s hereditary osteodystrophy. J Pediatr Endocrinol Metab 2006; 19: 663-670
  • 44 Mantovani G, Maghnie M, Weber G, De Menis E, Brunelli V, Cappa M, Loli P, Beck-Peccoz P, Spada A. Growth hormone-releasing hormone resistance in pseudohypoparathyroidism type Ia: new evidence for imprinting of the Gs alpha gene. J Clin Endocrinol Metab 2003; 88: 4070-4074
  • 45 Germain-Lee EL, Groman J, Crane JL, Jan de Beur SM, Levine MA. Growth hormone deficiency in pseudohypoparathyroidism type 1a: another manifestation of multihormone resistance. J Clin Endocrinol Metab 2003; 88: 4059-4069
  • 46 de Sanctis L, Bellone J, Salerno M, Faleschini E, Caruso-Nicoletti M, Cicchetti M, Concolino D, Balsamo A, Buzi F, Ghizzoni L, de Sanctis C. GH secretion in a cohort of children with pseudohypoparathyroidism type Ia. J Endocrinol Invest 2007; 30: 97-103
  • 47 Tsai KS, Chang CC, Wu DJ, Huang TS, Tsai IH, Chen FW. Deficient erythrocyte membrane Gs alpha activity and resistance to trophic hormones of multiple endocrine organs in two cases of pseudohypoparathyroidism. Taiwan Yi Xue Hui Za Zhi 1989; 88: 450-455
  • 48 Vlaeminck-Guillem V, D’herbomez M, Pigny P, Fayard A, Bauters C, Decoulx M, Wémeau JL. Pseudohypoparathyroidism Ia and hypercalcitoninemia. J Clin Endocrinol Metab 2001; 86: 3091-3096
  • 49 Carel JC, Le Stunff C, Condamine L, Mallet E, Chaussain JL, Adnot P, Garabedian M, Bougnères P. Resistance to the lipolytic action of epinephrine: a new feature of protein Gs deficiency. J Clin Endocrinol Metab 1999; 84: 4127-4131
  • 50 Farfel Z, Brothers VM, Brickman AS, Conte F, Neer R, Bourne HR. Pseudohypoparathyroidism: inheritance of deficient receptor-cyclase coupling activity. Proceedings of National Academy of Sciences USA 1981; 78: 3098-3102
  • 51 Fitch N. Albright’s hereditary osteodistrophy: a Review. Am J Med Gen 1982; 11: 11-29
  • 52 Weinberg AG, Stone RT. Autosomal dominant inheritance in Albright’s hereditary osteodystrophy. J Ped 1971; 79: 996-999
  • 53 Hayward BE, Barlier A, Korbonits M, Grossman AB, Jacquet P, Enjalbert A, Bonthron DT. Imprinting of the Gαs gene GNAS in the pathogenesis of acromegaly. J Clin Invest 2001; 107: R31-R36
  • 54 Mantovani G, Ballare E, Giammona E, Beck-Peccoz P, Spada A. The Gs alpha gene: predominant maternal origin of transcription in human thyroid gland and gonads. J Clin Endocrinol Metab 2002; 87: 4736-4740
  • 55 Germain-Lee EL, Ding CL, Deng Z, Crane JL, Saji M, Ringel MD, Levine MA. Paternal imprinting of Galpha(s) in the human thyroid as the basis of TSH resistance in pseudohypoparathyroidism type 1a. Biochem Biophys Res Commun 2002; 296: 67-72
  • 56 Liu J, Erlichman B, Weinstein LS. The stimulatory G protein α-subunit Gsα is imprinted in human thyroid glands: implications for thyroid function in pseudohypoparathyroidism types 1 A and 1B. J Clin Endocrinol Metab 2003; 88: 4336-4341
  • 57 Mann JB, Alterman S, Hills AG. Albright’s hereditary osteodystrophy comprising pseudohypoparathyroidism and pseudopseudohypoparathyroidism with a report of two cases representing the complete syndrome occurring in successive generations. Ann Intern Med 1962; 56: 315-342
  • 58 Levine MA, Jap TS, Mauseth RS, Downs RV, Spiegel AM. Activity of the stimulatory guanine nucleotide-binding protein is reduced in erythrocytes from patients with pseudohypoparathyroidism and pseudopseudohypoparathyroidism: biochemical, endocrine, and genetic analysis of Albright’s hereditary osteodystrophy in six kindreds. J Clin Endocrinol Metab 1986; 62: 497-502
  • 59 Al-Salameh A, Despert F, Kottler ML, Linglart A, Carel JC, Lecomte P. Resistance to epinephrine and hypersensitivity (hyperresponsiveness) to CB1 antagonists in a patient with pseudohypoparathyroidism type Ic. Eur J Endocrinol 2010; 162: 819-824
  • 60 Fischer JA, Bourne HR, Dambacher MA, Tschopp F, De Meyer R, Devogelaer JP, Werder EA, Nagant De Deuxchaisnes C. Pseudohypoparathyroidism: inheritance and expression of deficient receptor-cyclase coupling protein activity. Clin Endocrinol 1983; 19: 747-754
  • 61 Wilson LC, Leverton K, Oude Luttikhuis ME, Oley CA, Flint J, Wolstenholme J, Duckett DP, Barrow MA, Leonard JV, Read AP, Trembath RC. Brachydactyly and mental retardation: an Albright’s hereditary osteodystrophy-like syndrome localized to 2q37. Am J Hum Genet 1995; 56: 400-407
  • 62 Phelan MC, Rogers RC, Clarkson KB, Bowyer FP, Levine MA, Estabrooks LL, Severson MC, Dobyns WB. Albright’s hereditary osteodystrophy and del(2)(q37.3) in four unrelated individuals. Am J Hum Genet 1995; 58: 1-7
  • 63 Weinstein LS. Albright hereditary osteodystrophy, pseudohypoparathyroidism, and Gs deficiency. In: Spiegel AM. (ed.). G proteins, receptors, and disease. Totowa, New Jersey: Humana Press; 1998: 23-56
  • 64 Winter JS, Hughes IA. Familial pseudohypoparathyroidism without somatic anomalies. Canad Med Ass J 1986; 123: 26-31
  • 65 Nusynowitz ML, Frame B, Kolb FO. The spectrum of the hypoparathyroid states: a classification based on physiologic principles. Medicine 1976; 55: 105-119
  • 66 Linglart A, Bastepe M, Jüppner H. Similar clinical and laboratory findings in patients with symptomatic autosomal dominant and sporadic pseudohypoparathyroidism type Ib despite different epigenetic changes at the GNAS locus. Clin Endocrinol 2007; 67: 822-831
  • 67 Schipani E, Weinstein LS, Bergwitz C, Iida-Klein A, Kong XF, Stuhrmann M, Kruse K, Whyte MP, Murray T, Schmidtke J. Pseudohypoparathyroidism type Ib is not caused by mutations in the coding exons of the human parathyroid hormone (PTH)/PTH-related peptide receptor gene. J Clin Endocrinol Metab 1995; 80: 1611-1621
  • 68 Bettoun JD, Minagawa M, Kwan MY, Lee HS, Yasuda T, Hendy GN, Goltzman D, White JH. Cloning and characterization of the promoter regions of the human parathyroid hormone (PTH)/PTH-related peptide receptor gene: analysis of deoxyribonucleic acid from normal subjects and patients with pseudohypoparathyroidism. J Clin Endocrinol Metab 1997; 82: 1031-1040
  • 69 Fukumoto S, Suzawa M, Takeuchi Y, Kodama Y, Nakayama K, Ogata E, Matsumoto T, Fujita T. Absence of mutations in parathyroid hormone (PTH)/PTH-related protein receptor complementary deoxyribonucleic acid in patients with pseudohypoparathyroidism type Ib. J Clin Endocrinol Metab 1996; 81: 2554-2558
  • 70 Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, Karperien M, Defize LH, Ho C, Mulligan RC, Abou-Samra AB, Jüppner H, Segre GV, Kronenberg HM. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 1996; 273: 663-666
  • 71 Jobert AS, Zhang P, Couvineau A, Bonaventure J, Roume J, Le Merrer M, Silve C. Absence of functional receptors for parathyroid hormone and parathyroid hormone-related peptide in Blomstrand chondrodisplasia. J Clin Invest 1998; 102: 34-40
  • 72 Mantovani G, Bondioni S, Linglart A, Maghnie M, Cisternino M, Corbetta S, Lania AG, Beck-Peccoz P, Spada A. Genetic analysis and evaluation of resistance to thyrotropin and growth hormone-releasing hormone in pseudohypoparathyroidism type Ib. J Clin Endocrinol Metab 2007; 92: 3738-3742
  • 73 Bastepe M, Weinstein LS, Ogata N, Kawaguchi H, Juppner H, Kronenberg HM, Chung UI. Stimulatory G protein directly regulates hypertrophic differentiation of growth plate cartilage in vivo. Proc Natl Acad Sci USA 2004; 101: 14794-14799
  • 74 Kelsey G. Imprinting on chromosome 20: tissue-specific imprinting and imprinting mutations in the GNAS locus. Am J Med Genet Part C 2010; 154C: 377-386
  • 75 Mantovani G, Bondioni S, Locatelli M, Pedroni C, Lania AG, Ferrante E, Filopanti M, Beck-Peccoz P, Spada A. Biallelic expression of the Gs alpha gene in human bone and adipose tissue. J Clin Endocrinol Metab 2004; 89: 6316-6319
  • 76 Zheng H, Radeva G, McCann JA, Hendy GN, Goodyer CG. Galphas transcripts are biallelically expressed in the human kidney cortex: implications for pseudohypoparathyroidism type 1b. J Clin Endocrinol Metab 2001; 86: 4627-4629
  • 77 Gejman PV, Weinstein LS, Martinez M, Spiegel AM, Cao Q, Hsieh WT, Hoehe MR, Gershon ES. Genetic mapping of the Gs α-subunit gene (GNAS) to the distal long arm of chromosome 20 using a polymorphism detected by denaturating gradient gel electrophoresis. Genomics 1991; 9: 782-783
  • 78 Weinstein LS, Gejman PV, de Mazancourt P, American N, Spiegel AM. A heterozygous 4-bp deletion mutation in the Gs alpha gene (GNAS) in a patient with Albright’s hereditary osteodystrophy. Genomics 1992; 13: 1319-1321
  • 79 Ahmed SF, Dixon PH, Bonthron DT, Stirling HF, Barr DG, Kelnar CJ, Thakker RV. GNAS mutational analysis in pseudohypoparathyroidism. Clin Endocrinol 1998; 49: 525-531
  • 80 Mantovani G, Romoli R, Weber G, Brunelli V, De Menis E, Beccio S, Beck-Peccoz P, Spada A. Mutational analysis of GNAS1 in patients with pseudohypoparathyroidism: identification of two novel mutations. J Clin Endocrinol Metab 2000; 85: 4243-4248
  • 81 Aldred MA, Trembath RC. Activating and inactivating mutations in the human GNAS gene. Hum Mut 2000; 16: 183-189
  • 82 Yokoyama M, Takeda K, Iyota K, Okabayashi T, Hashimoto K. A 4-bp deletion mutation of Gs alpha gene in a Japanese patient with pseudoparathyroidism. J Endocrinol Invest 1996; 19: 236-241
  • 83 Yu S, Yu D, Hainline BE, Brener JL, Wilson KA, Wilson LC, Oude-Luttikhuis ME, Trembath RC, Weinstein LS. A deletion hot-spot in exon 7 of the Gsα gene (GNAS ) in patients with Albright hereditary osteodystrophy. Hum Mol Genet 1995; 4: 2001-2002
  • 84 Juppner H, Schipani E, Bastepe M, Cole DE, Lawson ML, Mannstadt M, Hendy GN, Plotkin H, Koshiyama H, Koh T, Crawford JD, Olsen BR, Vikkula M. The gene responsible for pseudohypoparathyroidism type Ib is paternally imprinted and maps in four unrelated kindreds to chromosome 20q13.3. Proc Nat Acad Sci USA 1998; 95: 11798-11803
  • 85 Wu WI, Schwindinger WF, Aparicio LF, Levine MA. Selective resistance to parathyroid hormone caused by a novel uncoupling mutation in the carboxyl terminus of Gsα: a cause of pseudohypoparathyroidism type Ib. J Biol Chem 2001; 276: 165-171
  • 86 Maupetit-Méhouas S, Mariot V, Reynès C, Bertrand G, Feillet F, Carel JC, Simon D, Bihan H, Gajdos V, Devouge E, Shenoy S, Agbo-Kpati P, Ronan A, Naud-Saudreau C, Lienhardt A, Silve C, Linglart A. Quantification of the methylation at the GNAS locus identifies subtypes of sporadic pseudohypoparathyroidism type Ib. J Med Genet 2011; 48: 55-63
  • 87 Liu J, Litman D, Rosenberg MJ, Yu S, Biesecker LG, Weinstein LS. A GNAS imprinting defect in pseudohypoparathyroidism type Ib. J Clin Invest 2000; 106: 1167-1174
  • 88 Bastepe M, Pincus JE, Sugimoto T, Tojo K, Kanatani M, Azuma Y, Kruse K, Rosenbloom AL, Koshiyama H, Jüppner H. Positional dissociation between the genetic mutation responsible for pseudohypoparathyroidism type Ib and the associated methylation defect at exon A/B: Evidence for a long-range regulatory element within the imprinted GNAS locus. Hum Mol Genet 2001; 10: 1231-1241
  • 89 Bastepe M, Fröhlich LF, Hendy GN, Indridason OS, Josse RG, Koshiyama H, Körkkö J, Nakamoto JM, Rosenbloom AL, Slyper AH, Sugimoto T, Tsatsoulis A, Crawford JD, Jüppner H. Autosomal dominant pseudohypoparathyroidism type Ib is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS. J Clin Invest 2003; 112: 1255-1263
  • 90 Linglart A, Gensure RC, Olney RC, Jüppner H, Bastepe M. A novel STX16 deletion in autosomal dominant pseudohypoparathyroidism type Ib redefines the boundaries of a cis-acting imprinting control element of GNAS. Am J Hum Genet 2005; 76: 804-814
  • 91 Bastepe M, Fröhlich LF, Linglart A, Abu-Zahra HS, Tojo K, Ward LM, Jüppner H. Deletion of the NESP55 differentially methylated region causes loss of maternal GNAS imprints and pseudohypoparathyroidism type Ib. Nat Genet 2005; 37: 25-27
  • 92 Chillambhi S, Turan S, Hwang DY, Chen HC, Juppner H, Bastepe M. Deletion of the noncoding GMAS antisense transcript causes pseudohypoparathyroidism type I band biparental defects of GNAS methylation in cis. J Clin Endocrinol Metab 2010; 95: 3993-4002
  • 93 Fröhlich LF, Mrakovcic M, Steinborn R, Chung UI, Bastepe M, Jüppner H. Targeted deletion of the Nesp55 DMR defines another Gnas imprinting control region and provides a mouse model of autosomal dominant PHP-Ib. Proc Natl Acad Sci USA 2010; 107: 9275-9280
  • 94 Williamson CM, Turner MD, Ball ST, Nottingham WT, Glenister P, Fray M, Tymowska-Lalanne Z, Plagge A, Powles-Glover N, Kelsey G, Maconochie M, Peters J. Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster. Nat Genet 2006; 38: 350-355
  • 95 Liu J, Nealon JG, Weinstein LS. Distinct patterns of abnormal GNAS imprinting in familial and sporadic pseudohypoparathyroidism type IB. Hum Mol Genet 2005; 14: 95-102
  • 96 Bastepe M, Lane AH, Jüppner H. Paternal uniparental isodisomy of chromosome 20q (patUPD20q) and the resulting changes in GNAS1 methylation as a plausible cause of pseudohypoparathyroidism. Am J Hum Genet 2001; 68: 1283-1289
  • 97 Lecumberri B, Fernández-Rebollo E, Sentchordi L, Saavedra P, Bernal-Chico A, Pallardo LF, Bustos JM, Castaño L, de Santiago M, Hiort O, Pérez de Nanclares G, Bastepe M. Coexistence of two different pseudohypoparathyroidism subtypes (Ia and Ib) in the same kindred with independent Gs{alpha} coding mutations and GNAS imprinting defects. J Med Genet 2010; 47: 276-280
  • 98 Fernández-Rebollo E, Lecumberri B, Garin I, Arroyo J, Bernal-Chico A, Goñi F, Orduña R, Spanish PHP Group. Castaño L, de Nanclares GP. New mechanisms involved in paternal 20q disomy associated with pseudohypoparathyroidism. Eur J Endocrinol 2010; 163: 953-962
  • 99 Bastepe M, Altug-Teber O, Agarwal C, Oberfield SE, Bonin M, Jüppner H. Paternal uniparental isodisomy of the entire chromosome 20 as a molecular cause of pseudohypoparathyroidism type Ib (PHP-Ib). Bone 2011; 48: 659-662
  • 100 de Nanclares GP, Fernández-Rebollo E, Santin I, García-Cuartero B, Gaztambide S, Menéndez E, Morales MJ, Pombo M, Bilbao JR, Barros F, Zazo N, Ahrens W, Jüppner H, Hiort O, Castaño L, Bastepe M. Epigenetic defects of GNAS in patients with pseudohypoparathyroidism and mild features of Albright hereditary osteodystrophy. J Clin Endocrinol Metab 2007; 92: 2370-2373
  • 101 Mariot V, Maupetit-Méhouas S, Sinding C, Kottler ML, Linglart A. A maternal epimutation of GNAS leads to Albright osteodystrophy and parathyroid hormone resistance. J Clin Endocrinol Metab 2008; 93: 661-665
  • 102 Unluturk U, Harmanci A, Babaoglu M, Yasar U, Varli K, Bastepe M, Bayraktar M. Molecular diagnosis and clinical characterization of pseudohypoparathyroidism type-Ib in a patient with mild Albright hereditary osteodystrophy-like features, epileptic seizures, and defective renal handling of uric acid. Am J Med Sci 2008; 336: 84-90
  • 103 Mantovani G, de Sanctis L, Barbieri AM, Elli FM, Bollati V, Vaira V, Labarile P, Bondioni S, Peverelli E, Lania AG, Beck-Peccoz P, Spada A. Pseudohypoparathyroidism and GNAS epigenetic defects: clinical evaluation of Albright hereditary osteodystrophy and molecular analysis in 40 patients. J Clin Endocrinol Metab 2010; 95: 651-658
  • 104 Zazo C, Thiele S, Martín C, Fernandez-Rebollo E, Martinez-Indart L, Werner R, Garin I, Spanish PHP Group. Hiort O, Perez de Nanclares G. Gsα activity is reduced in erythrocyte membranes of patients with pseudohypoparathyrodism due to epigenetic alterations at the GNAS locus. J Bone Miner Res 2011; 26: 1864-1870
  • 105 Thiele S, de Sanctis L, Werner R, Grötzinger J, Aydin C, Jüppner H, Bastepe M, Hiort O. Functional characterization of GNAS mutations found in patients with pseudohypoparathyroidism type Ic defines a new subgroup of pseudohypoparathyroidism affecting selectively Gsα-receptor interaction. Hum Mutat 2011; 32: 653-660
  • 106 Linglart A, Carel JC, Garabédian M, Lé T, Mallet E, Kottler ML. GNAS1 lesions in pseudohypoparathyroidism Ia and Ic: genotype phenotype relationship and evidence of the maternal transmission of the hormonal resistance. J Clin Endocrinol Metab 2002; 87: 189-197
  • 107 Shore EM, Ahn J, De Beur S, Li M, Xu M, Gardner RJ, Zasloff MA, Whyte MP, Levine MA, Kaplan FS. Paternally inherited inactivating mutations of the GNAS1 gene in progressive osseous heteroplasia. New Engl J Med 2002; 346: 99-106
  • 108 Adegbite NS, Xu M, Kaplan FS, Shore EM, Pignolo RJ. Diagnostic and mutational spectrum of progressive osseous heteroplasia (POH) and other forms of GNAS-based heterotopic ossification. Am J Med Genet A 2008; 146A: 1788-1796