Z Orthop Unfall 2013; 151(1): 38-47
DOI: 10.1055/s-0032-1328207
Knorpel
Georg Thieme Verlag KG Stuttgart · New York

Stellenwert der autologen Chondrozytentransplantation (ACT) in der Behandlung von Knorpelschäden des Kniegelenks – Empfehlungen der AG Klinische Geweberegeneration der DGOU

Autologous Chondrocyte Implantation (ACI) for Cartilage Defects of the Knee: A Guideline by the Working Group “Tissue Regeneration” of the German Society of Orthopaedic Surgery and Traumatology (DGOU)
P. Niemeyer
1   Department Orthopädie und Traumatologie, Universitätsklinikum Freiburg
,
S. Andereya
2   Orthopädie und Unfallchirurgie, Ortho AC, Aachen
,
P. Angele
3   Abteilung für Unfallchirurgie, Universitätsklinikum Regensburg
,
A. Ateschrang
4   Berufsgenossenschaftliche Unfallklinik Tübingen
,
M. Aurich
4   Berufsgenossenschaftliche Unfallklinik Tübingen
,
M. Baumann
4   Berufsgenossenschaftliche Unfallklinik Tübingen
,
P. Behrens
5   CUNO Orthopädie, Hamburg
,
U. Bosch
6   Zentrum f. Orthopädische Chirurgie, Sporttraumatologie, INI Hannover
,
C. Erggelet
7   Center of Biologic Joint Repair, Zürich, Schweiz
,
S. Fickert
8   Sportopaedicum, Straubing, Berlin, Regensburg, München
,
J. Fritz
9   Orthopädisches Chirurgisches Centrum, Tübingen
,
H. Gebhard
4   Berufsgenossenschaftliche Unfallklinik Tübingen
,
K. Gelse
10   Abteilung für Unfallchirurgie, Universitätsklinikum Erlangen
,
D. Günther
11   Klinik für Unfallchirurgie, Medizinische Hochschule Hannover (MHH)
,
A. Hoburg
12   Universitätsmedizin Berlin-Charité, Klinik für Orthopädie, Unfall u. Wiederherstellungschirurgie
,
P. Kasten
13   Klinik für Orthopädie, Universitätsklinikum Carl Gustav Carus Dresden
,
T. Kolombe
14   Unfallchirurgie / Orthopädie, DRK Krankenhaus Luckenwalde
,
H. Madry
15   Zentrum für Experimentelle Orthopädie, Universitätsklinikum des Saarlandes, Homburg
,
S. Marlovits
16   Universitätsklinik für Unfallchirurgie, Medizinische Universität Wien und Austrian Cluster for Tissue Regeneration, Österreich
,
N. M. Meenen
17   Sektion Pädiatrische Sportmedizin, Kinderorthopädie, Altonaer Kinderkrankenhaus Hamburg
,
P. E. Müller
18   Orthopädische Klinik, Ludwig-Maximiliams-Universität München
,
U. Nöth
19   Orthopädische Klinik, König-Ludwig-Haus, Universität Würzburg
,
J. P. Petersen
20   Zentrum f. operative Medizin, Klinik für Unfall-, Hand- u. Wiederherstellungschirurgie, Universitätsklinikum Hamburg-Eppendorf
,
M. Pietschmann
18   Orthopädische Klinik, Ludwig-Maximiliams-Universität München
,
W. Richter
21   Forschungszentrum für Experimentelle Orthopädie, Universitätsklinikum Heidelberg
,
B. Rolauffs
4   Berufsgenossenschaftliche Unfallklinik Tübingen
,
K. Rhunau
22   Zentrum für Orthobiologie und Knorpelregeneration, Schulthess Klinik, Zürich, Schweiz
,
B. Schewe
23   Klinik für Orthopädie und Unfallchirurgie, St. Vinzenz-Hospital Dinslaken
,
A. Steinert
19   Orthopädische Klinik, König-Ludwig-Haus, Universität Würzburg
,
M. R. Steinwachs
8   Sportopaedicum, Straubing, Berlin, Regensburg, München
,
G. H. Welsch
10   Abteilung für Unfallchirurgie, Universitätsklinikum Erlangen
,
W. Zinser
23   Klinik für Orthopädie und Unfallchirurgie, St. Vinzenz-Hospital Dinslaken
,
D. Albrecht
4   Berufsgenossenschaftliche Unfallklinik Tübingen
› Author Affiliations
Further Information

Publication History

Publication Date:
19 February 2013 (online)

Zusammenfassung

Die autologe Chondrozytentransplantation oder -implantation (ACT/ACI) stellt ein anerkanntes und etabliertes Verfahren zur Behandlung lokalisiert vollschichtiger Knorpelschäden des Kniegelenks dar. Die vorliegende Übersichtsarbeit der Arbeitsgemeinschaft „Klinische Geweberegeneration“ der Deutschen Gesellschaft für Orthopädie und Unfallchirurgie (DGOU) beschreibt zunächst die Biologie und Funktionsweise des gesunden Gelenkknorpels, die aktuelle Kenntnislage zu den möglichen Folgen eines primären Knorpelschadens und anschließend den geeigneten Indikationsbereich der ACT. Zusammenfassend besteht vor dem Hintergrund der derzeitigen Evidenzlage die Indikation zur ACT bei symptomatischen Knorpelschäden ab einer Defektgröße von 3–4 cm2, bei jungen und sportlich aktiven Patienten ab 2,5 cm2. Fortgeschrittene degenerative Gelenkveränderungen stellen die wichtigste Kontraindikation dar. Neben wissenschaftlichen Grundlagen werden die Ergebnisse klinischer Studien, sowie die Vor- und Nachteile der ACT im Rahmen dieser Übersicht dargestellt und diskutiert.

Abstract

Autologous chondrocyte transplantation/implantation (ACT/ACI) is an established and recognised procedure for the treatment of localised full-thickness cartilage defects of the knee. The present review of the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Traumatology (DGOU) describes the biology and function of healthy articular cartilage, the present state of knowledge concerning potential consequences of primary cartilage lesions and the suitable indication for ACI. Based on current evidence, an indication for ACI is given for symptomatic cartilage defects starting from defect sizes of more than 3–4 cm2; in the case of young and active sports patients at 2.5 cm2. Advanced degenerative joint disease is the single most important contraindication. The review gives a concise overview on important scientific background, the results of clinical studies and discusses advantages and disadvantages of ACI.

 
  • Literatur

  • 1 Brittberg M. Autologous chondrocyte transplantation. Clin Orthop Relat Res 1999; 367S: S147-S155
  • 2 Brittberg M, Lindahl A, Nilsson A et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331: 889-895
  • 3 Cassar Gheiti AJ, Downey RE, Byrne DP et al. The 25 most cited articles in arthroscopic orthopaedic surgery. Arthroscopy 2012; 28: 548-564
  • 4 Behrens P, Bosch U, Bruns J et al. [Indications and implementation of recommendations of the working group “Tissue Regeneration and Tissue Substitutes” for autologous chondrocyte transplantation (ACT)]. Z Orthop Ihre Grenzgeb 2004; 142: 529-539
  • 5 Cole BJ, Pascual-Garrido C, Grumet RC. Surgical management of articular cartilage defects in the knee. J Bone Joint Surg [Am] 2009; 91: 1778-1790
  • 6 Alford JW, Cole BJ. Cartilage restoration, part 1: basic science, historical perspective, patient evaluation, and treatment options. Am J Sports Med 2005; 33: 295-306
  • 7 Cain EL, Clancy WG. Treatment algorithm for osteochondral injuries of the knee. Clin Sports Med 2001; 20: 321-342
  • 8 Bekkers JE, Inklaar M, Saris DB. Treatment selection in articular cartilage lesions of the knee: a systematic review. Am J Sports Med 2009; 37 (Suppl. 01) 148S-155S
  • 9 Mollenhauer J, Kuettner KE. Articular Cartilage. In: Dee R, Hurst LC, Gruber MA, Stephen A, eds. Principles of Orthopaedic Practice. 2nd ed. Kottmeier. New York: McGraw Hill; 1997
  • 10 Nehrer S, Spector M, Minas T. Histologic analysis of tissue after failed cartilage repair procedures. Clin Orthop Relat Res 1999; 365: 149-162
  • 11 Henderson I, Lavigne P, Valenzuela H et al. Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs. Clin Orthop Relat Res 2007; 455: 253-261
  • 12 LaPrade RF, Bursch LS, Olson EJ et al. Histologic and immunohistochemical characteristics of failed articular cartilage resurfacing procedures for osteochondritis of the knee: a case series. Am J Sports Med 2008; 36: 360-368
  • 13 Hunter W. On the structure and disease of articular cartilage. Philos Trans R Soc London Biol 1743; 514-521
  • 14 Gaissmaier C, Fritz J, Schewe B et al. Cartilage Defects: Epidemiology and Natural History. Osteo Trauma Care 2006; 14: 188-194
  • 15 Anderson DD, Chubinskaya S, Guilak F et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J Orthop Res 2011; 29: 802-809
  • 16 Pena E, Calvo B, Martinez MA et al. Effect of the size and location of osteochondral defects in degenerative arthritis. A finite element simulation. Computers in biology and medicine 2007; 37: 376-387
  • 17 Chen CT, Bhargava M, Lin PM et al. Time, stress, and location dependent chondrocyte death and collagen damage in cyclically loaded articular cartilage. J Orthop Res 2003; 21: 888-898
  • 18 Ding C, Cicuttini F, Scott F et al. Association of prevalent and incident knee cartilage defects with loss of tibial and patellar cartilage: a longitudinal study. Arthritis Rheum 2005; 52: 3918-3927
  • 19 Cicuttini F, Ding C, Wluka A et al. Association of cartilage defects with loss of knee cartilage in healthy, middle-age adults: a prospective study. Arthritis Rheum 2005; 52: 2033-2039
  • 20 Brittberg M. ICRS Clinical Cartilage Injury Evaluation System. 3rd ICRS Meeting. Göteborg, Sweden: 2000
  • 21 Erggelet C, Kreuz PC, Mrosek EH et al. Autologous chondrocyte implantation versus ACI using 3D-bioresorbable graft for the treatment of large full-thickness cartilage lesions of the knee. Arch Orthop Trauma Surg 2010; 130: 957-964
  • 22 Gikas PD, Aston WJ, Briggs TW. Autologous chondrocyte implantation: where do we stand now?. J Orthop Sci 2008; 13: 283-292
  • 23 Minas T, Gomoll AH, Solhpour S et al. Autologous Chondrocyte Implantation for Joint Preservation in Patients with Early Osteoarthritis. Clin Orthop Relat Res 2009; 468: 147-157
  • 24 Nesic D, Whiteside R, Brittberg M et al. Cartilage tissue engineering for degenerative joint disease. Adv Drug Deliv Rev 2006; 58: 300-322
  • 25 Goymann V. [Abrasion arthroplasty]. Orthopade 1999; 28: 11-18
  • 26 Johnson LL. Arthroscopic abrasion arthroplasty: a review. Clin Orthop Relat Res 2001; 391S: S306-S317
  • 27 Steadman JR, Rodkey WG, Briggs KK. Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes. J Knee Surg 2002; 15: 170-176
  • 28 Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 2001; 391S: S362-S369
  • 29 Chen H, Hoemann CD, Sun J et al. Depth of subchondral perforation influences the outcome of bone marrow stimulation cartilage repair. J Orthop Res 2011; 29: 1178-1184
  • 30 Chen H, Sun J, Hoemann CD et al. Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res 2009; 27: 1432-1438
  • 31 Saris DB, Vanlauwe J, Victor J et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 2008; 36: 235-246
  • 32 Mithoefer K, McAdams T, Williams RJ et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: An evidence-based systematic analysis. Am J Sports Med 2009; 37: 2053-2063
  • 33 Kreuz PC, Erggelet C, Steinwachs MR et al. Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger?. Arthroscopy 2006; 22: 1180-1186
  • 34 Mithoefer K, Williams 3rd RJ, Warren RF et al. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am 2005; 87: 1911-1920
  • 35 Kreuz PC, Steinwachs MR, Erggelet C et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage 2006; 14: 1119-1125
  • 36 Benthien JP, Behrens P. Autologous matrix-induced chondrogenesis (AMIC). A one-step procedure for retropatellar articular resurfacing. Acta Orthop Belg 2010; 76: 260-263
  • 37 Benthien JP, Behrens P. The treatment of chondral and osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): method description and recent developments. Knee Surg Sports Traumatol Arthrosc 2011; 19: 1316-1319
  • 38 Pascarella A, Ciatti R, Pascarella F et al. Treatment of articular cartilage lesions of the knee joint using a modified AMIC technique. Knee Surg Sports Traumatol Arthrosc 2010; 18: 509-513
  • 39 Vasiliadis HS, Wasiak J, Salanti G. Autologous chondrocyte implantation for the treatment of cartilage lesions of the knee: a systematic review of randomized studies. Knee Surg Sports Traumatol Arthrosc 2010; 18: 1645-1655
  • 40 Vavken P, Samartzis D. Effectiveness of autologous chondrocyte implantation in cartilage repair of the knee: a systematic review of controlled trials. Osteoarthritis Cartilage 2010; 18: 857-863
  • 41 Horas U, Pelinkovic D, Herr G et al. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J Bone Joint Surg [Am] 2003; 85: 185-192
  • 42 Bentley G, Biant LC, Carrington RW et al. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg [Br] 2003; 85: 223-230
  • 43 Dozin B, Malpeli M, Cancedda R et al. Comparative evaluation of autologous chondrocyte implantation and mosaicplasty: a multicentered randomized clinical trial. Clin J Sport Med 2005; 15: 220-226
  • 44 Visna P, Pasa L, Cizmar I et al. Treatment of deep cartilage defects of the knee using autologous chondrograft transplantation and by abrasive techniques – a randomized controlled study. Acta Chirurgica Belgica 2004; 104: 709-714
  • 45 Knutsen G, Drogset JO, Engebretsen L et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg [Am] 2007; 89: 2105-2112
  • 46 Knutsen G, Engebretsen L, Ludvigsen TC et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg [Am] 2004; 86: 455-464
  • 47 Saris DB, Vanlauwe J, Victor J et al. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med 2009; 37 (Suppl. 01) 10S-19S
  • 48 Vanlauwe J, Saris DB, Victor J et al. Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. Am J Sports Med 2011; 39: 2566-2574
  • 49 Basad E, Ishaque B, Bachmann G et al. Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg Sports Traumatol Arthrosc 2010; 18: 519-527
  • 50 Crawford DC, Deberardino TM, Williams RJ. NeoCart, an autologous cartilage tissue implant, compared with microfracture for treatment of distal femoral cartilage lesions: an FDA Phase-II prospective, randomized clinical trial after two years. J Bone Joint Surg [Am] 2012; 94: 979-989
  • 51 Kon E, Gobbi A, Filardo G et al. Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at 5 years. Am J Sports Med 2009; 37: 33-41
  • 52 Gooding CR, Bartlett W, Bentley G et al. A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: Periosteum covered versus type I/III collagen covered. Knee 2006; 13: 203-210
  • 53 Niemeyer P, Pestka JM, Kreuz PC et al. Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint. Am J Sports Med 2008; 36: 2091-2099
  • 54 Bartlett W, Skinner JA, Gooding CR et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 2005; 87: 640-645
  • 55 Nuernberger S, Cyran N, Albrecht C et al. The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts. Biomaterials 2011; 32: 1032-1040
  • 56 Vasiliadis HS, Wasiak J. Autologous chondrocyte implantation for full thickness articular cartilage defects of the knee. Cochrane Database Syst Rev 2010; (10) CD003323
  • 57 Wasiak J, Clar C, Villanueva E. Autologous cartilage implantation for full thickness articular cartilage defects of the knee. Cochrane Database Syst Rev 2006; (3) CD003323
  • 58 Wasiak J, Villanueva E. Autologous cartilage implantation for full thickness articular cartilage defects of the knee. Cochrane Database Syst Rev 2002; (4) CD003323
  • 59 Nakamura N, Miyama T, Engebretsen L et al. Cell-based therapy in articular cartilage lesions of the knee. Arthroscopy 2009; 25: 531-552
  • 60 Vasiliadis HS, Danielson B, Ljungberg M et al. Autologous chondrocyte implantation in cartilage lesions of the knee: long-term evaluation with magnetic resonance imaging and delayed gadolinium-enhanced magnetic resonance imaging technique. Am J Sports Med 2010; 38: 943-949
  • 61 Peterson L, Vasiliadis HS, Brittberg M et al. Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 2010; 38: 1117-1124
  • 62 Beris AE, Lykissas MG, Kostas-Agnantis I et al. Treatment of full-thickness chondral defects of the knee with autologous chondrocyte implantation: a functional evaluation with long-term follow-up. Am J Sports Med 2012; 40: 562-567
  • 63 Bhosale AM, Kuiper JH, Johnson WE et al. Midterm to long-term longitudinal outcome of autologous chondrocyte implantation in the knee joint: a multilevel analysis. Am J Sports Med 2009; 37 (Suppl. 01) 131S-138S
  • 64 Kon E, Verdonk P, Condello V et al. Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee: systematic clinical data review and study quality analysis. Am J Sports Med 2009; 37 (Suppl. 01) 156S-166S
  • 65 Brittberg M. Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. Am J Sports Med 2010; 38: 1259-1271
  • 66 Bentley G, Biant LC, Vijayan S et al. Minimum ten-year results of a prospective randomised study of autologous chondrocyte implantation versus mosaicplasty for symptomatic articular cartilage lesions of the knee. J Bone Joint Surg [Br] 2012; 94: 504-509
  • 67 Pestka JM, Bode G, Salzmann G et al. Clinical outcome of autologous chondrocyte implantation for failed microfracture treatment of full-thickness cartilage defects of the knee joint. Am J Sports Med 2012; 40: 325-331
  • 68 Minas T, Gomoll AH, Rosenberger R et al. Increased failure rate of autologous chondrocyte implantation after previous treatment with Marrow stimulation techniques. Am J Sports Med 2009; 37: 902-908
  • 69 Richter W. Cell-based cartilage repair: illusion or solution for osteoarthritis. Curr Opin Rheumatol 2007; 19: 451-456
  • 70 Schmal H, Pestka JM, Salzmann G et al. Autologous chondrocyte implantation in children and adolescents. Knee Surg Sports Traumatol Arthrosc 2012; May 3 [Epub ahead of print]
  • 71 Gudas R, Simonaityte R, Cekanauskas E et al. A prospective, randomized clinical study of osteochondral autologous transplantation versus microfracture for the treatment of osteochondritis dissecans in the knee joint in children. J Pediatr Orthop 2009; 29: 741-748
  • 72 Rosenberger RE, Gomoll AH, Bryant T et al. Repair of large chondral defects of the knee with autologous chondrocyte implantation in patients 45 years or older. Am J Sports Med 2008; 36: 2336-2344
  • 73 Niemeyer P, Kostler W, Salzmann GM et al. Autologous chondrocyte implantation for treatment of focal cartilage defects in patients age 40 years and older: A matched-pair analysis with 2-year follow-up. Am J Sports Med 2010; 38: 2410-2416
  • 74 Mithoefer K, Hambly K, Della Villa S et al. Return to sports participation after articular cartilage repair in the knee: scientific evidence. Am J Sports Med 2009; 37 (Suppl. 01) 167S-176S
  • 75 Steinwachs M, Engebretsen L, Brophy RH. Scientific evidence base for cartilage injury and repair in the athlete. Cartilage 2012; 3: 11S-17S
  • 76 Kon E, Filardo G, Berruto M et al. Articular cartilage treatment in high-level male soccer players: a prospective comparative study of arthroscopic second-generation autologous chondrocyte implantation versus microfracture. Am J Sports Med 2011; 39: 2549-2557
  • 77 Kreuz PC, Steinwachs M, Erggelet C et al. Importance of sports in cartilage regeneration after autologous chondrocyte implantation: a prospective study with a 3-year follow-up. Am J Sports Med 2007; 35: 1261-1268
  • 78 Hambly K, Bobic V, Wondrasch B et al. Autologous chondrocyte implantation postoperative care and rehabilitation: science and practice. Am J Sports Med 2006; 34: 1020-1038
  • 79 Hirschmuller A, Baur H, Braun S et al. Rehabilitation after autologous chondrocyte implantation for isolated cartilage defects of the knee. Am J Sports Med 2011; 39: 2686-2696
  • 80 Ebert JR, Fallon M, Zheng MH et al. A randomized trial comparing accelerated and traditional approaches to postoperative weightbearing rehabilitation after matrix-induced autologous chondrocyte implantation: findings at 5 years. Am J Sports Med 2012; 40: 1527-1537
  • 81 Wondrasch B, Zak L, Welsch GH et al. Effect of accelerated weightbearing after matrix-associated autologous chondrocyte implantation on the femoral condyle on radiographic and clinical outcome after 2 years: a prospective, randomized controlled pilot study. Am J Sports Med 2009; 37 (Suppl. 01) 88S-96S
  • 82 Pietschmann MF, Horng A, Glaser C et al. [Post-treatment rehabilitation after autologous chondrocyte implantation: state of the art and recommendations of the clinical tissue regeneration study group of the German Society for Accident Surgery and the German Society for Orthopedics and Orthopedic Surgery.]. Der Unfallchirurg 2012; Nov 25 [Epub ahead of print]
  • 83 Marlovits S, Zeller P, Singer P et al. Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol 2006; 57: 24-31
  • 84 Pelttari K, Winter A, Steck E et al. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum 2006; 54: 3254-3266
  • 85 Pietschmann MF, Horng A, Niethammer T et al. Cell quality affects clinical outcome after MACI procedure for cartilage injury of the knee. Knee Surg Sports Traumatol Arthrosc 2009; 17: 1305-1311
  • 86 Niemeyer P, Pestka JM, Salzmann GM et al. Influence of cell quality on clinical outcome after autologous chondrocyte implantation. Am J Sports Med 2012; 40: 556-561
  • 87 Gomoll AH, Madry H, Knutsen G et al. The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc 2010; 18: 434-447
  • 88 Madry H. The subchondral bone: a new frontier in articular cartilage repair. Knee Surg Sports Traumatol Arthrosc 2010; 18: 417-418
  • 89 Imhof H, Sulzbacher I, Grampp S et al. Subchondral bone and cartilage disease: a rediscovered functional unit. Invest Radiol 2000; 35: 581-588
  • 90 Menetrey J, Unno-Veith F, Madry H et al. Epidemiology and imaging of the subchondral bone in articular cartilage repair. Knee Surg Sports Traumatol Arthrosc 2010; 18: 463-471
  • 91 Pape D, Filardo G, Kon E et al. Disease-specific clinical problems associated with the subchondral bone. Knee Surg Sports Traumatol Arthrosc 2010; 18: 448-462
  • 92 Ochs BG, Muller-Horvat C, Albrecht D et al. Remodeling of articular cartilage and subchondral bone after bone grafting and matrix-associated autologous chondrocyte implantation for osteochondritis dissecans of the knee. Am J Sports Med 2011; 39: 764-773
  • 93 Aurich M, Anders J, Trommer T et al. [Autologous chondrocyte transplantation by the sandwich technique. A salvage procedure for osteochondritis dissecans of the knee]. Unfallchirurg 2007; 110: 176-179
  • 94 Vijayan S, Bartlett W, Bentley G et al. Autologous chondrocyte implantation for osteochondral lesions in the knee using a bilayer collagen membrane and bone graft: a two- to eight-year follow-up study. J Bone Joint Surg [Br] 2012; 94: 488-492
  • 95 Bartlett W, Gooding CR, Carrington RW et al. Autologous chondrocyte implantation at the knee using a bilayer collagen membrane with bone graft. A preliminary report. J Bone Joint Surg [Br] 2005; 87: 330-332
  • 96 Niemeyer P, Salzmann G, Schmal H et al. Autologous chondrocyte implantation for the treatment of chondral and osteochondral defects of the talus: a meta-analysis of available evidence. Knee Surg Sports Traumatol Arthrosc 2012; 20: 1696-1703
  • 97 Fontana A, Bistolfi A, Crova M et al. Arthroscopic treatment of hip chondral defects: autologous chondrocyte transplantation versus simple debridement – a pilot study. Arthroscopy 2012; 28: 322-329
  • 98 Akimau P, Bhosale A, Harrison PE et al. Autologous chondrocyte implantation with bone grafting for osteochondral defect due to posttraumatic osteonecrosis of the hip – a case report. Acta Orthopaedica 2006; 77: 333-336
  • 99 Buchmann S, Salzmann GM, Glanzmann MC et al. Early clinical and structural results after autologous chondrocyte transplantation at the glenohumeral joint. J Shoulder Elbow Surg 2012; 21: 1213-1221