Minim Invasive Neurosurg 2004; 47(1): 41-46
DOI: 10.1055/s-2003-812465
Original Article
© Georg Thieme Verlag Stuttgart · New York

Adaptation of a Hexapod-Based Robotic System for Extended Endoscope-Assisted Transsphenoidal Skull Base Surgery

Ch.   Nimsky1 , J.  Rachinger1 , H.  Iro2 , R.  Fahlbusch1
  • 1Department of Neurosurgery, University Erlangen-Nürnberg, Erlangen, Germany
  • 2Department of ENT, University Erlangen-Nürnberg, Erlangen, Germany
Further Information

Publication History

Publication Date:
20 April 2004 (online)

Abstract

Objective: To adapt a hexapod-based robotic system for use in extended endoscope-assisted transsphenoidal skull base surgery.

Methods: A robotic system (Evolution 1, Universal Robot Systems, Schwerin, Germany) based on a hexapod design with an attached seventh axis is used as instrument holder. The instrument interface is operated via a joystick control. An endoscope is applied to the instrument interface, which is tracked by a navigation system (Stealth, Medtronic, USA).

Results: The instrument holder was modified so that it could be applied in transsphenoidal surgery. Furthermore, translation and pivoting movements of the system were implemented, also a quick change between microscope and robotic-controlled endoscope was made possible. After extensive phantom testing two patients with large invasive pituitary adenomas were operated on using the robotic endoscope assistance during transsphenoidal surgery. The robotic assistance allowed the use of two additional instruments under endoscopic view. For example, drilling, suctioning, application of punches, as well as microsurgical tumor removal could be performed under endoscopic view.

Conclusion: A robotic system could be adapted for use in endoscope-assisted transsphenoidal skull base surgery allowing simultaneous use of two instruments under endoscopic view. This opens new possibilities to extend transsphenoidal skull base surgery.

References

  • 1 Perneczky A, Fries G. Endoscope-assisted brain surgery: part 1 - evolution, basic concept, and current technique.  Neurosurgery. 1998;  42 219-225
  • 2 Jho H D, Alfieri A. Endoscopic endonasal pituitary surgery: evolution of surgical technique and equipment in 150 operations.  Minim Invas Neurosurg. 2001;  44 1-12
  • 3 Jho H D, Carrau R L. Endoscopic endonasal transsphenoidal surgery: experience with 50 patients.  J Neurosurg. 1997;  87 44-51
  • 4 de Divitiis E, Cappabianca P, Cavallo L M. Endoscopic transsphenoidal approach: adaptability of the procedure to different sellar lesions.  Neurosurgery. 2002;  51 699-707
  • 5 Cappabianca P, Cavallo L M, Colao A, Del Basso De Caro M, Esposito F, Cirillo S, Lombardi G, de Divitiis E. Endoscopic endonasal transsphenoidal approach: outcome analysis of 100 consecutive procedures.  Minim Invas Neurosurg. 2002;  45 193-200
  • 6 Fries G, Perneczky A. Endoscope-assisted brain surgery: part 2 - analysis of 380 procedures.  Neurosurgery. 1998;  42 226-232
  • 7 Schroeder H W, Wagner W, Tschiltschke W, Gaab M R. Frameless neuronavigation in intracranial endoscopic neurosurgery.  J Neurosurg. 2001;  94 72-79
  • 8 Alberti O, Riegel T, Hellwig D, Bertalanffy H. Frameless navigation and endoscopy.  J Neurosurg. 2001;  95 541-543
  • 9 Kawamata T, Iseki H, Shibasaki T, Hori T. Endoscopic augmented reality navigation system for endonasal transsphenoidal surgery to treat pituitary tumors: technical note.  Neurosurgery. 2002;  50 1393-1397
  • 10 Benabid A L, Hoffmann D, Ashraf A, Koudsie A, Esteve F, Le Bas J F. Robotics in neurosurgery: current status and future prospects.]  Chirurgie. 1998;  123 25-31
  • 11 Burghart C R, Muenchenberg J E, Rembold U. A system for robot assisted maxillofacial surgery.  Stud Health Technol Inform. 1998;  50 220-226
  • 12 Cleary K, Nguyen C. State of the art in surgical robotics: clinical applications and technology challenges.  Comput Aided Surg. 2001;  6 312-328
  • 13 Davies B. A review of robotics in surgery.  Proc Inst Mech Eng [H]. 2000;  214 129-140
  • 14 Fankhauser H, Glauser D, Flury P, Piguet Y, Epitaux M, Favre J, Meuli R A. Robot for CT-guided stereotactic neurosurgery.  Stereotact Funct Neurosurg. 1994;  63 93-98
  • 15 Federspil P A, Stallkamp J, Plinkert P K. Robotik - Eine neue Dimension in der HNO-Heilkunde?.  HNO. 2001;  49 505-513
  • 16 Federspil P A, Geisthoff U W, Henrich D, Plinkert P K. Development of the first force-controlled robot for otoneurosurgery.  Laryngoscope. 2003;  113 465-471
  • 17 Howe R D, Matsuoka Y. Robotics for surgery.  Annu Rev Biomed Eng. 1999;  1 211-240
  • 18 Glauser D, Fankhauser H, Epitaux M, Hefti J L, Jaccottet A. Neurosurgical robot Minerva: first results and current developments.  J Image Guid Surg. 1995;  1 266-272
  • 19 Le Roux P D, Das H, Esquenazi S, Kelly P J. Robot-assisted microsurgery: a feasibility study in the rat.  Neurosurgery. 2001;  48 584-589
  • 20 Li Q H, Zamorano L, Pandya A, Perez R, Gong J, Diaz F. The application accuracy of the NeuroMate robot - A quantitative comparison with frameless and frame-based surgical localization systems.  Comput Aided Surg. 2002;  7 90-98
  • 21 Tseng C S, Chung C W, Chen H H, Wang S S, Tseng H M. Development of a robotic navigation system for neurosurgery.  Stud Health Technol Inform. 1999;  62 358-359
  • 22 Young R F. Application of robotics to stereotactic neurosurgery.  Neurol Res. 1987;  9 123-128
  • 23 Wapler M, Binnenbose T, Braucker M, Durr M, Hiller A, Stallkamp J, Urban V. [Development of a modular robot system for microsurgery.]  Biomed Tech (Berl). 1998;  43 Suppl 188-189
  • 24 Wapler M, Braucker M, Durr M, Hiller A, Stallkamp J, Urban V. A voice-controlled robotic assistant for neuroendoscopy.  Stud Health Technol Inform. 1999;  62 384-387
  • 25 Urban V, Wapler M, Weisener T, Schonmayr R. A tactile feedback hexapod operating robot for endoscopic procedures.  Neurol Res. 1999;  21 28-30
  • 26 Urban V, Wapler M, Neugebauer J, Hiller A, Stallkamp J, Weisener T. Robot-assisted surgery system with kinesthetic feedback.  Comput Aided Surg. 1998;  3 205-209
  • 27 Zimmermann M, Krishnan R, Raabe A, Seifert V. Robot-assisted navigated neuroendoscopy.  Neurosurgery. 2002;  51 1446-1452
  • 28 Plinkert P K, Plinkert B, Hiller A, Stallkamp J. Einsatz eines Roboters an der lateralen Schädelbasis.  HNO. 2001;  49 514-522
  • 29 Nimsky C, Ganslandt O, Kreutzer J, Buchfelder M, Fahlbusch R. Intraoperative Visualisierung vaskulärer Strukturen bei transsphenoidalen Operationen von Schädelbasistumoren. In: Walter G, Brandis A (Hrsg.) Erkrankungen der Schädelbasis - Therapieoptimierung durch interdisziplinäres Management. Einhorn-Presse Verlag: Reinbek 2002: pp. 128-131

Priv.-Doz. Dr. Christopher Nimsky

Department of Neurosurgery · University Erlangen-Nürnberg

Schwabachanlage 6

91054 Erlangen

Germany

Phone: +49-9131-8534570

Fax: +49-9131-8534551

Email: nimsky@nch.imed.uni-erlangen.de

    >