Z Orthop Unfall 2008; 146(4): 452-457
DOI: 10.1055/s-2008-1038400
Wirbelsäule

© Georg Thieme Verlag KG Stuttgart · New York

Einfluss der Inlaygröße einer lumbalen Bandscheibenprothese auf das Bewegungsverhalten

Influence of Inlay Height on Motion Characteristics of Lumbar Segments in Total Disc ReplacementM. Weißkopf1 , J. A. K. Ohnsorge2 , F. Martini3 , F. U. Niethard2 , K. Birnbaum4
  • 1Wirbelsäulenchirurgie, Orthopädische Fachklinik Schwarzach
  • 2Orthopädische Klinik, Universitätsklinik der RWTH Aachen
  • 3Endoprothetik, Orthopädische Fachklinik Schwarzach
  • 4Orthopädische Gemeinschaftspraxis, Hennef
Further Information

Publication History

Publication Date:
14 August 2008 (online)

Zusammenfassung

Studienziel: Das Erhalten der segmentalen Beweglichkeit ist das Hauptziel bei der Implantation von Bandscheibenprothesen. Es existieren verschiedene Inlaygrößen um die physiologische Segmenthöhe wiederherzustellen. Ziel dieser In-vitro-Studie ist es, den Einfluss der Inlayhöhe auf das Bewegungsverhalten zu untersuchen. Methode: Insgesamt 10 lumbale WS-Präparate wurden auf einem Wirbelsäulenbelastungssimulator mit reinen Drehmomenten von 2,5 bis 7,5 Nm untersucht. Neben der Flexions-/Extensionsbewegung wurde auch die Seitneigung beurteilt. Nach der Leermessung erfolgte die Implantation der Totalprothese mit einer Inlaygröße von 8,5 mm. Danach wurde in 5 Fällen ein 1 mm größeres Inlay und in weiteren 5 Fällen ein 2 mm größeres Inlay eingesetzt und die Messung wiederholt. Die Bewegungsanalyse erfolgte mit dem Zebris®-System. Ergebnisse: Nachdem das kleinste Inlay eingesetzt wurde, war im Vergleich zum intakten Bewegungssegment keine signifikante Veränderung der segmentalen Beweglichkeit nachweisbar. Mit dem größeren Inlay ergab sich für die Flexion/Extension unter einer Belastung von 7,5 Nm eine Reduktion des Bewegungsausmaßes um 25 %, unter 5,0 Nm um 26 % und unter 2,5 Nm um 30 %. Die Neutralzone wurde um 37 % vermindert. Für die Seitneigung ergab sich unter der Maximalbelastung eine Verringerung des Bewegungsausmaßes um 21 %, unter 5,0 Nm um 26 % und unter 2,5 Nm um 35 %. Die Neutralzone war um 27 % vermindert. Die Reduktion der segmentalen Beweglichkeit war signifikant (p = 0,0057). Schlussfolgerungen: Der Totalersatz der lumbalen Bandscheibe erhält die Beweglichkeit des lumbalen Bewegungsegmentes. Mit Zunahme der Inlaygröße verringert sich das Bewegungsausmaß signifikant unter verschiedenen Belastungen.

Abstract

Aim of the Study: Maintaining segmental motion is one of the most reported theoretical advantages of total disc replacement (TDR). Several inlay sizes are available for reconstruction of the physiological disc height. The influence of the implant height on the range of motion (ROM) was investigated in a biomechanical study. Methods: A total of 10 human lumbar cadaver spines were subjected to biomechanical testing. Flexion/extension and side-bending moments were applied from 2.5 – 7.5 Nm on a spine load simulator allowing for all 6 degrees of freedom. Motion under different loads was monitored by the Zebris system in 3 dimensions. Initially intact specimens were tested in 3 load cycles. Then a total disc prothesis was implanted with an 8.5 mm inlay and the cycles were repeated. Finally in 5 cases a 1-mm larger inlay was inserted while in the remaining 5 cases the inlay was exchanged with a 2-mm larger implant. Neutral zone (NZ) and ROM were recorded under the different loads. Results: The average motion for the various loads showed no significant difference when the intact motion segment was compared to the specimen containing the 8.5-mm inlay. After the larger inlay had been mounted the average reduction of the ROM in flexion/extension was 25 % under the load of 7.5 Nm, 26 % under a torque of 5.0 Nm and 30 % when 2.5 Nm were applied. The NZ was reduced by 37 %. For side-bending the ROM was reduced by 21 % under a load of 7.5 Nm, by 26 % under 5.0 Nm and by 35 % under a torque of 2.5 Nm. The NZ was decreased by 27 %. The reduction of the ROM was significant (p = 0.0057). Conclusion: Segmental lumbar motion is maintained after TDR. The size of the inlay can significantly change the ROM in lumbar spine segments treated by TDR.

Literatur

  • 1 Fritzell P, Hagg O, Wessberg P. et al . 2001 Volvo Award Winner in Clinical Studies. Lumbar fusion versus nonsurgical treatment for chronic low back pain: a multicenter randomized controlled trial from the Swedish lumbar Spine Study Group.  Spine. 2001;  26 2521-2532
  • 2 Nachemson A, Zdeblick T A, O'Brien J P. Lumbar disc disease with discogenic pain. What surgical treatment is most effective?.  Spine. 1996;  21 1835-1838
  • 3 Panjabi M. Biomechanical evaluation of spinal fixation devices. I. A conceptual Framework.  Spine. 1988;  13 1129
  • 4 Panjabi M, Malcolmson G, Teng E, Tominaga Y, Henderson G, Serhan H. Hybrid testing of lumbar CHARITE discs versus fusions.  Spine. 2007;  20 959-966
  • 5 Büttner-Janz K, Schellnack K, Zippel H. An alternative treatment strategy in lumbar intervertebral disk damage using an SB Charite modular type intervertebral disk endoprosthesis.  Z Orthop Ihre Grenzgeb. 1987;  125 1-6
  • 6 Bertagnoli R, Kumar S. Indications for full prosthetic disc arthroplasty: a correlation of clinical outcome against a variety of indications.  Eur Spine J. 2002;  11 S131-S136
  • 7 Büttner-Janz K, Hahn S, Schikora K, Link H D. Basic principles of successful implantation of the SB Charité model LINK intervertebral disk endoprosthesis.  Orthopäde. 2002;  31 441
  • 8 Zeegers W S, Bohnen L MLJ, Laaper M, Verhaegen M JA. Artificial disc replacement with the modular type SB Charité III: 2 years results in 50 prospectively studied patients.  Eur Spine J. 1999;  8 210-217
  • 9 Zigler J E, Burd T A, Vialle E N, Sachs B L, Rashbaum R F, Ohnmeiss D D. Lumbar spine arthroplasty: early results using the ProDisc II: a prospective randomized trial of arthroplasty versus fusion.  J Spinal Disord Tech. 2003;  16 352-361
  • 10 Mc Afee P C, Fedder I L, Saiedy S, Shucosky E M, Cunningham B W. Experimental design of total disk replacement-experience with a prospective randomized study of the sb charité.  Spine. 2003;  28 (Suppl 20) S153-S162
  • 11 Dooris A P, Goel V K, Grosland N M, Gilbertson L G, Wilder D G. Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc.  Spine. 2001;  26 E122-E129
  • 12 Rohlmann A, Zander T, Bergmann G. Effect of total disc replacement with ProDisc on intersegmental rotation of the lumbar spine.  Spine. 2005;  30 738-743
  • 13 Dunlop R, Adams M A, Hutton W C. Disc space narrowing and the lumbar facet joints.  J Bone Joint Surg [Br]. 1984;  66 706
  • 14 Liu J, Ebraheim N A, Haman S P, Shafiq Q, Karkare N, Biyani A, Goel V K, Woldenberg L. Effect of the increase in the height of lumbar disc space on facet joint articulation area in sagittal plane.  Spine. 2006;  31 E198-E202
  • 15 Panjabi M M, Krag M, Summers D, Videman T. Biomechanical time-tolerance of fresh cadaveric human spine specimens.  J Orthop Res. 1985;  3 292
  • 16 Wilke H J, Wenger K, Claes L. Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants.  Eur Spine J. 1998;  7 148
  • 17 Vernon-Roberts B. Pathology of intervertebral discs and apophyseal joints. Jayson MIV The Lumbar Spine and Back Pain. Edinburgh; Churchill Livingstone 1987: 37
  • 18 Lemaire J P, Skalli W, Lavaste F, Templier A, Mendes F, Diop A, Sauty V, Laloux E. Intervertebral disc prothesis. Results and prospects for the year 2000.  Clin Orthop. 1997;  337 64
  • 19 Butler D, Trafimow J H, Andersson G B, McNeill T W, Huckman M S. Discs degenerate before facets.  Spine. 1990;  15 111
  • 20 Osti O L, Vernon-Roberts B, Fraser R D. Annulus tears and intervertebral disc degeneration: an experimental study using an animal model.  Spine. 1990;  15 762
  • 21 Oegema Jr T R, Bradford D S. The inter-relationship of facet joint osteoarthritis and degenerative disc disease.  Br J Rheumatol. 1991;  30 (Suppl 1) 16
  • 22 Schwarzer A C, Aprill C N, Derby R. The relative contributions of the disc and zygapophyseal joint in chronic low back pain.  Spine. 1994;  19 801
  • 23 Wigfield C C, Skrzypiec D, Jackowski A, Adams M A. Internal stress distribution in cervical intervertebral discs: the influence of an artificial cervical joint and simulated anterior interbody fusion.  J Spinal Disord Tech. 2003;  16 441
  • 24 Nagel D A, Koogle T A, Piziali R L, Perkash I. Stability of the upper lumbar spine following progressive disruptions and the application of individual internal and external fixation devices.  J Bone Joint Surg [Am]. 1981;  63 62
  • 25 Delamarter R B, Fribourg D M, Kanim L EA, Bae H. Pro disc artificial total lumbar disc replacement: introduction and early results from the United States clinical trial.  Spine. 2003;  28 S167
  • 26 Cakir B, Schmidt R, Huch K, Puhl W, Richter M. Sagittal alignment and segmental range of motion after total disc replacement of the lumbar spine.  Z Orthop Ihre Grenzgeb. 2004;  142 159
  • 27 Yamamoto I, Panjabi M M, Crisco J, Oxland T, Bonar S. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Trans Int Soc for Study of Lumbar Spine, Kyoto, Japan. 1989

PD Dr. Markus Weißkopf

Wirbelsäulenchirurgie
Orthopädische Fachklinik Schwarzach

Dekan-Graf-Straße 2 – 6

94374 Schwarzach

Email: markus.weisskopf@ofks.de

    >