Thromb Haemost 2012; 107(04): 603-604
DOI: 10.1160/TH12-02-0122
Theme Issue Editorial
Schattauer GmbH

MicroRNAs in vascular biology – metabolism and atherosclerosis

Andreas Schober
1   Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
,
Thomas Thum
2   Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
,
Alma Zernecke
3   Rudolf-Virchow-Center/ DFG-Research Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
› Author Affiliations
Further Information

Publication History

Received: 29 February 2012

Accepted: 29 February 2012

Publication Date:
29 November 2017 (online)

 

 
  • References

  • 1 Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat Rev Genet 2008; 09: 102-114.
  • 2 Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol 2007; 23: 175-205.
  • 3 Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843-854.
  • 4 Reinhart BJ, Slack FJ, Basson M. et al. The 21-nu-cleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403: 901-906.
  • 5 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-297.
  • 6 Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and function. Thromb Haemost 2012; 107: 605-610.
  • 7 Weber C, Zernecke A, Libby P. The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 2008; 08: 802-815.
  • 8 Manthey H, Zernecke A. Dendritic cells in atherosclerosis: functions in immune regulation and beyond. Thromb Haemost 2011; 106: 772-778.
  • 9 Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 2011; 17: 1410-1422.
  • 10 Nazari-Jahantigh M, Wei Y, Schober A. The role of microRNAs in arterial remodelling. Thromb Haemost 2012; 107: 611-618.
  • 11 Zernecke A. MicroRNAs in the regulation of immune cell functions - implications for atherosclerotic vascular disease. Thromb Haemost 2012; 107: 626-633.
  • 12 Bidzhekov K, Gan L, Denecke B, Rostalsky A, Hristov M, Koeppel TA, Zernecke A, Weber C. microR-NA expression signatures and parallels between monocyte subsets and atherosclerotic plaque in humans. Thromb Haemost 2012; 107: 619-625.
  • 13 Stratz C, Nührenberg TG, Binder H. et al. Microarray profiling exhibits remarkable intra-individual stability of human platelet micro-RNA Thromb Haemost. 2012; 107: 634-641.
  • 14 Weber C, Schober A, Zernecke A. MicroRNAs in arterial remodelling, inflammation and atherosclerosis. Curr Drug Targets 2010; 11: 950-956.
  • 15 Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature 2011; 469: 336-342.
  • 16 Ji R, Cheng Y, Yue J. et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 2007; 100: 1579-1588.
  • 17 Rayner KJ, Fernandez-Hernando C, Moore KJ. MicroRNAs regulating lipid metabolism in atherogenesis. Thromb Haemost 2012; 107: 642-647.
  • 18 Zernecke A, Bidzhekov K, Noels H. et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009; 02: ra81.