Thromb Haemost 2013; 110(05): 910-919
DOI: 10.1160/TH13-02-0102
Theme Issue Article
Schattauer GmbH

Crosstalk between platelets and the complement system in immune protection and disease

Admar Verschoor
1   1Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
,
Harald F. Langer
2   Medizinische Klinik III, Klinik für Kardiologie und Kreislauf erkrankungen, Eberhard Karls-Universität Tübingen, Tübingen, Germany
› Author Affiliations
Further Information

Publication History

Received: 05 February 2013

Accepted after major revision: 15 July 2013

Publication Date:
01 December 2017 (online)

Summary

Platelets have a central function in repairing vascular damage and stopping acute blood loss. They are equally central to thrombus formation in cardiovascular diseases such as myocardial infarction and ischaemic stroke. Beyond these classical prothrombotic diseases, immune mediated pathologies such as haemolytic uraemic syndrome (HUS) or paroxysmal nocturnal haemoglobinuria (PNH) also feature an increased tendency to form thrombi in various tissues. It has become increasingly clear that the complement system, part of the innate immune system, has an important role in the pathophysiology of these diseases. Not only does complement influence prothrombotic disease, it is equally involved in idiopathic thrombocytopenic purpura (ITP), an autoimmune disease characterised by thrombocytopenia. Thus, there are complex interrelationships between the haemostatic and immune systems, and platelets and complement in particular. Not only does complement influence platelet diseases such as ITP, HUS and PNH, it also mediates interaction between microbes and platelets during systemic infection, influencing the course of infection and development of protective immunity. This review aims to provide an integrative overview of the mechanisms underlying the interactions between complement and platelets in health and disease.

 
  • References

  • 1 Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol 2008; 28: 403-412.
  • 2 Ho-Tin-Noe B, Demers M, Wagner DD. How platelets safeguard vascular integrity. J Thromb Haemost 2011; 9 (Suppl. 01) 56-65.
  • 3 Langer H, May AE, Daub K. et al. Adherent platelets recruit and induce differentiation of murine embryonic endothelial progenitor cells to mature endothelial cells in vitro. Circ Res 2006; 98: e2-10.
  • 4 Langer HF, Gawaz M. Platelets in regenerative medicine. Basic Res Cardiol 2008; 103: 299-307.
  • 5 Griffin XL, Wallace D, Parsons N, Costa ML. Platelet rich therapies for long bone healing in adults. Cochrane Database Syst Rev 2012; 7: CD009496
  • 6 Gawaz M. Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium. Cardiovasc Res 2004; 61: 498-511.
  • 7 Kleinschnitz C, Pozgajova M, Pham M. et al. Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. Circulation 2007; 115: 2323-2330.
  • 8 Stoll G, Kleinschnitz C, Nieswandt B. Molecular mechanisms of thrombus formation in ischemic stroke: novel insights and targets for treatment. Blood 2008; 112: 3555-3562.
  • 9 Jackson SP. Arterial thrombosis--insidious, unpredictable and deadly. Nat Med 2011; 17: 1423-1436.
  • 10 Ruggeri ZM, Mendolicchio GL. Adhesion mechanisms in platelet function. Circ Res 2007; 100: 1673-1685.
  • 11 Nieswandt B, Watson SP. Platelet-collagen interaction: is GPVI the central receptor?. Blood 2003; 102: 449-461.
  • 12 Langer H, Gawaz M. The role of platelets for the pathophysiology of acute coronary syndromes. Hamostaseologie 2006; 26: 114-118.
  • 13 Langer H, Schonberger T, Bigalke B, Gawaz M. Where is the trace? Molecular imaging of vulnerable atherosclerotic plaques. Semin Thromb Hemost 2007; 33: 151-158.
  • 14 Ruggeri ZM. Platelets in atherothrombosis. Nat Med 2002; 8: 1227-1234.
  • 15 Savage B, Saldivar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996; 84: 289-297.
  • 16 Massberg S, Gawaz M, Gruner S. et al. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 2003; 197: 41-49.
  • 17 Massberg S, Konrad I, Bultmann A. et al. Soluble glycoprotein VI dimer inhibits platelet adhesion and aggregation to the injured vessel wall in vivo. FASEB J 2004; 18: 397-399.
  • 18 Ware J, Russell S, Ruggeri ZM. Generation and rescue of a murine model of platelet dysfunction: the Bernard-Soulier syndrome. Proc Natl Acad Sci USA 2000; 97: 2803-2808.
  • 19 Uff S, Clemetson JM, Harrison T. et al. Crystal structure of the platelet glycoprotein Ib(alpha) N-terminal domain reveals an unmasking mechanism for receptor activation. J Biol Chem 2002; 277: 35657-35663.
  • 20 Huo Y, Schober A, Forlow SB. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003; 9: 61-67.
  • 21 Massberg S, Brand K, Gruner S, Page S, Muller E, Muller I. et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002; 196: 887-896.
  • 22 Langer HF, Chavakis T. Leukocyte-endothelial interactions in inflammation. J Cell Mol Med 2009; 13: 1211-1220.
  • 23 Santoso S, Sachs UJ, Kroll H. et al. The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J Exp Med 2002; 196: 679-691.
  • 24 Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 2007; 7: 678-689.
  • 25 Schober A, Manka D, von Hundelshausen P. et al. Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointima formation after arterial injury. Circulation 2002; 106: 1523-1529.
  • 26 von Hundelshausen P, Koenen RR, Weber C. Platelet-mediated enhancement of leukocyte adhesion. Microcirculation 2009; 16: 84-96.
  • 27 von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 2007; 100: 27-40.
  • 28 Wagner DD, Frenette PS. The vessel wall and its interactions. Blood 2008; 111: 5271-5281.
  • 29 Ehlers R, Ustinov V, Chen Z. et al. Targeting platelet-leukocyte interactions: identification of the integrin Mac-1 binding site for the platelet counter receptor glycoprotein Ibalpha. J Exp Med 2003; 198: 1077-1088.
  • 30 Simon DI, Chen Z, Xu H. et al. Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 2000; 192: 193-204.
  • 31 Chavakis T, Santoso S, Clemetson KJ. et al. High molecular weight kininogen regulates platelet-leukocyte interactions by bridging Mac-1 and glycoprotein Ib. J Biol Chem 2003; 278: 45375-45381.
  • 32 Weber C, Springer TA. Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to alphaIIbbeta3 and stimulated by platelet-activating factor. J Clin Invest 1997; 100: 2085-2093.
  • 33 Langer HF, Gawaz M. Platelet-vessel wall interactions in atherosclerotic disease. Thromb Haemost 2008; 99: 480-486.
  • 34 Patzelt J, Langer HF. Platelets in angiogenesis. Curr Vasc Pharmacol 2012; 10: 570-577.
  • 35 Fitzgerald JR, Foster TJ, Cox D. The interaction of bacterial pathogens with platelets. Nat Rev Microbiol 2006; 4: 445-457.
  • 36 Langer HF, Choi EY, Zhou H. et al. Platelets Contribute to the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Circ Res 2012; 110: 1202-1210.
  • 37 Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 2010; 327: 580-583.
  • 38 Noris M, Mescia F, Remuzzi G. STEC-HUS, atypical HUS and TTP are all diseases of complement activation. Nat Rev Nephrol 2012; 8: 622-633.
  • 39 Risitano AM. Paroxysmal nocturnal hemoglobinuria and other complement-mediated hematological disorders. Immunobiology 2012; 217: 1080-1087.
  • 40 Verschoor A, Carroll MC. Complement and its receptors in infection. Am Soc Microbiol Press 2013; 219-240.
  • 41 Dempsey PW, Allison ME, Akkaraju S. et al. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 1996; 271: 348-350.
  • 42 Verschoor A, Brockman MA, Knipe DM. et al. Cutting edge: myeloid complement C3 enhances the humoral response to peripheral viral infection. J Immunol 2001; 167: 2446-2451.
  • 43 Verschoor A, Brockman MA, Gadjeva M. et al. Myeloid C3 determines induction of humoral responses to peripheral herpes simplex virus infection. J Immunol 2003; 171: 5363-5371.
  • 44 Brockman MA, Verschoor A, Zhu J. et al. Optimal long-term humoral responses to replication-defective herpes simplex virus require CD21/CD35 complement receptor expression on stromal cells. J Virol 2006; 80: 7111-7117.
  • 45 Langer HF, Chung KJ, Orlova VV. et al. Complement-mediated inhibition of neovascularization reveals a point of convergence between innate immunity and angiogenesis. Blood 2010; 116: 4395-4403.
  • 46 Zhang X, Kohl J. A complex role for complement in allergic asthma. Expert Rev Clin Immunol 2010; 6: 269-277.
  • 47 Ali H. Regulation of human mast cell and basophil function by anaphylatoxins C3a and C5a. Immunol Lett 2010; 128: 36-45.
  • 48 Peng Q, Li K, Sacks SH, Zhou W. The role of anaphylatoxins C3a and C5a in regulating innate and adaptive immune responses. Inflamm Allergy Drug Targets 2009; 8: 236-246.
  • 49 Hamad OA, Nilsson PH, Wouters D. et al. Complement component C3 binds to activated normal platelets without preceding proteolytic activation and promotes binding to complement receptor 1. J Immunol 2010; 184: 2686-2692.
  • 50 Hamad OA, Ekdahl KN, Nilsson PH. et al. Complement activation triggered by chondroitin sulfate released by thrombin receptor-activated platelets. J Thromb Haemost 2008; 6: 1413-1421.
  • 51 Nunez D, Charriaut-Marlangue C, Barel M. et al. Activation of human platelets through gp140, the C3d/EBV receptor (CR2). Eur J Immunol 1987; 17: 515-520.
  • 52 Cosgrove LJ, d’Apice AJ, Haddad A. et al. CR3 receptor on platelets and its role in the prostaglandin metabolic pathway. Immunol Cell Biol 1987; 65: 453-460.
  • 53 Vik DP, Fearon DT. Cellular distribution of complement receptor type 4 (CR4): expression on human platelets. J Immunol 1987; 138: 254-258.
  • 54 Peerschke EI, Ghebrehiwet B. Human blood platelet gC1qR/p33. Immunol Rev 2001; 180: 56-64.
  • 55 Wautier JL, Souchon H, Reid KB. et al. Studies on the mode of reaction of the first component of complement with platelets: interaction between the collagen-like portion of C1q and platelets. Immunochemistry 1977; 14: 763-766.
  • 56 Peerschke EI, Ghebrehiwet B. C1q augments platelet activation in response to aggregated Ig. J Immunol 1997; 159: 5594-5598.
  • 57 Polley MJ, Nachman RL. Human platelet activation by C3a and C3a des-arg. J Exp Med 1983; 158: 603-615.
  • 58 Martel C, Cointe S, Maurice P. et al. Requirements for membrane attack complex formation and anaphylatoxins binding to collagen-activated platelets. PLoS One 2011; 6: e18812
  • 59 Del CI, Cruz MA, Zhang H. et al. Platelet activation leads to activation and propagation of the complement system. J Exp Med 2005; 201: 871-879.
  • 60 Sims PJ, Wiedmer T. The response of human platelets to activated components of the complement system. Immunol Today 1991; 12: 338-342.
  • 61 Mnjoyan Z, Li J, Afshar-Kharghan V. Factor H binds to platelet integrin alphaIIbbeta3. Platelets 2008; 19: 512-519.
  • 62 Vaziri-Sani F, Hellwage J, Zipfel PF. et al. Factor H binds to washed human platelets. J Thromb Haemost 2005; 3 (01) 154-162.
  • 63 Yu GH, Holers VM, Seya T. et al. Identification of a third component of complement-binding glycoprotein of human platelets. J Clin Invest 1986; 78: 494-501.
  • 64 Nicholson-Weller A, March JP, Rosen CE. et al. Surface membrane expression by human blood leukocytes and platelets of decay-accelerating factor, a regulatory protein of the complement system. Blood 1985; 65: 1237-1244.
  • 65 Morgan BP. Isolation and characterization of the complement-inhibiting protein CD59 antigen from platelet membranes. Biochem J 1992; 282: 409-413.
  • 66 Barata L, Miwa T, Sato S. et al. Deletion of Crry and DAF on murine platelets stimulates thrombopoiesis and increases factor H-dependent resistance of peripheral platelets to complement attack. J Immunol 2013; 190: 2886-2895.
  • 67 Tarr PI, Gordon CA, Chandler WL. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 2005; 365: 1073-1086.
  • 68 Noris M, Remuzzi G. Atypical hemolytic-uremic syndrome. N Engl J Med 2009; 361: 1676-1687.
  • 69 Kavanagh D, Goodship T. Genetics and complement in atypical HUS. Pediatr Nephrol 2010; 25: 2431-2442.
  • 70 Morigi M, Galbusera M, Gastoldi S. et al. Alternative pathway activation of complement by Shiga toxin promotes exuberant C3a formation that triggers microvascular thrombosis. J Immunol 2011; 187: 172-180.
  • 71 Tedesco F, Pausa M, Nardon E. et al. The cytolytically inactive terminal complement complex activates endothelial cells to express adhesion molecules and tissue factor procoagulant activity. J Exp Med 1997; 185: 1619-1627.
  • 72 Stahl AL, Vaziri-Sani F, Heinen S. et al. Factor H dysfunction in patients with atypical hemolytic uremic syndrome contributes to complement deposition on platelets and their activation. Blood 2008; 111: 5307-5315.
  • 73 Richards A, Buddles MR, Donne RL. et al. Factor H mutations in hemolytic uremic syndrome cluster in exons 18-20, a domain important for host cell recognition. Am J Hum Genet 2001; 68: 485-490.
  • 74 Ferreira VP, Herbert AP, Cortes C. et al. The binding of factor H to a complex of physiological polyanions and C3b on cells is impaired in atypical hemolytic uremic syndrome. J Immunol 2009; 182: 7009-7018.
  • 75 Manuelian T, Hellwage J, Meri S. et al. Mutations in factor H reduce binding affinity to C3b and heparin and surface attachment to endothelial cells in hemolytic uremic syndrome. J Clin Invest 2003; 111: 1181-1190.
  • 76 Strobel S, Hoyer PF, Mache CJ. et al. Functional analyses indicate a pathogenic role of factor H autoantibodies in atypical haemolytic uraemic syndrome. Nephrol Dial Transplant 2010; 25: 136-144.
  • 77 Jozsi M, Strobel S, Dahse HM. et al. Anti factor H autoantibodies block C-terminal recognition function of factor H in hemolytic uremic syndrome. Blood 2007; 110: 1516-1518.
  • 78 Fremeaux-Bacchi V, Moulton EA, Kavanagh D. et al. Genetic and functional analyses of membrane cofactor protein (CD46) mutations in atypical hemolytic uremic syndrome. J Am Soc Nephrol 2006; 17: 2017-2025.
  • 79 Kavanagh D, Richards A, Noris M. et al. Characterization of mutations in complement factor I (CFI) associated with hemolytic uremic syndrome. Mol Immunol 2008; 45: 95-105.
  • 80 Fremeaux-Bacchi V, Miller EC, Liszewski MK. et al. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood 2008; 112: 4948-4952.
  • 81 Goicoechea dJ, Harris CL, Esparza-Gordillo J. et al. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc Natl Acad Sci USA 2007; 104: 240-245.
  • 82 Delvaeye M, Noris M, De Vriese A. et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N Engl J Med 2009; 361: 345-357.
  • 83 Ziakas PD, Poulou LS, Pomoni A. Thrombosis in paroxysmal nocturnal hemoglobinuria at a glance: a clinical review. Curr Vasc Pharmacol 2008; 6: 347-353.
  • 84 Kunstling TR, Rosse WF. Erythrocyte acetylcholinesterase deficiency in paroxysmal nocturnal hemoglobinuria (PNH).A comparison of the complement-sensitive and insensitive populations. Blood 1969; 33: 607-616.
  • 85 Nicholson-Weller A, March JP, Rosenfeld SI. et al. Affected erythrocytes of patients with paroxysmal nocturnal hemoglobinuria are deficient in the complement regulatory protein, decay accelerating factor. Proc Natl Acad Sci USA 1983; 80: 5066-5070.
  • 86 Selvaraj P, Rosse WF, Silber R. et al. The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature 1988; 333: 565-567.
  • 87 Takeda J, Miyata T, Kawagoe K. et al. Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 1993; 73: 703-711.
  • 88 Miyata T, Takeda J, Iida Y. et al. The cloning of PIG-A, a component in the early step of GPI-anchor biosynthesis. Science 1993; 259: 1318-1320.
  • 89 Mahoney JF, Urakaze M, Hall S. et al. Defective glycosylphosphatidylinositol anchor synthesis in paroxysmal nocturnal hemoglobinuria granulocytes. Blood 1992; 79: 1400-1403.
  • 90 Takahashi M, Takeda J, Hirose S. et al. Deficient biosynthesis of N-acetylglucosaminyl-phosphatidylinositol, the first intermediate of glycosyl phosphatidylinositol anchor biosynthesis, in cell lines established from patients with paroxysmal nocturnal hemoglobinuria. J Exp Med 1993; 177: 517-521.
  • 91 Nicholson-Weller A, Burge J, Fearon DT. et al. Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3 convertases of the complement system. J Immunol 1982; 129: 184-189.
  • 92 Nicholson-Weller A. Decay accelerating factor (CD55). Curr Top Microbiol Immunol 1992; 178: 7-30.
  • 93 Holguin MH, Fredrick LR, Bernshaw NJ. et al. Isolation and characterization of a membrane protein from normal human erythrocytes that inhibits reactive lysis of the erythrocytes of paroxysmal nocturnal hemoglobinuria. J Clin Invest 1989; 84: 7-17.
  • 94 Holguin MH, Wilcox LA, Bernshaw NJ. et al. Relationship between the membrane inhibitor of reactive lysis and the erythrocyte phenotypes of paroxysmal nocturnal hemoglobinuria. J Clin Invest 1989; 84: 1387-1394.
  • 95 Dixon RH, Rosse WF. Mechanism of complement-mediated activation of human blood platelets in vitro: comparison of normal and paroxysmal nocturnal hemoglobinuria platelets. J Clin Invest 1977; 59: 360-368.
  • 96 Wiedmer T, Hall SE, Ortel TL. et al. Complement-induced vesiculation and exposure of membrane prothrombinase sites in platelets of paroxysmal nocturnal hemoglobinuria. Blood 1993; 82: 1192-1196.
  • 97 Grunewald M, Grunewald A, Schmid A. et al. The platelet function defect of paroxysmal nocturnal haemoglobinuria. Platelets 2004; 15: 145-154.
  • 98 Hillmen P, Muus P, Duhrsen U. et al. Effect of the complement inhibitor eculizumab on thromboembolism in patients with paroxysmal nocturnal hemoglobinuria. Blood 2007; 110: 4123-4128.
  • 99 Kravitz MS, Shoenfeld Y. Thrombocytopenic conditions-autoimmunity and hypercoagulability: commonalities and differences in ITP, TTP, HIT, and APS. Am J Hematol 2005; 80: 232-242.
  • 100 Chen M, Daha MR, Kallenberg CG. The complement system in systemic autoimmune disease. J Autoimmun 2010; 34: J276-J286.
  • 101 Zipfel PF, Wolf G, John U. et al. Novel developments in thrombotic microangiopathies: is there a common link between hemolytic uremic syndrome and thrombotic thrombocytic purpura?. Pediatr Nephrol 2011; 26: 1947-1956.
  • 102 Cines DB, Bussel JB, Liebman HA. et al. The ITP syndrome: pathogenic and clinical diversity. Blood 2009; 113: 6511-6521.
  • 103 Najaoui A, Bakchoul T, Stoy J. et al. Autoantibody-mediated complement activation on platelets is a common finding in patients with immune thrombocytopenic purpura (ITP). Eur J Haematol 2012; 88: 167-174.
  • 104 McMillan R. Autoantibodies and autoantigens in chronic immune thrombocytopenic purpura. Semin Hematol 2000; 37: 239-248.
  • 105 Bell Jr. WR. Role of splenectomy in immune (idiopathic) thrombocytopenic purpura. Blood Rev 2002; 16: 39-41.
  • 106 Kurata Y, Curd JG, Tamerius JD. et al. Platelet-associated complement in chronic ITP. Br J Haematol 1985; 60: 723-733.
  • 107 Basciano PA, Bussel JB. Thrombopoietin-receptor agonists. Curr Opin Hematol 2012; 19: 392-398.
  • 108 Pels SG. Current therapies in primary immune thrombocytopenia. Semin Thromb Hemost 2011; 37: 621-630.
  • 109 Alberti C, Brun-Buisson C, Burchardi H. et al. Epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study. Intensive Care Med 2002; 28: 108-121.
  • 110 Levi M, Ten Cate H. Disseminated intravascular coagulation. N Engl J Med 1999; 341: 586-592.
  • 111 Nakae H, Endo S, Inada K. et al. Serum complement levels and severity of sepsis. Res Commun Chem Pathol Pharmacol 1994; 84: 189-195.
  • 112 Amara U, Flierl MA, Rittirsch D. et al. Molecular intercommunication between the complement and coagulation systems. J Immunol 2010; 185: 5628-5636.
  • 113 Morris DH, Bullock FD. The importance of the spleen in resistance to infection. Ann Surg 1919; 70: 513-521.
  • 114 Parker JT, Franke E. The fate of typhoid bacilli injected intravenously into normal and typhoid immune rabbits. J Med Res 1919; 39: 301-309.
  • 115 van Lookeren CM, Wiesmann C, Brown EJ. Macrophage complement receptors and pathogen clearance. Cell Microbiol 2007; 9: 2095-2102.
  • 116 Gadjeva M, Verschoor A, Brockman MA. et al. Macrophage-derived complement component C4 can restore humoral immunity in C4-deficient mice. J Immunol 2002; 169: 5489-5495.
  • 117 Cunnion KM, Benjamin Jr. DK, Hester CG. et al. Role of complement receptors 1 and 2 (CD35 and CD21), C3, C4, and C5 in survival by mice of Staphylococcus aureus bacteremia. J Lab Clin Med 2004; 143: 358-365.
  • 118 Figueroa JE, Densen P. Infectious diseases associated with complement deficiencies. Clin Microbiol Rev 1991; 4: 359-395.
  • 119 Semple JW, Italiano Jr. JE, Freedman J. Platelets and the immune continuum. Nat Rev Immunol 2011; 11: 264-274.
  • 120 Clark SR, Ma AC, Tavener SA. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13: 463-469.
  • 121 Markiewski MM, Nilsson B, Ekdahl KN. et al. Complement and coagulation: strangers or partners in crime?. Trends Immunol 2007; 28: 184-192.
  • 122 Langer HF, Daub K, Braun G. et al. Platelets recruit human dendritic cells via Mac-1/JAM-C interaction and modulate dendritic cell function in vitro. Arterioscler Thromb Vasc Biol 2007; 27: 1463-1470.
  • 123 Verschoor A, Neuenhahn M, Navarini AA. et al. A platelet-mediated system for shuttling blood-borne bacteria to CD8alpha+ dendritic cells depends on glycoprotein GPIb and complement C3. Nat Immunol 2011; 12: 1194-1201.
  • 124 Langer HF, Chavakis T. Platelets and neurovascular inflammation. Thromb Haemost 2013; 110: 888-893.