Hamostaseologie 2013; 33(02): 96-104
DOI: 10.5482/HAMO-12-12-0025
Review
Schattauer GmbH

Complement activation in thrombotic microangiopathy

Komplementaktivierung bei thrombotischer Mikroangiopathie
D. Karpman
1   Department of Paediatrics, Clinical Sciences Lund, Lund University, Sweden
,
R. Tati*
1   Department of Paediatrics, Clinical Sciences Lund, Lund University, Sweden
› Author Affiliations
Financial support Diana Karpman is supported by grants from The Swedish Research Council (K2013–64X-14008–13–5), The Torsten Söderberg Foundation, Crown Princess Lovisa’s Society for Child Care, and The Konung Gustaf V:s 80-årsfond.
Further Information

Publication History

received: 22 December 2012

accepted in revised form: 23 January 2013

Publication Date:
05 February 2018 (online)

Summary

The endothelium lining the vascular lumen is continuously exposed to complement from the circulation. When erroneously activated on host cells, complement may generate a deleterious effect on the vascular wall leading to endothelial injury, exposure of the subendothelial matrix and platelet activation.

In this review the contribution of complement activation to formation and maintenance of the pathological lesion termed thrombotic microangiopathy (TMA) is discussed. TMA is defined by vessel wall thickening affecting mainly arterioles and capillaries, detachment of the endothelial cell from the basement membrane and intraluminal thrombosis resulting in occlusion of the vessel lumen. The TMA lesion occurs in haemolytic uraemic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP). HUS is further sub-classified as associated with Shiga toxin-producing Escherichia coli (STEC-HUS) or with complement dysregulation (atypical HUS) as well as other less common forms. The contribution of dysregulated complement activation to endothelial injury and platelet aggregation is reviewed as well as specific complement involvement in the development of HUS and TTP.

Zusammenfassung

Das Endothel, die zum Lumen ausgerichtete Gefäßinnenwand, ist im ständigen Kontakt mit zirkulierenden Komplementfaktoren. Wenn Komplement irrtümlich auf Wirtszellen aktiviert wird, kann es eine zerstörerische Wirkung auf die Gefäßwand auslösen, die zu Endothelschädigung, Exposition der sub- endothelialen Matrix und Thrombozytenaktivierung führt.

In dieser Übersicht wird der Beitrag diskutiert, den die Komplementaktivierung zur Entstehung und Aufrechterhaltung der pathologischen Läsion, der so genannten thrombotischen Mikroangiopathie (TMA), leistet. Die TMA ist definiert durch eine vorwiegend arterioläre und kapilläre Gefäßwandverdickung, Ablösung der Endothelzellen von der Basalmembran und Thrombosierung des Lumens, die zum Gefäßverschluss führt. Die TMA-Läsion tritt bei urämisch-hämolytischen Syndrom (HUS) und thrombotisch-thrombozytischer Purpura (TTP) auf. HUS wird unterteilt in mit Shiga-Toxin-produzierende Escherichia coli assoziierte HUS (STEC-HUS) und mit Komplementregulationsstörung assoziierte HUS (atypische HUS) sowie andere seltene Formen. Wir betrachten den Anteil, den eine Fehlregulation der Komplementaktivierung bei der Endothelschädigung und der Thrombozytenaggregation hat, sowie die spezifische Beteiligung des Komplements bei der Entstehung von HUS und TTP.

* Figure 1 and Table 1 are part of the PhD thesis of Dr. Ramesh Tati.


 
  • References

  • 1 Monnens L, Molenaar J, Lambert PH. et al. The complement system in hemolytic-uremic syndrome in childhood. Clin Nephrol 1980; 13: 168-171.
  • 2 Warwicker P, Goodship TH, Donne RL. et al. Genetic studies into inherited and sporadic hemolytic uremic syndrome. Kidney Int 1998; 53: 836-844.
  • 3 Ying L, Katz Y, Schlesinger M. et al. Complement factor H gene mutation associated with autosomal recessive atypical hemolytic uremic syndrome. Am J Hum Genet 1999; 65: 1538-1546.
  • 4 Loos M. The complement system: activation and control. Curr Top Microbiol Immunol 1985; 121: 7-18.
  • 5 Garred P, Honore C, Ma YJ. et al. MBL2, FCN1, FCN2 and FCN3-The genes behind the initiation of the lectin pathway of complement. Mol Immunol 2009; 46: 2737-2744.
  • 6 Roos A, Bouwman LH, van Gijlswijk-Janssen DJ. et al. Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol 2001; 167: 2861-2868.
  • 7 Law SK, Levine RP. Interaction between the third complement protein and cell surface macromolecules. Proc Natl Acad Sci 1977; 74: 2701-2705.
  • 8 Podack ER, Biesecker G, Muller-Eberhard HJ. Membrane attack complex of complement: generation of high-affinity phospholipid binding sites by fusion of five hydrophilic plasma proteins. Proc Natl Acad Sci 1979; 76: 897-901.
  • 9 Pangburn MK. Host recognition and target differentiation by factor H, a regulator of the alternative pathway of complement. Immunopharmacology 2000; 49: 149-157.
  • 10 Ruggenenti P, Noris M, Remuzzi G. Thrombotic microangiopathy, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. Kidney Int 2001; 60: 831-846.
  • 11 Besbas N, Karpman D, Landau D. et al. A classification of hemolytic uremic syndrome and thrombotic thrombocytopenic purpura and related disorders. Kidney Int 2006; 70: 423-431.
  • 12 Karpman D, Sartz L, Johnson S. Pathophysiology of typical hemolytic uremic syndrome. Semin Thromb Haemostas 2010; 36: 575-585.
  • 13 Obrig TG, Karpman D. Shiga toxin pathogenesis: kidney complications and renal failure. Curr Topics Microbiol Immunol 2012; 357: 105-136.
  • 14 Loirat C, Noris M, Fremeaux-Bacchi V. Complement and the atypical hemolytic uremic syndrome in children. Pediatr Nephrol 2008; 23: 1957-1972.
  • 15 Furlan M, Robles R, Galbusera M. et al. von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolyticuremic syndrome. N Engl J Med 1998; 339: 1578-1584.
  • 16 Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med 1998; 339: 1585-1594.
  • 17 Manuelian T, Hellwage J, Meri S. et al. Mutations in factor H reduce binding affinity to C3b and heparin and surface attachment to endothelial cells in hemolytic uremic syndrome. J Clin Invest 2003; 111: 1181-1190.
  • 18 Vaziri-Sani F, Holmberg L, Sjöholm AG. et al. Phenotypic expression of factor H mutations in patients with atypical hemolytic uremic syndrome. Kidney Int 2006; 69: 981-988.
  • 19 Ståhl AL, Vaziri-Sani F, Heinen S. et al. Factor H dysfunction in patients with atypical hemolytic uremic syndrome contributes to complement deposition on platelets and their activation. Blood 2008; 111: 5307-5315.
  • 20 Van de Kar NC, Monnens LA, Karmali MA. et al. Tumor necrosis factor and interleukin-1 induce expression of the verocytotoxin receptor globotriaosylceramide on human endothelial cells: implications for the pathogenesis of the hemolytic uremic syndrome. Blood 1992; 80: 2755-2764.
  • 21 Louise CB, Obrig TG. Shiga toxin-associated hemolytic-uremic syndrome: combined cytotoxic effects of Shiga toxin, interleukin-1 beta, and tumor necrosis factor alpha on human vascular endothelial cells in vitro. Infect Immun 1991; 59: 4173-4179.
  • 22 Karpman D, Papadopoulou D, Nilsson K. et al. Platelet activation by Shiga toxin and circulatory factors as a pathogenetic mechanism in the hemolytic uremic syndrome. Blood 2001; 97: 3100-3108.
  • 23 Ruiz-Torres MP, Casiraghi F, Galbusera M. et al. Complement activation: the missing link between ADAMTS-13 deficiency and microvascular thrombosis of thrombotic microangiopathies. Thromb Haemost 2005; 93: 443-452.
  • 24 Platt JL, Vercellotti GM, Lindman BJ. et al. Release of heparan sulfate from endothelial cells. Implications for pathogenesis of hyperacute rejection. J Exp Med 1990; 171: 1363-1368.
  • 25 Bossi F, Peerschke EI, Ghebrehiwet B. et al. Crosstalk between the complement and the kinin system in vascular permeability. Immunol Lett 2011; 140: 7-13.
  • 26 Nachman RL, Hajjar KA, Silverstein RL. et al. Interleukin 1 induces endothelial cell synthesis of plasminogen activator inhibitor. J Exp Med 1986; 163: 1595-1600.
  • 27 Saadi S, Holzknecht RA, Patte CP. et al. Complement-mediated regulation of tissue factor activity in endothelium. J Exp Med 1995; 182: 1807-1814.
  • 28 Acosta J, Qin X, Halperin J. Complement and complement regulatory proteins as potential molecular targets for vascular diseases. Curr Pharm Des 2004; 10: 203-211.
  • 29 Langeggen H, Pausa M, Johnson E. et al. The endothelium is an extrahepatic site of synthesis of the seventh component of the complement system. Clin Exp Immunol 2000; 121: 69-76.
  • 30 Lozada C, Levin RI, Huie M. et al. Identification of C1q as the heat-labile serum cofactor required for immune complexes to stimulate endothelial expression of the adhesion molecules E-selectin and intercellular and vascular cell adhesion molecules 1. Proc Natl Acad Sci USA 1995; 92: 8378-8382.
  • 31 Kilgore KS, Shen JP, Miller BF. et al. Enhancement by the complement membrane attack complex of tumor necrosis factor-alpha-induced endothelial cell expression of E-selectin and ICAM-1. J Immunol 1995; 155: 1434-1441.
  • 32 Van den Berg RH, Faber-Krol MC, Sim RB. et al. The first subcomponent of complement, C1q, triggers the production of IL-8, IL-6, and monocyte chemoattractant peptide-1 by human umbilical vein endothelial cells. J Immunol 1998; 161: 6924-6930.
  • 33 Kilgore KS, Flory CM, Miller BF. et al. The membrane attack complex of complement induces interleukin-8 and monocyte chemoattractant protein-1 secretion from human umbilical vein endothelial cells. Am J Pathol 1996; 149: 953-961.
  • 34 Benzaquen LR, Nicholson-Weller A, Halperin JA. Terminal complement proteins C5b-9 release basic fibroblast growth factor and platelet-derived growth factor from endothelial cells. J Exp Med 1994; 179: 985-992.
  • 35 Fischetti F, Tedesco F. Cross-talk between the complement system and endothelial cells in physiologic conditions and in vascular diseases. Autoimmunity 2006; 39: 417-428.
  • 36 Hamilton KK, Hattori R, Esmon CT. et al. Complement proteins C5b-9 induce vesiculation of the endothelial plasma membrane and expose catalytic surface for assembly of the prothrombinase enzyme complex. J Biol Chem 1990; 265: 3809-3814.
  • 37 Monsinjon T, Gasque P, Chan P. et al. Regulation by complement C3a and C5a anaphylatoxins of cytokine production in human umbilical vein endothelial cells. FASEB J 2003; 17: 1003-1014.
  • 38 Kerr H, Richards A. Complement-mediated injury and protection of endothelium: lessons from atypical haemolytic uraemic syndrome. Immunobiology 2012; 217: 195-203.
  • 39 Karpman D, Kahn R. The contact/kinin and complement systems in vasculitis. APMIS Suppl 2009; 48-54.
  • 40 Bossi F, Fischetti F, Pellis V. et al. Platelet-activating factor and kinin-dependent vascular leakage as a novel functional activity of the soluble terminal complement complex. J Immunol 2004; 173: 6921-6927.
  • 41 Dobrina A, Pausa M, Fischetti F. et al. Cytolytically inactive terminal complement complex causes transendothelial migration of polymorphonuclear leukocytes in vitro and in vivo. Blood 2002; 99: 185-192.
  • 42 Morigi M, Galbusera M, Gastoldi S. et al. Alternative pathway activation of complement by Shiga toxin promotes exuberant C3a formation that triggers microvascular thrombosis. J Immunol 2011; 187: 172-180.
  • 43 Roumenina LT, Frimat M, Miller EC. et al. A prevalent C3 mutation in aHUS patients causes a direct C3 convertase gain of function. Blood 2012; 119: 4182-4191.
  • 44 Roumenina LT, Jablonski M, Hue C. et al. Hyperfunctional C3 convertase leads to complement deposition on endothelial cells and contributes to atypical hemolytic uremic syndrome. Blood 2009; 114: 2837-2845.
  • 45 Frenette PS, Johnson RC, Hynes RO. et al. Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proc Natl Acad Sci 1995; 92: 7450-7454.
  • 46 Del Conde I, Cruz MA, Zhang H. et al. Platelet activation leads to activation and propagation of the complement system. J Exp Med 2005; 201: 871-879.
  • 47 Karpman D, Manea M, Vaziri-Sani F. et al. Platelet activation in hemolytic uremic syndrome. Semin Thromb Hemost 2006; 32: 128-145.
  • 48 Endresen GK, Mellbye OJ. Studies on the binding of complement factor C3 to the surface of human blood platelets. Haemostasis 1984; 14: 269-280.
  • 49 Sandvik T, Endresen GK, Forre O. Studies on the binding of complement factor C4 in human platelets. Complement activation by means of cold agglutinins. Int Arch Allergy Appl Immunol 1984; 74: 152-157.
  • 50 Nunez D, Charriaut-Marlangue C, Barel M. et al. Activation of human platelets through gp140, the C3d/EBV receptor (CR2). Eur J Immunol 1987; 17: 515-520.
  • 51 Vik DP, Fearon DT. Cellular distribution of complement receptor type 4 (CR4): expression on human platelets. J Immunol 1987; 138: 254-258.
  • 52 Cosgrove LJ, d’Apice AJ, Haddad A. et al. CR3 receptor on platelets and its role in the prostaglandin metabolic pathway. Immunol Cell Biol 1987; 65 (Pt 6): 453-460.
  • 53 Peerschke EI, Ghebrehiwet B. Platelet membrane receptors for the complement component C1q. Semin Hematol 1994; 31: 320-328.
  • 54 Zimmerman TS, Kolb WP. Human platelet-initiated formation and uptake of the C5–9 complex of human complement. J Clin Invest 1976; 57: 203-211.
  • 55 Polley MJ, Nachman RL. Human complement in thrombin-mediated platelet function: uptake of the C5b-9 complex. J Exp Med 1979; 150: 633-645.
  • 56 Polley MJ, Nachman RL. Human platelet activation by C3a and C3a des-arg. J Exp Med 1983; 158: 603-615.
  • 57 Dixon RH, Rosse WF. Mechanism of complementmediated activation of human blood platelets in vitro: comparison of normal and paroxysmal nocturnal hemoglobinuria platelets. J Clin Invest 1977; 59: 360-368.
  • 58 Nicholson-Weller A, March JP, Rosen CE. et al. Surface membrane expression by human blood leukocytes and platelets of decay-accelerating factor, a regulatory protein of the complement system. Blood 1985; 65: 1237-1244.
  • 59 Tschopp J, Jenne DE, Hertig S. et al. Human megakaryocytes express clusterin and package it without apolipoprotein A-1 into alpha-granules. Blood 1993; 82: 118-125.
  • 60 Yu GH, Holers VM, Seya T. et al. Identification of a third component of complement-binding glycoprotein of human platelets. J Clin Invest 1986; 78: 494-501.
  • 61 Morgan BP. Isolation and characterization of the complement-inhibiting protein CD59 antigen from platelet membranes. Biochem J 1992; 282 (Pt 2): 409-413.
  • 62 Vaziri-Sani F, Hellwage J, Zipfel PF. et al. Factor H binds to washed human platelets. J Thromb Haemost 2005; 03: 154-162.
  • 63 Licht C, Pluthero FG, Li L. et al. Platelet-associated complement factor H in healthy persons and patients with atypical HUS. Blood 2009; 114: 4538-4545.
  • 64 Kenney DM, Davis 3rd AE. Association of alternative complement pathway components with human blood platelets: secretion and localization of factor D and beta 1H Globulin. Clin Immunol Immunopathol 1981; 21: 351-363.
  • 65 Ståhl AL, Svensson M, Morgelin M. et al. Lipopolysaccharide from enterohemorrhagic Escherichia coli binds to platelets through TLR4 and CD62 and is detected on circulating platelets in patients with hemolytic uremic syndrome. Blood 2006; 108: 167-176.
  • 66 Ståhl AL, Sartz L, Karpman D. Complement activation on platelet-leukocyte complexes and microparticles in enterohemorrhagic Escherichia coliinduced hemolytic uremic syndrome. Blood 2011; 117: 5503-5513.
  • 67 Sartz L, Olin AI, Kristoffersson AC. et al. A novel C3 mutation causing increased formation of the C3 convertase in familial atypical hemolytic uremic syndrome. J Immunol 2012; 188: 2030-2037.
  • 68 Dong JF, Moake JL, Nolasco L. et al. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood 2002; 100: 4033-4039.
  • 69 Kelton JG, Warkentin TE, Hayward CP. et al. Calpain activity in patients with thrombotic thrombocytopenic purpura is associated with platelet microparticles. Blood 1992; 80: 2246-2251.
  • 70 Jimenez JJ, Jy W, Mauro LM. et al. Elevated endothelial microparticles in thrombotic thrombocytopenic purpura: findings from brain and renal microvascular cell culture and patients with active disease. Br J Haematol 2001; 112: 81-90.
  • 71 Williams JD, Czop JK, Abrahamson DR. et al. Activation of the alternative complement pathway by isolated human glomerular basement membrane. J Immunol 1984; 133: 394-399.
  • 72 Hindmarsh EJ, Marks RM. Complement activation occurs on subendothelial extracellular matrix in vitro and is initiated by retraction or removal of overlying endothelial cells. J Immunol 1998; 160: 6128-6136.
  • 73 Bevan HS, Slater SC, Clarke H. et al. Acute laminar shear stress reversibly increases human glomerular endothelial cell permeability via activation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 2011; 301: F733-F742.
  • 74 Dong JF, Moake JL, Bernardo A. et al. ADAMTS-13 metalloprotease interacts with the endothelial cell-derived ultra-large von Willebrand factor. J Biol Chem 2003; 278: 29633-29639.
  • 75 Louise CB, Obrig TG. Specific interaction of Escherichia coli O157:H7-derived Shiga-like toxin II with human renal endothelial cells. J Infect Dis 1995; 172: 1397-1401.
  • 76 Robson WL, Leung AK, Fick GH. et al. Hypocomplementemia and leukocytosis in diarrhea-associated hemolytic uremic syndrome. Nephron 1992; 62: 296-299.
  • 77 Thurman JM, Marians R, Emlen W. et al. Alternative pathway of complement in children with diarrhea-associated hemolytic uremic syndrome. Clin J Am Soc Nephrol 2009; 04: 1920-1924.
  • 78 Orth D, Khan AB, Naim A. et al. Shiga toxin activates complement and binds factor H: evidence for an active role of complement in hemolytic uremic syndrome. J Immunol 2009; 182: 6394-6400.
  • 79 Lapeyraque AL, Malina M, Fremeaux-Bacchi V. et al. Eculizumab in severe Shiga-toxin-associated HUS. N Engl J Med 2011; 364: 2561-2563.
  • 80 Menne J, Nitschke M, Stingele R. et al. Validation of treatment strategies for enterohaemorrhagic Escherichia coli O104:H4 induced haemolytic uraemic syndrome: case-control study. BMJ 2012; 345: e4565.
  • 81 Kielstein JT, Beutel G, Fleig S. et al. Best supportive care and therapeutic plasma exchange with or without eculizumab in Shiga-toxin-producing E. coli O104:H4 induced haemolytic-uraemic syndrome: an analysis of the German STEC-HUS registry. Nephrol Dial Transplant 2012; 27: 3807-3815.
  • 82 Loos S, Ahlenstiel T, Kranz B. et al. An outbreak of Shiga toxin-producing Escherichia coli O104:H4 hemolytic uremic syndrome in Germany: presentation and short-term outcome in children. Clin Infect Dis 2012; 55: 753-759.
  • 83 Delvaeye M, Noris M, De Vriese A. et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N Engl J Med 2009; 361: 345-357.
  • 84 Ståhl AL, Kristoffersson A, Olin AI. et al. A novel mutation in the complement regulator clusterin in recurrent hemolytic uremic syndrome. Mol Immunol 2009; 46: 2236-2243.
  • 85 Zipfel PF, Mache C, Muller D. et al. DEAP-HUS: deficiency of CFHR plasma proteins and autoantibody-positive form of hemolytic uremic syndrome. Pediatr Nephrol 2010; 25: 2009-2019.
  • 86 Brackman D, Sartz L, Leh S. et al. Thrombotic microangiopathy mimicking membranoproliferative glomerulonephritis. Nephrol Dial Transplant 2011; 26: 3399-3403.
  • 87 Zuber J, Fakhouri F, Roumenina LT. et al. Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat Rev Nephrol 2012; 08: 643-657.
  • 88 Zuber J, Le Quintrec M, Krid S. et al. Eculizumab for atypical hemolytic uremic syndrome recurrence in renal transplantation. Am J Transplant 2012; 12: 3337-3354.
  • 89 Crawley JT, de Groot R, Xiang Y. et al. Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor. Blood 2011; 118: 3212-3221.
  • 90 Reti M, Farkas P, Csuka D. et al. Complement activation in thrombotic thrombocytopenic purpura. J Thromb Haemost 2012; 10: 791-798.
  • 91 Noris M, Ruggenenti P, Perna A. et al. Hypocomplementemia discloses genetic predisposition to hemolytic uremic syndrome and thrombotic thrombocytopenic purpura: role of factor H abnormalities. Italian Registry of Familial and Recurrent Hemolytic Uremic Syndrome/Thrombotic Thrombocytopenic Purpura. J Am Soc Nephrol 1999; 10: 281-293.
  • 92 Mant MJ, Cauchi MN, Medley G. Thrombotic thrombocytopenic purpura: report of a case with possible immune etiology. Blood 1972; 40: 416-421.
  • 93 Weisenburger DD, O’Conner ML, Hart MN. Thrombotic thrombocytopenic purpura with C’3 vascular deposits: report of a case. Am J Clin Pathol 1977; 67: 61-63.
  • 94 Chapin J, Weksler B, Magro C. et al. Eculizumab in the treatment of refractory idiopathic thrombotic thrombocytopenic purpura. Br J Haematol 157: 772-774.
  • 95 Walport MJ. Complement. First of two parts. N Engl J Med 2001; 344: 1058-1066.
  • 96 Heinen S, Hartmann A, Lauer N. et al. Factor H-related protein 1 (CFHR-1) inhibits complement C5 convertase activity and terminal complex formation. Blood 2009; 114: 2439-2447.
  • 97 Nilsson SC, Sim RB, Lea SM. et al. Complement factor I in health and disease. Mol Immunol 2011; 48: 1611-1620.
  • 98 Cardone J, Le Friec G, Kemper C. CD46 in innate and adaptive immunity: an update. Clin Exp Immunol 2011; 164: 301-311.
  • 99 Seya T, Okada M, Matsumoto M. et al. Preferential inactivation of the C5 convertase of the alternative complement pathway by factor I and membrane cofactor protein (MCP). Mol Immunol 1991; 28: 1137-1147.
  • 100 Conway EM. Thrombomodulin and its role in inflammation. Semin Immunopathol 2012; 34: 107-125.
  • 101 Petersen SV, Thiel S, Jensen L. et al. Control of the classical and the MBL pathway of complement activation. Mol Immunol 2000; 37: 803-811.
  • 102 Gigli I, Fujita T, Nussenzweig V. Modulation of the classical pathway C3 convertase by plasma proteins C4 binding protein and C3b inactivator. Proc Natl Acad Sci USA 1979; 76: 6596-6600.
  • 103 Medof ME, Iida K, Mold C. et al. Unique role of the complement receptor CR1 in the degradation of C3b associated with immune complexes. J Exp Med 1982; 156: 1739-1754.
  • 104 Medof ME, Kinoshita T, Nussenzweig V. Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med 1984; 160: 1558-1578.
  • 105 Podack ER, Preissner KT, Muller-Eberhard HJ. Inhibition of C9 polymerization within the SC5b-9 complex of complement by S-protein. Acta Pathol Microbiol Immunol Scand Suppl 1984; 284: 89-96.
  • 106 Davies A, Simmons DL, Hale G. et al. CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. J Exp Med 1989; 170: 637-654.
  • 107 Bokisch VA, Muller-Eberhard HJ. Anaphylatoxin inactivator of human plasma: its isolation and characterization as a carboxypeptidase. J Clin Invest 1970; 49: 2427-2436.