Skip to main content
Erschienen in: Cancer Cell International 1/2019

Open Access 01.12.2019 | Primary research

Prognostic role of PD-L1 for HCC patients after potentially curative resection: a meta-analysis

verfasst von: Gao-Min Liu, Xu-Gang Li, Yao-Min Zhang

Erschienen in: Cancer Cell International | Ausgabe 1/2019

Abstract

Background

A series of studies has investigated the prognostic role and clinical significance of programmed death ligand 1 (PD-L1) in hepatocellular carcinoma (HCC). However, the results were inconsistent. We aimed to clarify the prognostic role of PD-L1 and relationship between PD-L1 expression and several important clinicopathological features.

Methods

PubMed, EMBASE and the Science Citation Index Expanded were systematically searched. All cohort or case–control studies comparing the prognosis and clinical features between the high PD-L1 and low PD-L1 groups were included. Publication bias was evaluated using funnel plots and Begg’s test. Subgroup analysis, sensitivity analysis and meta-regression analysis were performed.

Results

Seventeen studies including 2979 patients were eligible. The overall survival (OS) was not significantly different between the high and low PD-L1 groups (hazard ratio [HR]: 1.27; 95% confidence interval [CI] 0.98–1.65: P = 0.07) with significant heterogeneity (P < 0.001; I2 = 81%). The recurrence-free survival (RFS) was not significantly different between the high and low PD-L1 groups (HR: 1.22; 95% CI 0.97–1.53; P = 0.09) with significant heterogeneity (P < 0.001; I2 = 78%). The expression of PD-L1 was found to be significantly correlated with alpha-fetoprotein, hepatitis history, and tumour-infiltrating lymphocytes. Begg’s test found no significant publication bias for OS and RFS. Sensitivity analysis established the robustness of our results. Subgroup analysis and meta-regression analysis found the region of research as a significant contributor to inter-study heterogeneity in RFS, indicating some racial differences in the prognostic role of PD-L1.

Conclusions

Our study found no significant prognostic role of PD-L1 in HCC patients after potential curative hepatectomy based on our included studies. The expression of PD-L1 was significantly correlated with AFP, hepatitis history, and TILs. The prognostic role of PD-L1 in HCC warrants further investigation.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12935-019-0738-9) contains supplementary material, which is available to authorized users.
Gao-Min Liu and Xu-Gang Li contributed equally to this work
Abkürzungen
AFP
alpha-fetoprotein
CI
confidence interval
HBV
hepatitis B virus
HCC
hepatocellular carcinoma
HR
hazard ratio
IHC
immunohistochemical
OS
overall survival
OR
odds ratio
PD-L1
programmed death ligand 1
PD-1
programmed death receptor 1
RFS
recurrence-free survival
TNM
tumour-node-metastasis
TIL
tumour-infiltrating T lymphocyte

Background

Hepatocellular carcinoma (HCC) remains one of the most common cancers worldwide. It is ranked as the fifth leading cancer and is the second leading cause of cancer-related mortality [1]. Despite great advances in the past decade, the long-term survival of HCC is low, considering that surgical resection of HCC is only applicable to a small proportion of patients and that the rate of tumour recurrence after surgery of curative intent is high.
The predominant risk factor for HCC in epidemic regions is hepatic inflammatory response following chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infection [2]. Evidence has suggested that chronic inflammation in the liver creates an immunosuppressive microenvironment that permits HCC tumourigenesis and progression, providing a rationale for targeting the dysregulated tumour microenvironment to improve HCC treatment [3]. Currently, most studies on the mechanisms of HCC immune evasion have focused on the programmed death receptor 1 (PD-1)/programmed death ligand 1 (PD-L1) pathway. PD-1 is an immunoinhibitory receptor expressed in activated T and B cells and natural killer T cells. PD-L1, the major ligand of PD-1, is expressed in various immune cells such as antigen-presenting cells, as well as in endothelial cells. PD-1/PD-L1 ligation suppresses the activation of immune cells as well as the production of certain cytokines such as IFN-γ, thereby inducing immune suppression and peripheral tolerance [4]. Cancer cells hijack this pathway by over-expressing PD-L1 via various mechanisms to protect themselves from the host immune response. Immunotherapies targeting PD-1/PD-L1 immune checkpoints have shown promising efficacy in different malignancies, including HCC [5]. However, the response rate of the PD-1 inhibitor in advanced HCC is far from satisfying [6]. An urgent need exists in the field to further understand the mechanisms of aberrant PD-1/PD-L1 signalling by which HCC forms an immune-evasive tumour microenvironment and for leveraging anti-PD1 immune checkpoint blockade therapies against HCC.
Data on the prognostic role of PD-L1 expression in HCC remain inconsistent. Some studies [711] and a meta-analysis [12] have shown that the expression of PD-L1 is correlated with a poor prognosis after hepatectomy, whereas other studies have reported non-homogeneous results [1315]. To further clarify the prognostic role of PD-L1, the relationship of PD-L1 expression with several important clinicopathological features and tumour-infiltrating T lymphocytes, we conducted this meta-analysis.

Methods

Inclusion and exclusion criteria

The inclusion criteria were as follows: (i) study design: cohort studies or case–control studies; (ii) participants: all patients received potential curative hepatectomy for HBV-related HCC; (iii) group: immunohistochemical (IHC) assay of PD-L1 expression in tumour tissues (especially tumour cells); and (iv) sufficient information regarding the role of PD-L1 in recurrence-free survival (RFS) or overall survival (OS) of HCC and/or correlation with clinical features and tumour-infiltrating T lymphocytes (TILs).
The exclusion criteria were as follows: (i) abstracts, letters, editorials, expert opinions, reviews and meta-analyses lacking original data; (ii) studies including patients receiving other curative or palliative therapy (ablation, systemic chemotherapy, radiation, or transarterial chemoembolization) or transplantation; (iii) including data from other cancer types; (iv) other detection methods of PD-L1 expression (non-IHC assays such as ELISA, and/or investigating the expression of PD-L1 in peritumoural tissues or plasma other than tumour tissues).

Search strategy

PubMed, EMBASE and the Science Citation Index Expanded were searched without language restrictions (the most recent published report search date: December 20, 2018). The search terms used were “hepatocellular carcinoma” and “PD-L1”. The detailed search strategies are described in Additional file 1: Table S1. To identify relevant trials, we also searched the reference lists of related articles. Grey literature (reports and papers that were not published in PubMed, EMBASE and the Science Citation Index Expanded) were not included in this study.

Data collection and assessment of bias

Two authors (GML and XGL) independently extracted the data concerning the first author’s name, year of publication, country, clinicopathological features of included patients, expression pattern of PD-L1 (sample uses, detection method, cut-off value, positive or high expression rate of PD-L1), and outcomes (survival outcomes and adverse events). For studies including several subgroups, only patients without adjuvant therapy were included. For studies investigating PD-L1 in tumour cells or in immune cells separately, only data from tumour cells were included. When the data were not available in the published reports, additional information was retrieved via correspondence with the primary investigators. Any disagreement between the investigators was resolved via discussion.

Data pooling and analysis

Pair-wise meta-analyses were conducted using a random-effects models in consideration of inter-study heterogeneity. All analyses were performed using Review Manger 5.3 (Revman, the Cochrane Collaboration) and Stata V.12 software (StataCorp, College Station, Texas, USA) according to the recommendations of the Cochrane Handbook [16] and were reported in line with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement [17] (Additional file 2: Table S2). The prognostic role of PD-L1 was expressed as hazard ratios (HRs) and 95% confidence intervals (CIs) and was extracted using a spreadsheet developed by Tierney et al. [18]. ORs with 95% CIs were calculated to assess the correlation of PD-L1 expression with clinicopathological features and TILs. The between-study heterogeneity was assessed using Higgins’ I2 statistic. Publication bias was evaluated using funnel plots and Begg’s test. Subgroup analysis and sensitivity analysis by omitting one study in each turn were used to evaluate the reliability of the results. To evaluate the effects of covariates on the pooled estimates and heterogeneity across studies, meta-regression analysis was conducted with covariates including publication year, sample size, positive rate of PD-L1, region of research, proportion of males, proportion of HBV, proportion of single tumours, proportion of vascular invasion and proportion of poor differentiation. P < 0.05 was regarded as significant.

Results

Description of the studies

The literature searches identified 1754 potentially relevant records (Fig. 1). After excluding 683 duplicated studies, 1071 studies were screened by title and abstract. Thirty-six articles were left for full-text assessment for eligibility. Nineteen records were excluded due to insufficient data (n = 3), including patients receiving adjuvant postoperative therapy (n = 1), including patients receiving other curative or palliative therapy (n = 1), including data from other cancer type (n = 1), employing another detection method of PD-L1 (n = 6) and lacking original data (n = 7). Seventeen studies [711, 1315, 1927] including 2979 patients were eligible as listed in Table 1. Fifteen studies reported the effect of PD-L1 expression on overall survival [811, 1315, 2027], while 14 studies reported the effect of PD-L1 expression on recurrence-free survival [79, 13, 15, 1927]. Detailed clinicopathological features and data on TILs are listed in Additional file 3: Table S3. Thirteen studies [79, 11, 13, 14, 2022, 2427] were conducted in Asia, whereas only four studies [10, 15, 19, 23] were performed in the USA and Europe. PD-L1 expression was characterized as positive or high in 938 patients with a positive ratio ranging from 16.7 to 82.9%.
Table 1
Main characteristics of the included studies
Study
Country
Sample size
Stage
Detection method
PD-L1 + n (%)
High PD-L1 cut-off value
Tested samples
Outcome
High PD-L1 prognostic effect
Gao [8]
China
240
I–III
IHC, IPP software
60 (25)
>75%
Tumour tissue sections
RFS; OS
Poorer significant
Wu [11]
China
71
I–IV
IHC, IPP software
35 (49)
> Median
Tumour tissues sections
OS
Poorer significant
Umemoto [21]
Japan
80
I–IV
IHC, intensity of the staining scoring
37 (46)
Score 3
Tumour tissue sections
RFS; OS
Poorer nonsignificant
Kan [14]
China
128
I–IV
IHC,positive cell rate
105 (82)
> 25%
Tumour tissue sections
OS
Favourable significant
Calderaro [19]
France
217
0–C
IHC, positive cell rate
36 (17)
> 1%
Tumour tissue sections
RFS
Poorer nonsignificant
Chen [13]
China
217
I–III
IHC, positive cell rate
52 (24)
> 5%
Tumour tissue sections
RFS, OS
Favourable significant
Gabrielson [23]
USA
58
I–IV
IHC, intensity and distribution
19 (32.8)
NR
Tumour tissue sections
RFS, OS
Favourable nonsignificant
Xie [24]
China
90
I–III
IHC, positive cell rate
15 (16.7)
> 5%
Tumour tissue sections
RFS, OS
Favourable nonsignificant
Chang [7]
Korea
146
T1–T4
IHC, slide scanner for positive cell rate
80 (54.8)
Median
Tumour cell sections
RFS
Poorer significant
Huang [20]
China
411
I–III
IHC, positive cell rate
78 (19)
> 5%;
Liver cancer tissues
RFS, OS
Poorer nonsignificant
Jung 2017 [9]
Korea
85
I–IV; A–D
IHC, staining percentage and intensity scoring
23 (27)
3–5
Tumour cell sections
RFS, OS
Poorer significant
Semaan [10]
Germany
176
T1–T4
IHC, Tissue studio v.2.1 semiquantitative software
88 (50)
Median
All tumour specimens
OS
Poorer significant
Sideras 2017 [15]
Netherlands
146
NR
IHC, staining intensity scoring
121 (82.9)
Cut-off with the lowest-2 log likelihood
Tumour tissue sections
RFS, OS
Favourable significant
Chang [22]
China
145
NR
IHC, positive cell rate
40 (27.6)
> 5%
Whole tissue sections
RFS, OS
Favourable nonsignificant
Dai1 [25]
Hong Kong
90
NR
Staining intensity
37 (41.1)
Score 2–3
Tumour tissue sections
RFS, OS
Poorer significant
Dai2 [25]
Hong Kong
90
NR
Staining intensity
44 (48.89)
Score 2–3
Tumour tissue sections
RFS, OS
Poorer significant
Hu [26]
China
136
I–III
IHC, positive cell rate of membranous staining
26 (19.1)
> 1%
Tumour tissue sections
RFS, OS
Poorer significant
Liu [27]
China
453
I–KIV
IHC, positive cell rate
87 (19.2)
≥ 5%
Tumour tissue sections
RFS, OS
Poorer significant
Dai et al. [25] reported data from two independent cohort. Dai1 represented data from the Prince of Wales Hospital (Hong Kong, China); Dai2 represented data from their independent validation cohort as reported
HR hazard ratio, IHC immunohistochemical assay, PD-L1 programmed death ligand 1, RFS recurrence-free survival, OS overall survival

Prognostic role of PD-L1 expression after hepatectomy for HCC

By pooling the data of 15 studies [811, 1315, 2027], the OS was not found to be significantly different between the high and low PD-L1 groups (HR: 1.27; 95% CI 0.98–1.65; P = 0.07) with significant heterogeneity (P < 0.001; I2 = 81%) (Fig. 2a).
By pooling the data of 14 studies [79, 13, 15, 1927], the RFS was not found to be significantly different between the high and low PD-L1 groups (HR: 1.22; 95% CI 0.97–1.53; P = 0.09) with significant heterogeneity (P < 0.001; I2 = 78%) (Fig. 2b).

Correlation between PD-L1 expression and clinicopathological features

We elevated the correlation between PD-L1 expression and clinicopathological features using the OR and 95% CI (Table 2). At least three studies were included in the analyses. The clinicopathological features included age, gender, hepatitis history, AFP, tumour size, tumour stage, tumour differentiation, vascular invasion, tumour multiplicity, encapsulation, and liver cirrhosis. As shown in Fig. 3a, b, alpha-fetoprotein (AFP) and hepatitis history were found to be significantly correlated with the expression of PD-L1 (P = 0.04 and P = 0.04, respectively). No significant association was found between the expression of PD-L1 and other clinicopathological features above.
Table 2
Correlation between PD-L1 expression and clinicopathological features
Clinical characteristics
Number of studies
Cases
Odds ratio (95% CI)
P
Heterogeneity
I2 (%)
P
Gender (male/female)
11
2390
1.09 (0.78, 1.51)
0.62
21
0.24
Age (older/younger)
8
1535
0.93 (0.73, 1.19)
0.58
0
0.92
Hepatitis (yes/no)
8
1799
0.68 (0.47, 0.98)
0.04
5
0.40
Cirrhosis (yes/no)
6
999
1.12 (0.74, 1.70)
0.59
30
0.20
AFP (higher/lower)
8
1432
1.43 (1.02, 2.00)
0.04
35
0.14
Tumour size (larger/smaller)
8
1688
1.30 (0.88, 1.92)
0.19
55
0.03
Tumour encapsulation (no/yes)
4
933
0.91 (0.47, 1.77)
0.79
68
0.03
Tumour number (multiple/single)
8
1731
1.05 (0.75, 1.49)
0.77
31
0.18
Vascular invasion (yes/no)
9
2050
1.62 (0.99, 2.64)
0.06
75
< 0.001
TNM stage (advanced/earlier)
11
2169
1.04 (0.73, 1.50)
0.81
42
0.07
AFP alpha-fetoprotein, CI confidence interval, PD-L1 programmed death ligand 1, TNM tumour-node-metastasis
The italic P value refers to P < 0.05

Correlation between PD-L1 expression and TILs

Limited data have shown the correlation between PD-L1 expression and TILs in our included studies. By pooling the data of four studies [7, 10, 15, 23], high PD-L1 expression was correlated with high CD8+ TILs (OR: 3.76; 95% CI 1.42–9.93; P = 0.008) with significant heterogeneity (P = 0.0005; I2 = 83%) (Fig. 3c). Gabrielson et al. reported that PD-L1 expression was correlated with high CD3+ TILs (OR: 3.95; 95% CI 1.20–13.06; P = 0.02). Chang et al. reported that PD-L1 expression was correlated with high PD1+ TILs (OR: 6.89; 95% CI 2.50–19.02; P = 0.0002).

Publication bias

Begg’s funnel plot was used to evaluate publication bias. As shown in Fig. 4a, b, the results showed no publication bias for OS and RFS, with P values of 1.000 and 0.728, respectively. Publication bias was not analysed for the correlation of PD-L1 expression and clinicopathological features or TILs because the number of included studies was less than 10 in most groups due to the low sensitivity of the qualitative and quantitative tests [28].

Subgroup analyses and sensitivity analysis

We conducted subgroup analyses according to publication year (before 2015 and after 2015), the origin of research (Asian and non-Asian), sample size (> 100 and < 100) and rate of positive or high PD-L1 (≤ 30% and > 30%). As shown in Fig. 5a, high PD-L1 was significantly correlated with poorer OS when combing data published before 2015, or with a sample size smaller than 100, or data from Asian populations, or studies reporting ≤ 30% of positive PD-L1. As shown in Fig. 5b, high PD-L1 was significantly correlated with poorer RFS when combining data published before 2015, or a cell membrane or cytoplasm PD-L1 staining pattern. Particularly, a significant difference was found in the prognostic role of PD-L1 between data from the Asian and non-Asian subgroups (P = 0.008). In the Asian subgroup, high PD-L1 indicated a significantly poor RFS (HR: 1.38; 95% CI 1.11–1.71; P = 0.003). However, in the non-Asian subgroup, high PD-L1 indicated an almost but not significant better RFS (HR: 0.44; 95% CI 0.19–0.99; P = 0.05). Additionally, the between-study heterogeneity was decreased to some degree in some subgroups. To further examine the robustness of the prognostic role of PD-L1 by sensitivity analyses, we applied a random effects model, omitting one study in each turn. No study exerted a significant influence on the overall pooling result, indicating that our estimates were robust and reliable (Fig. 5c–g, Additional file 4: Figure S1).

Meta-regression analysis

For OS, meta-regression analysis showed a trend for a positive rate of PD-L1, region of research, proportion of male, proportion of HBV, proportion of single tumours, proportion of vascular invasion and proportion of poor differentiation, but the trend was not statistically significant (all P > 0.05, Fig. 6a–d, Additional file 5: Table S4). Given the significant heterogeneity in the overall effect estimates, the contribution of different study characteristics to the level of heterogeneity was calculated (Additional file 5: Table S4). No significant factors contributed to the level of heterogeneity, and the proportion of heterogeneity ranged from − 8.73% to 11.16% (all P > 0.05). The remaining heterogeneity was large (τ2 range from 0.187 to 0.628). For RFS, meta-regression analysis found that the region of research could explain 51.86% of the between-study variance (Fig. 6g, Additional file 5: Table S4, P 0.013). No other significant factors contributed to the level of heterogeneity, and the proportion of heterogeneity ranged from − 13.61% to 15.06% (all P > 0.05); the remaining heterogeneity was large (τ2 range from 0.172 to 0.407) (Fig. 6e, f, h; Additional file 5: Table S4). The meta-regression analysis categorized by age, AFP, proportion of cirrhosis, proportion of larger tumour size, proportion of tumour encapsulation, and TNM stage was not achieved and was attributed to the lack of data in the included studies.

Discussion

While numerous studies have established that aberrant expression of PD-L1 in cancer promoted cancer immune escape and blockade of the PD-L1-enhanced anti-tumour response [4, 5], the prognostic role of PD-L1 in HCC has remained inconsistent. Several previous studies [8, 11, 21] and meta-analyses [2931] have shown that high PD-L1 indicates a poorer OS and RFS, which could be explained by innate immune resistance. The innate immune resistance implies the constitutive expression of PD-L1, which is driven by intrinsic cellular oncological signalling in tumour cells and can lead to tumour-infiltrating immune cell inhibition [32, 33]. In this sense, PD-L1 expression reflects a lack of anti-tumour immunity and is reasonable to correlate with a significantly poorer prognosis [711, 21]. Meanwhile, a few recent studies failed to confirm the negative prognostic effect of PD-L1 and even showed the opposite [1315, 23, 24]. For instance, Sideras et al. [15] reported that high PD-L1 in tumour cells indicated a significant better survival in HCC. The adaptive immune resistance was used to explain the inconsistency. The adaptive immune resistance implied a specific state of immune privilege of tumour cells acquired by the induced expression of PD-L1 to inhibit the pre-existing anti-tumour T cell response. The state can be reversed easily by blocking the PD1/PD-L1 interaction [34, 35]. From this point of view, the upregulation of PD-L1 represents the existence of immune-surveillance and could be correlated with a better prognosis [1315]. Both mechanisms may co-exist, and the predominant mechanism may shift from one to the other at different times depending on the cancer immunogenicity [36]. The prognostic role of PD-L1 tends to be the combined effect of these two mechanisms. In the present meta-analysis based on 17 studies with 2979 patients, we found no significant prognostic role of PD-L1 in HCC after potential curative hepatectomy. Additionally, the expression of PD-L1 was correlated with AFP, hepatitis history, and CD8+ TILs but not with other clinicopathological features. The robustness and reliability of these results was further validated by sensitivity analysis.
Considering the significant between-study heterogeneity, we conducted further subgroup analysis and meta-regression analysis. High PD-L1 predicted a poorer RFS in Asian studies, while high PD-L1 predicted a better RFS in non-Asian patients; the difference between the subgroups was significant, and meta-regression analysis further confirmed the results. Together, these results indicated some racial differences in the prognostic role of PD-L1. Theoretically, several factors might also help explain the great heterogeneity. First, the positive rate of PD-L1 varied greatly across the included studies due to the different tested tissue samples, IHC assay, detection antibody, staining pattern, analytic method, and cut-off value. For instance, PD-L1 can be expressed in both tumour cells and immune cells in the intra-tumoural area of HCC tissues, with different biological and prognostic roles. As Liu et al. [27] reported, PD-L1 expressed on tumour cells was negatively correlated with the prognosis, while PD-L1 expressed on macrophages was positively correlated with the prognosis in HCC. Some included studies investigated the overall expression in the intra-tumoural area [10] or simply classified PD-L1 expression on tumour cells or immune cells by IHC [19]. Additionally, by combining the data published before 2015 or data including PD-L1 staining both in the cell membrane and/or cytoplasm, we found high PD-L1 significantly predicted a poorer survival. However, earlier studies might have used an invalid PD-L1 antibody [8, 11], while more recent studies utilized an antibody that distinguished between cytoplasmic and membranous patterns of PD-L1 staining [9, 15, 20, 22]. As a type I transmembrane molecule [37], membranous PD-L1 was proposed to be the most functionally relevant, and cytoplasmic staining represents intracellular stores of PD-L1 ready to be transported to the cell membrane with appropriate stimulation [38]. Failing to distinguish the expression pattern of PD-L1 in HCC can potentially confound the positive rate of PD-L1 and prognostic role of HCC. Moreover, the analytic method varied extensively. Some studies have utilized imaging software [7, 8, 10, 11, 13, 14, 19, 20, 22, 24], while others were based on intensity and distribution [9, 15, 21, 23]. Finally, the cut-off value used to evaluate high and low PD-L1 expression varied from 1 to 75%. Second, the different baseline characteristics of included patients and different follow-up periods might be another contributing factor. For example, the study of Calderaro et al. [19] only evaluated the prognostic role of PD-L1 in early recurrence within 2 years, while some other studies performed a significant longer follow up (both longer than 80 months) [21, 22]. However, our meta-regression analysis did not find a factor other than the region of research that significantly contributed to the level of heterogeneity, and the roles of the abovementioned factors warrant further investigation. Further studies should make great efforts to establish standardization regarding the methodology of PD-L1 assessment, such as the method to distinguish between tumour cells and immune cells, to distinguish between the expression patterns of PD-L1, to accurately calculate PD-L1 staining cells, and to set optimal cut-off values. Additionally, critical baseline patient characteristics such as AFP must be considered when estimating the prognostic role of PD-L1.
There have been several meta-analyses to date [12, 29, 31, 3943]. Most recently, Li et al. [43] finished a similar meta-analysis on the value of PD-L1 in HCC patients. The major difference between our study might be the included criteria. Li et al. included all studies that examined PD-L1 expression levels in clinical HCC tissues. They included the study from Zeng et al. [44] that evaluated most of the PD-L1 expression using flow cytometry, but not IHC, and the study from Dai et al. [45] that assessed the PD-L1 expression in peritumoural tissues. Additionally, they included the study from Finkelmeier et al. [46] that investigated soluble PD-L1 in serum. As pointed out in a previous study, using data from different assays or different tissue types would inevitably raise the heterogeneity more or less [12]. Therefore, our meta-analysis focused on only the immunohistochemical (IHC) assay of PD-L1 expression in tumour tissues (or tumour cells but not immune cells in the intra-tumoural area) and found some inconsistent results with previous meta-analyses. Although our results should be explained with great caution, our study possessed some strengths. To our knowledge, the present study is the largest meta-analysis to date with subgroup and meta-regression analyses providing extended evidence regarding the inter-study heterogeneity issues.
Several limitations existed in our study. First, most of the included studies were retrospective and of questionable quality, and data from the prospective high-quality study were lacking. Second, significant between-study heterogeneity was found. Nevertheless, we conducted these meta-analyses using random-effect models, and sensitivity analysis confirmed the reliability of our results. Third, we could not evaluate the prognostic role of PD-L1 based on critical prognostic factors such as TNM stage or HCC causes because most studies did not report sufficient data. For example, as Huang et al. [20] reported, high PD-L1 expression was correlated with a high HBV viral load. How the causes of HCC, such as hepatitis C virus or alcohol, influence the expression and prognostic role of PD-L1 remain unclear. Finally, our analysis indicated some racial differences exist in the prognostic role of PD-L1. However, data from non-Asian patients were limited, and the prognostic role of PD-L1 in these patients warrants further investigation.

Conclusions

Despite the limitations listed above, our meta-analyses found no significant prognostic role of PD-L1 in HCC patients after potential curative hepatectomy based on the included studies. The expression of PD-L1 was significantly correlated with AFP, hepatitis history, and TIL. The prognostic role of PD-L1 in HCC warrants further investigation.

Authors’ contributions

G-ML conceptualized the study, reviewed the literature, summarized and analysed the data and was a major contributor in the writing of the manuscript. X-GL and Y-MZ reviewed the literature, summarized and analysed the data and revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

Data sharing is not applicable to this article because no datasets were generated or analysed during the current study.
Not applicable.
Not applicable.

Funding

This work was supported by the Medical Scientific Research Foundation of Guangdong Province, China (2016102120351019).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics 2012. CA: Cancer J Clin. 2015;65(2):87–108. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics 2012. CA: Cancer J Clin. 2015;65(2):87–108.
2.
Zurück zum Zitat El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142(6):1264–73.CrossRef El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142(6):1264–73.CrossRef
3.
Zurück zum Zitat Makarovarusher OV, Medinaecheverz J, Duffy AG, Greten TF. The yin and yang of evasion and immune activation in HCC. J Hepatol. 2015;62(6):1420.CrossRef Makarovarusher OV, Medinaecheverz J, Duffy AG, Greten TF. The yin and yang of evasion and immune activation in HCC. J Hepatol. 2015;62(6):1420.CrossRef
4.
Zurück zum Zitat Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2009;26(1):677–704.CrossRef Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2009;26(1):677–704.CrossRef
5.
Zurück zum Zitat Kudo M. Immune checkpoint inhibition in hepatocellular carcinoma: basics and ongoing clinical trials. Oncology. 2017;92(Suppl 1):50.CrossRef Kudo M. Immune checkpoint inhibition in hepatocellular carcinoma: basics and ongoing clinical trials. Oncology. 2017;92(Suppl 1):50.CrossRef
6.
Zurück zum Zitat Melero I, Crocenzi TS, Welling TH, Yau TC, Yeo W, Chopra A, Grosso J, Lang L, Anderson J, Dela Cruz CM. Phase I/II safety and antitumor activity of nivolumab in patients with advanced hepatocellular carcinoma (HCC): CA209-040. J Clin Oncol. 2015;33(18_suppl):LBA101.CrossRef Melero I, Crocenzi TS, Welling TH, Yau TC, Yeo W, Chopra A, Grosso J, Lang L, Anderson J, Dela Cruz CM. Phase I/II safety and antitumor activity of nivolumab in patients with advanced hepatocellular carcinoma (HCC): CA209-040. J Clin Oncol. 2015;33(18_suppl):LBA101.CrossRef
7.
Zurück zum Zitat Chang H, Jung W, Kim A, Kim HK, Kim WB, Kim JH, Kim BH. Expression and prognostic significance of programmed death protein 1 and programmed death ligand-1, and cytotoxic T lymphocyte-associated molecule-4 in hepatocellular carcinoma. APMIS. 2017;125(8):690–8.CrossRef Chang H, Jung W, Kim A, Kim HK, Kim WB, Kim JH, Kim BH. Expression and prognostic significance of programmed death protein 1 and programmed death ligand-1, and cytotoxic T lymphocyte-associated molecule-4 in hepatocellular carcinoma. APMIS. 2017;125(8):690–8.CrossRef
8.
Zurück zum Zitat Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, Zhou J, Li BZ, Shi YH, Xiao YS, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009;15(3):971–9.CrossRef Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, Zhou J, Li BZ, Shi YH, Xiao YS, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009;15(3):971–9.CrossRef
9.
Zurück zum Zitat Jung HI, Jeong D, Ji S, Ahn TS, Bae SH, Chin S, Chung JC, Kim HC, Lee MS, Baek MJ. Overexpression of PD-L1 and PD-L2 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res Treat. 2017;49(1):246–54.CrossRef Jung HI, Jeong D, Ji S, Ahn TS, Bae SH, Chin S, Chung JC, Kim HC, Lee MS, Baek MJ. Overexpression of PD-L1 and PD-L2 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res Treat. 2017;49(1):246–54.CrossRef
10.
Zurück zum Zitat Semaan A, Dietrich D, Bergheim D, Dietrich J, Kalff JC, Branchi V, Matthaei H, Kristiansen G, Fischer HP, Goltz D. CXCL12 expression and PD-L1 expression serve as prognostic biomarkers in HCC and are induced by hypoxia. Virchows Archiv. 2017;470(2):185–96.CrossRef Semaan A, Dietrich D, Bergheim D, Dietrich J, Kalff JC, Branchi V, Matthaei H, Kristiansen G, Fischer HP, Goltz D. CXCL12 expression and PD-L1 expression serve as prognostic biomarkers in HCC and are induced by hypoxia. Virchows Archiv. 2017;470(2):185–96.CrossRef
11.
Zurück zum Zitat Wu K, Kryczek I, Chen L, Zou W, Welling TH. Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Can Res. 2009;69(20):8067–75.CrossRef Wu K, Kryczek I, Chen L, Zou W, Welling TH. Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Can Res. 2009;69(20):8067–75.CrossRef
12.
Zurück zum Zitat Gu XB, Gao XS, Xiong W, Guo W, Han LJ, Bai Y, Peng C, Cui M, Xie M. Increased programmed death ligand-1 expression predicts poor prognosis in hepatocellular carcinoma patients. OncoTargets Ther. 2016;9:4805–13.CrossRef Gu XB, Gao XS, Xiong W, Guo W, Han LJ, Bai Y, Peng C, Cui M, Xie M. Increased programmed death ligand-1 expression predicts poor prognosis in hepatocellular carcinoma patients. OncoTargets Ther. 2016;9:4805–13.CrossRef
13.
Zurück zum Zitat Chen CL, Pan QZ, Zhao JJ, Wang Y, Li YQ, Wang QJ, Pan K, Weng DS, Jiang SS, Tang Y, et al. PD-L1 expression as a predictive biomarker for cytokine-induced killer cell immunotherapy in patients with hepatocellular carcinoma. Oncoimmunology. 2016;5(7):e1176653.CrossRef Chen CL, Pan QZ, Zhao JJ, Wang Y, Li YQ, Wang QJ, Pan K, Weng DS, Jiang SS, Tang Y, et al. PD-L1 expression as a predictive biomarker for cytokine-induced killer cell immunotherapy in patients with hepatocellular carcinoma. Oncoimmunology. 2016;5(7):e1176653.CrossRef
14.
Zurück zum Zitat Kan G, Dong W. The expression of PD-L1 APE1 and P53 in hepatocellular carcinoma and its relationship to clinical pathology. Eur Rev Med Pharmacol Sci. 2015;19(16):3063–71.PubMed Kan G, Dong W. The expression of PD-L1 APE1 and P53 in hepatocellular carcinoma and its relationship to clinical pathology. Eur Rev Med Pharmacol Sci. 2015;19(16):3063–71.PubMed
15.
Zurück zum Zitat Sideras K, Biermann K, Verheij J, Takkenberg BR, Mancham S, Hansen BE, Schutz HM, de Man RA, Sprengers D, Buschow SI, et al. PD-L1, galectin-9 and CD8(+) tumor-infiltrating lymphocytes are associated with survival in hepatocellular carcinoma. Oncoimmunology. 2017;6(2):e1273309.CrossRef Sideras K, Biermann K, Verheij J, Takkenberg BR, Mancham S, Hansen BE, Schutz HM, de Man RA, Sprengers D, Buschow SI, et al. PD-L1, galectin-9 and CD8(+) tumor-infiltrating lymphocytes are associated with survival in hepatocellular carcinoma. Oncoimmunology. 2017;6(2):e1273309.CrossRef
16.
Zurück zum Zitat Higgins JPTGS, editor. Cochrane handbook for systematic reviews of interventions version 5.1.0. Oxford: The Cochrane Collaboration; 2011 (updated March 2011). Higgins JPTGS, editor. Cochrane handbook for systematic reviews of interventions version 5.1.0. Oxford: The Cochrane Collaboration; 2011 (updated March 2011).
17.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.CrossRef Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.CrossRef
18.
Zurück zum Zitat Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8:16.CrossRef Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8:16.CrossRef
19.
Zurück zum Zitat Calderaro J, Rousseau B, Amaddeo G, Mercey M, Charpy C, Costentin C, Luciani A, Zafrani ES, Laurent A, Azoulay D, et al. PD-L1 expression in hepatocellular carcinoma: relationship with clinical and pathological features. Hepatology. 2016;64:624A.CrossRef Calderaro J, Rousseau B, Amaddeo G, Mercey M, Charpy C, Costentin C, Luciani A, Zafrani ES, Laurent A, Azoulay D, et al. PD-L1 expression in hepatocellular carcinoma: relationship with clinical and pathological features. Hepatology. 2016;64:624A.CrossRef
20.
Zurück zum Zitat Huang CY, Wang Y, Luo GY, Han F, Li YQ, Zhou ZG, Xu GL. Relationship between PD-L1 expression and CD8+ T-cell immune responses in hepatocellular carcinoma. J Immunother. 2017;40(9):323–33.PubMed Huang CY, Wang Y, Luo GY, Han F, Li YQ, Zhou ZG, Xu GL. Relationship between PD-L1 expression and CD8+ T-cell immune responses in hepatocellular carcinoma. J Immunother. 2017;40(9):323–33.PubMed
21.
Zurück zum Zitat Umemoto Y, Okano S, Matsumoto Y, Nakagawara H, Matono R, Yoshiya S, Yamashita YI, Yoshizumi T, Ikegami T, Soejima Y, et al. Prognostic impact of programmed cell death 1 ligand 1 expression in human leukocyte antigen class I-positive hepatocellular carcinoma after curative hepatectomy. J Gastroenterol. 2014;50(1):65–75.CrossRef Umemoto Y, Okano S, Matsumoto Y, Nakagawara H, Matono R, Yoshiya S, Yamashita YI, Yoshizumi T, Ikegami T, Soejima Y, et al. Prognostic impact of programmed cell death 1 ligand 1 expression in human leukocyte antigen class I-positive hepatocellular carcinoma after curative hepatectomy. J Gastroenterol. 2014;50(1):65–75.CrossRef
22.
Zurück zum Zitat Chang B, Shen L, Wang K, Jin J, Huang T, Chen Q, Li W, Wu P. High number of PD-1 positive intratumoural lymphocytes predicts survival benefit of cytokine-induced killer cells for hepatocellular carcinoma patients. Liver Int. 2018;38(8):1449–58.CrossRef Chang B, Shen L, Wang K, Jin J, Huang T, Chen Q, Li W, Wu P. High number of PD-1 positive intratumoural lymphocytes predicts survival benefit of cytokine-induced killer cells for hepatocellular carcinoma patients. Liver Int. 2018;38(8):1449–58.CrossRef
23.
Zurück zum Zitat Gabrielson A, Wu YN, Wang HK, Jiang JJ, Kallakury B, Gatalica Z, Reddy S, Kleiner D, Fishbein T, Johnson L, et al. Intratumoral CD3 and CD8 T-cell densities associated with relapse-free survival in HCC. Cancer Immunol Res. 2016;4(5):419–30.CrossRef Gabrielson A, Wu YN, Wang HK, Jiang JJ, Kallakury B, Gatalica Z, Reddy S, Kleiner D, Fishbein T, Johnson L, et al. Intratumoral CD3 and CD8 T-cell densities associated with relapse-free survival in HCC. Cancer Immunol Res. 2016;4(5):419–30.CrossRef
24.
Zurück zum Zitat Xie QK, Zhao YJ, Pan T, Lyu N, Mu LW, Li SL, Shi MD, Zhang ZF, Zhou PH, Zhao M. Programmed death ligand 1 as an indicator of pre-existing adaptive immune responses in human hepatocellular carcinoma. Oncoimmunology. 2016;5(7):e1181252.CrossRef Xie QK, Zhao YJ, Pan T, Lyu N, Mu LW, Li SL, Shi MD, Zhang ZF, Zhou PH, Zhao M. Programmed death ligand 1 as an indicator of pre-existing adaptive immune responses in human hepatocellular carcinoma. Oncoimmunology. 2016;5(7):e1181252.CrossRef
25.
Zurück zum Zitat Dai X, Pi G, Yang SL, Chen GG, Liu LP, Dong HH. Association of PD-L1 and HIF-1α coexpression with poor prognosis in hepatocellular carcinoma. Transl Oncol. 2018;11(2):559–66.CrossRef Dai X, Pi G, Yang SL, Chen GG, Liu LP, Dong HH. Association of PD-L1 and HIF-1α coexpression with poor prognosis in hepatocellular carcinoma. Transl Oncol. 2018;11(2):559–66.CrossRef
26.
Zurück zum Zitat Hu K, Wang ZM, Li JN, Zhang S, Xiao ZF, Tao YM. CLEC1B expression and PD-L1 expression predict clinical outcome in hepatocellular carcinoma with tumor hemorrhage. Transl Oncol. 2018;11(2):552–8.CrossRef Hu K, Wang ZM, Li JN, Zhang S, Xiao ZF, Tao YM. CLEC1B expression and PD-L1 expression predict clinical outcome in hepatocellular carcinoma with tumor hemorrhage. Transl Oncol. 2018;11(2):552–8.CrossRef
27.
Zurück zum Zitat Liu CQ, Xu J, Zhou ZG, Jin LL, Yu XJ, Xiao G, Lin J, Zhuang SM, Zhang YJ, Zheng L. Expression patterns of programmed death ligand 1 correlate with different microenvironments and patient prognosis in hepatocellular carcinoma. Br J Cancer. 2018;119(1):80–8.CrossRef Liu CQ, Xu J, Zhou ZG, Jin LL, Yu XJ, Xiao G, Lin J, Zhuang SM, Zhang YJ, Zheng L. Expression patterns of programmed death ligand 1 correlate with different microenvironments and patient prognosis in hepatocellular carcinoma. Br J Cancer. 2018;119(1):80–8.CrossRef
28.
Zurück zum Zitat Ioannidis JPA, Trikalinos TA. The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ. 2007;176(8):1091–6.CrossRef Ioannidis JPA, Trikalinos TA. The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ. 2007;176(8):1091–6.CrossRef
29.
Zurück zum Zitat Xiang X, Yu PC, Long D, Liao XL, Zhang S, You XM, Zhong JH, Li LQ. Prognostic value of PD-L1 expression in patients with primary solid tumors. Oncotarget. 2018;9(4):5058–72.CrossRef Xiang X, Yu PC, Long D, Liao XL, Zhang S, You XM, Zhong JH, Li LQ. Prognostic value of PD-L1 expression in patients with primary solid tumors. Oncotarget. 2018;9(4):5058–72.CrossRef
30.
Zurück zum Zitat Wang X, Teng FF, Kong L, Yu JM. PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets Ther. 2016;9:5023–39.CrossRef Wang X, Teng FF, Kong L, Yu JM. PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets Ther. 2016;9:5023–39.CrossRef
31.
Zurück zum Zitat Dai C, Wang M, Lu J, Dai ZM, Lin S, Yang PT, Tian T, Liu XH, Min WL, Dai ZJ. Prognostic and predictive values of PD-L1 expression in patients with digestive system cancer: a meta-analysis. OncoTargets Ther. 2017;10:3625–34.CrossRef Dai C, Wang M, Lu J, Dai ZM, Lin S, Yang PT, Tian T, Liu XH, Min WL, Dai ZJ. Prognostic and predictive values of PD-L1 expression in patients with digestive system cancer: a meta-analysis. OncoTargets Ther. 2017;10:3625–34.CrossRef
32.
Zurück zum Zitat Coelho MA, Trécesson SDC, Rana S, Zecchin D, Moore C, Molina-Arcas M, East P, Spencer-Dene B, Nye E, Barnouin K. Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity. 2017;47(6):1083–99.CrossRef Coelho MA, Trécesson SDC, Rana S, Zecchin D, Moore C, Molina-Arcas M, East P, Spencer-Dene B, Nye E, Barnouin K. Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity. 2017;47(6):1083–99.CrossRef
33.
Zurück zum Zitat Zhou J, Liu M, Sun H, Feng Y, Xu L, Chan AWH, Tong JH, Wong J, Chong CCN, Lai PBS, et al. Hepatoma-intrinsic CCRK inhibition diminishes myeloid-derived suppressor cell immunosuppression and enhances immune-checkpoint blockade efficacy. Gut. 2018;67(5):931–44.CrossRef Zhou J, Liu M, Sun H, Feng Y, Xu L, Chan AWH, Tong JH, Wong J, Chong CCN, Lai PBS, et al. Hepatoma-intrinsic CCRK inhibition diminishes myeloid-derived suppressor cell immunosuppression and enhances immune-checkpoint blockade efficacy. Gut. 2018;67(5):931–44.CrossRef
34.
Zurück zum Zitat Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568.CrossRef Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568.CrossRef
35.
Zurück zum Zitat Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–5.CrossRef Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–5.CrossRef
36.
Zurück zum Zitat Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.CrossRef Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.CrossRef
37.
Zurück zum Zitat Haynes D. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5(12):1365–9.CrossRef Haynes D. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5(12):1365–9.CrossRef
38.
Zurück zum Zitat Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, Chen S, Klein AP, Pardoll DM, Topalian SL, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4(127):127ra137.CrossRef Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, Chen S, Klein AP, Pardoll DM, Topalian SL, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4(127):127ra137.CrossRef
39.
Zurück zum Zitat He J, Zhang Y, Kang S, Shen J, He J, Jiang L, Wang W, Guo Z, Peng G, Chen G, et al. Prognostic significance of programmed cell death 1 (PD-1) or PD-1 ligand 1 (PD-L1) expression in epithelial-originated cancer: a meta-analysis. Medicine. 2015;94(6):e515.CrossRef He J, Zhang Y, Kang S, Shen J, He J, Jiang L, Wang W, Guo Z, Peng G, Chen G, et al. Prognostic significance of programmed cell death 1 (PD-1) or PD-1 ligand 1 (PD-L1) expression in epithelial-originated cancer: a meta-analysis. Medicine. 2015;94(6):e515.CrossRef
40.
Zurück zum Zitat Pyo JS, Kang G, Kim JY. Prognostic role of PD-L1 in malignant solid tumors: a meta-analysis. Int J Biol Mark. 2017;32(1):e68–74.CrossRef Pyo JS, Kang G, Kim JY. Prognostic role of PD-L1 in malignant solid tumors: a meta-analysis. Int J Biol Mark. 2017;32(1):e68–74.CrossRef
41.
Zurück zum Zitat Wang Q, Liu F, Liu L. Prognostic significance of PD-L1 in solid tumor: an updated meta-analysis. Medicine. 2017;96(18):e6369.CrossRef Wang Q, Liu F, Liu L. Prognostic significance of PD-L1 in solid tumor: an updated meta-analysis. Medicine. 2017;96(18):e6369.CrossRef
42.
Zurück zum Zitat Zhong JH, Luo CP, Zhang CY, Li LQ. Strengthening the case that elevated levels of programmed death ligand 1 predict poor prognosis in hepatocellular carcinoma patients. J Hepatocell Carcinoma. 2017;4:11–3.CrossRef Zhong JH, Luo CP, Zhang CY, Li LQ. Strengthening the case that elevated levels of programmed death ligand 1 predict poor prognosis in hepatocellular carcinoma patients. J Hepatocell Carcinoma. 2017;4:11–3.CrossRef
44.
Zurück zum Zitat Zeng Z, Shi F, Zhou L, Zhang MN, Chen Y, Chang XJ, Lu YY, Bai WL, Qu JH, Wang CP, et al. Upregulation of circulating PD-L1/PD-1 is associated with poor post-cryoablation prognosis in patients with HBV-related hepatocellular carcinoma. PLoS ONE. 2011;6(9):e23621.CrossRef Zeng Z, Shi F, Zhou L, Zhang MN, Chen Y, Chang XJ, Lu YY, Bai WL, Qu JH, Wang CP, et al. Upregulation of circulating PD-L1/PD-1 is associated with poor post-cryoablation prognosis in patients with HBV-related hepatocellular carcinoma. PLoS ONE. 2011;6(9):e23621.CrossRef
45.
Zurück zum Zitat Dai XM, Xue J, Hu JL, Yang SL, Chen GG, Lai PBS, Yu C, Zeng C, Fang XF, Pan XL, et al. Positive expression of programmed death ligand 1 in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. Transl Oncol. 2017;10(4):511–7.CrossRef Dai XM, Xue J, Hu JL, Yang SL, Chen GG, Lai PBS, Yu C, Zeng C, Fang XF, Pan XL, et al. Positive expression of programmed death ligand 1 in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. Transl Oncol. 2017;10(4):511–7.CrossRef
46.
Zurück zum Zitat Finkelmeier F, Canli Ö, Tal A, Pleli T, Trojan J, Schmidt M, Kronenberger B, Zeuzem S, Piiper A, Greten FR, et al. High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis. Eur J Cancer. 2016;59:152–9.CrossRef Finkelmeier F, Canli Ö, Tal A, Pleli T, Trojan J, Schmidt M, Kronenberger B, Zeuzem S, Piiper A, Greten FR, et al. High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis. Eur J Cancer. 2016;59:152–9.CrossRef
Metadaten
Titel
Prognostic role of PD-L1 for HCC patients after potentially curative resection: a meta-analysis
verfasst von
Gao-Min Liu
Xu-Gang Li
Yao-Min Zhang
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Cancer Cell International / Ausgabe 1/2019
Elektronische ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-019-0738-9

Weitere Artikel der Ausgabe 1/2019

Cancer Cell International 1/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.